
Research Article
A Modified RBF Collocation Method for Solving the
Convection-Diffusion Problems

Nissaya Chuathong

Faculty of Science, Energy and Environment, King Mongkut’s University of Technology North Bangkok (Rayong Campus),
Rayong 21120, Thailand

Correspondence should be addressed to Nissaya Chuathong; nissaya.c@sciee.kmutnb.ac.th

Received 13 June 2022; Revised 5 January 2023; Accepted 9 January 2023; Published 20 January 2023

Academic Editor: Yufeng Xu

Copyright © 2023 Nissaya Chuathong. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The main purposes of this study are to propose the modified radial basis function (RBF) collocation method using a hybrid radial
basis function to solve the convection-diffusion problems numerically and to choose the optimal shape parameter of radial basis
functions. The modified numerical scheme is tested on a benchmark problem with varying shape parameters. The root mean
square error and maximum error are used to validate the accuracy and efficiency of the method. The proposed method can be
a good alternative to the radial basis function collocation method to improve accuracy and results.

1. Introduction

The convection-diffusion problem is important in many
branches of science and engineering governed by the
convection-diffusion equation [1–5]. The convection-
diffusion equation is a fundamental equation that combines
convection and diffusion processes to represent the problem
process. When dealing with complex geometry, the analyt-
ical method is difficult to use, but the numerical methods
have been tackled [6–9]. However, it is well known that
the solution to this problem becomes oscillatory when
the convection-diffusion problem becomes a convection-
dominated problem, meaning the coefficient in the diffu-
sion part is very small. In this convection-dominated
problem, a thin boundary layer (there is a very high gradient)
is usually formed if the standard numerical procedure is per-
formed without special treatments. Standard numerical
methods are also limited in the geometric domain. Moreover,
the solution to this problem presents a challenging computa-
tional task.

The numerical methods known as radial basis function
(RBF) collocation methods have been proposed and attracted
by researcher because these methods do not require a mesh
generation to discretize the problem domains [10–19]. Typi-

cally, these methods are based on the collocation techniques,
and the computing process of the methods is efficient and
accurate when only the Dirichlet boundary conditions exist
[20]. However, for a large number of collocation points in a
domain, these methods may have a major shortcoming when
they are applied to solve the Neumann boundary conditions.
Furthermore, the computing process leads to the ill-condi-
tioned problem, and several approaches have been proposed
to solve this problem [21–33]. A main tool of the RBF
collocation techniques is RBF, which is used to approximate
the solution of the partial differential equations (PDEs).
Chuathong et al. [34, 35] have proposed the effectiveness of
several well-known and mostly used RBFs to solve the non-
linear class of partial differential equations. In addition, it is
found that the Cubic Matérn RBF type produces “the best
results” quality for all test cases, whereas the Gaussian RBF
produces “worst results” quality. For the interpolation of
large points, however, the typical RBF forms lead to large
and ill-conditioned systems. To avoid this limitation, Mishra
et al. [36] have proposed a new RBF that combines the
Gaussian and cubic types. They found that the proposed
RBF significantly improved the condition number of the
matrix system. Also, the ill-conditioned problems are treated
by Kansa’s method using the proposed RBF for application in
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several benchmark problems: 1D, 2D, and 3D. Recently,
this method using a hybrid RBF has gained popularity in
many fields of science and engineering, and it has been
used to solve large data approximations [37–39]. This
immediately raises the question of whether this newly
invented RBF can be applied to the problem of solving
PDEs, specifically the convection-diffusion equation. This
motivates the author to modify the RBF collocation tech-
nique in order to solve the convection-diffusion problem
and alleviate the ill-conditioned problems. Furthermore,
the convection-dominated problem is expected to be solved
more effectively.

In this article, the newly invented RBF [36] is applied
to solve the convection-diffusion problem. While aspects
of the hybrid RBF have been discovered, it is still men-
tioned in selecting the optimal shape parameter in the
Gaussian part, which is not straightforward. This means
that the choice of the shape parameter is specific. To rem-
edy this case, the new hybrid is modified by adding weight
to the Gaussian and cubic RBFs. The two RBFs are then
combined. The weight is added to control the contribution
of the Gaussian and cubic parts. Several possible combina-
tions of both RBFs are investigated. The optimal weight is
chosen in the interval ð0, 1Þ using the minimum root
mean square error. Solving the convection-diffusion prob-
lem using some traditional RBF collocation methods
without special treatments is quite ill-conditioned; there-
fore, a new modified hybrid RBF on the RBF collocation
scheme is proposed to solve the problems. As shown in
the numerical results, applying the modified RBF colloca-
tion method significantly reduces the error in solving the
convection-diffusion problem, especially when the diffu-
sion coefficient is small.

The article is organized as follows. In Section 2, a brief
conventional RBF collocation method for solving partial
differential equations is introduced. In Section 3, the
invented hybrid RBF of Mishra et al. [36] is introduced,
and the difference between the Gaussian and cubic RBFs is
briefly discussed. The advantages of both RBFs are employed
to modify the hybrid RBF, and the traditional RBF colloca-
tion method is also modified for the convection-diffusion
problem using the new modified hybrid RBF. In Section 4,
to validate the proposed approach, the proposed RBF collo-
cation method is applied to solve the convection-diffusion
problem. Moreover, the results obtained by this method
are compared to those obtained by exact solutions. Further-
more, to alleviate the convection-dominated problems and
the difficulty of conditioning, the modified RBF collocation
method using the various weights of the hybrid RBF is stud-
ied for different diffusion coefficients. Finding the optimal
shape parameter of the Gaussian in a hybrid RBF is also dis-
cussed to obtain the best results. A short conclusion is drawn
in Section 5.

2. The Radial Basis Function Collocation
Methods (RBF Collocation Methods)

Before introducing the proposed modified RBF collocation
scheme, a brief review of the RBF collocationmethods is given.

To illustrate the basic idea, the following two-dimensional
elliptic partial differential equations are considered:

Lu xð Þ = f xð Þ, x inΩ, ð1Þ

Bu xð Þ = g xð Þ, x on ∂Ω, ð2Þ
where L and B represent the elliptical differential operators
in a bounded domain Ω and a boundary domain ∂Ω,,
respectively.

The basic idea of the RBF collocation methods is to apply
the RBF ϕ to assume the approximate solution û of (1) and
(2) provided by

û xð Þ = 〠
N

j=1
cjϕ x − x j

 À Á
, ð3Þ

where k⋅k is the Euclidean norm and cj are the unknown
coefficients.

Let fx1, x2 ⋯ , xNg denote the set of collocation points,
fx1, x2,⋯, xNI

g denote the set of interior points, and
fxNI+1, xNI+2,⋯, xNg denote the set of boundary points
where NI is the number of interior points and N is the
total number of collocation points.

Using (3), the governing equations (1) and (2) become

Lû xð Þ = 〠
NI

j=1
cjL ϕ x − x j

 À Á
= f xð Þ, ð4Þ

Bû xð Þ = 〠
N

j=NI+1
cjBϕ x − x j

 À Á
= g xð Þ, ð5Þ

where NB is the number of boundary points and N =NI +
NB. Therefore, applying the collocation points to (4) and
(5), we can obtain fcjg, j = 1, 2, 3,⋯,N through (4) and
(5). Then, we can obtain the approximate solution to (3) at
all given points.

3. The Modified RBF Collocation Method

In this section, we apply a hybrid RBF [36] concept to the
RBF collocation methods. RBFs are the main tools used in
RBF collocation methods to approximate the unknown
function using known data points. The RBF is defined as
follows.

Definition 1. A function φ : ℝN ⟶ℝ is said to be radial if
there exists a univariate function ϕ : ℝ+ ⟶ℝ such that
φðxÞ = ϕðrÞ, r = kxk, where k⋅k represents the Euclidean
norm. Typical RBF and their expression are shown in
Table 1.

The stability and accuracy of the RBF interpolation
depend on the aspects of the algorithm and the data
involved.
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Mishra et al. [36] have proposed a hybrid radial basis
function that combines the conventional Gaussian and a
cubic RBF, as given by

ϕ r j
À Á

= e− εr jð Þ2 + r j
3, ð6Þ

where r j = kx − x jk, x ∈ℝ2 are in a domain, and x j are the
collocation center points for j = 1, 2,⋯,N .

The first part of equation (6) is the Gaussian RBF which
is dependent on the shape parameter ε, and the second one
is the cubic RBF which does not contain the shape parame-
ter. This combination of RBFs makes “the Gaussian RBF
with small cubic doping” for large shape parameter. On the
other hand, for the small shape parameter, the cubic term
dominates the RBF, making “a cubic RBF with small
Gaussian doping.” However, it is noted that the first part
of equation (6) still depends on the shape parameter which
is not straightforward in practical use meaning that it is
often selected in an “ad hoc” manner. For this reason, this
investigation is aimed at proposing a newly modified version
of the hybrid RBF. Formula (6) is now further modified to
improve the results. It is designed to rely on an additional
weighting function, α. The following is the modified form:

ϕ r j
À Á

= 1 − αð Þe− εr jð Þ2 + αr j
3, ð7Þ

where 0 < α < 1.
The weight α is added to the hybrid RBF to control the

contribution of the Gaussian and cubic parts. In addition,
the accuracy of the hybrid RBF is affected by the type of
problem and the collocation points. The weight α helps an
ill-conditioned problem when the hybrid RBF uses a small
shape parameter and alleviates the singular matrix in cubic
part. This means that the collocation method using the
hybrid RBF will produce better results in terms of accuracy.
The optimal shape parameter ε and the weight α are chosen
according to the minimum root mean square error.

Moreover, this work is expanded to another challeng-
ing problem of solving the convection-diffusion problem
which has piqued the interest of many researchers. In
addition, the proposed hybrid RBF is used to modify the
RBF collocation methods. First, consider the convection-
diffusion problem [40] as follows:

L uð Þ = vT ⋅ ∇u − ∇T D∇uð Þ + βu − q xð Þ = 0 inΩ, ð8Þ

with the Neumann boundary condition on boundary

B uð Þ = nTD∇u + �qn = 0 on ∂Ω1, ð9Þ

and the Dirichlet boundary condition on boundary

u − �u = 0 on ∂Ω2: ð10Þ

Let fx1, x2,⋯, xNg denote a set of collocation points in
a domain Ω ∪ ∂Ω1 ∪ ∂Ω2, fx1, x2,⋯, xNI

g denote a set of
interior points, and fxNI+1, xNI+2,⋯, xNg denote a set of
boundary points on ∂Ω1 ∪ ∂Ω2.

Assume the following approximate solution to the
convection-diffusion problems (8) and (9):

û xð Þ = 〠
N

j=1
cjϕ x − x j

 À Á
, ð11Þ

where ϕ is a hybrid RBF and N is the total number of
collocation points in a domain Ω ∪ ∂Ω1 ∪ ∂Ω2.

The coefficients fc1, c2,⋯, cNg in equation (11) are
determined by using the collocation points through (8),
(9), and (10) as follows:

L ûið Þ = vT ⋅ ∇û+i − ∇T D∇ûið Þ + βûi − q xið Þ = 0, ð12Þ

B1 ûið Þ = nTD∇ûi + �qn = 0, ð13Þ
B2 ûið Þ = ûi − �u = 0: ð14Þ

From (12), (13), and (14), we have the following matrix
system:

ψc = f, ð15Þ

where ψij = ϕðkxi − x jkÞ, i, j = 1, 2,⋯,N and c = ½c1, c2,⋯, cN �T .
The unknown coefficient matrix c is obtained by solving

the system (15). Hence, for any xi ∈Ω, the approximate
solution ûðxiÞ can be found in equation (11).

Next, it is observed that

Lûi = Lû xið Þ = 〠
N

j=1
cjLϕ xi − x j

 À Á
= Lψc, i = 1, 2,⋯,NI ,

ð16Þ

Bûi = Bû xið Þ = 〠
N

j=1
cjBϕ xi − x j

 À Á
= Bψc, i =NI + 1,⋯,N ,

ð17Þ
where Lψ and Bψ defined in (16) and (17) are the same as
equations (4) and (5), respectively.

4. Numerical Results

To illustrate the effectiveness of the proposed approach, the
convection-diffusion equation is applied. Throughout this
section, HybRBF denotes the hybrid RBF in (6), MHybRBF

Table 1: Typical RBF and their expression.

RBFs Mathematical expression

Multiquadric ϕ rð Þ = 1 + εrð Þ2À Á1/2
Inverse multiquadric ϕ rð Þ = 1 + εrð Þ2À Á−1/2
Gaussian ϕ rð Þ = e− εrð Þ2

Thin plate spline ϕ rð Þ = r2 log rð Þ
Cubic ϕ rð Þ = r3

Wendland’s ϕ rð Þ = 1 + εrð Þ2À Á4
+ 4εr + 1ð Þ
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denotes the modified RBF in (7), GA denotes the Gaussian
RBF, and CB denotes the cubic RBF.

The results obtained by the numerical scheme are com-
pared with those obtained by the exact solution to assess
the effectiveness of the proposed approach. The numerical
accuracy is measured using the following errors:

RMSE = 1ffiffiffiffi
N

p u xð Þ − û xð Þk k,

MAXE = u xð Þ − û xð Þk k∞,
ð18Þ

where RMSE is the root mean square error, MAXE is the
maximum error, and ûðxÞ is the approximate solution
obtained by the proposed method. MATLAB is used to
perform on a notebook computer with Intel Core i7
Home Basic 64 bit. Regarding the performance of the
proposed method, the CPU times are reported and com-
puted in seconds. Moreover, the stability of the method is
evaluated by calculating the condition number (CN) of
the collocation matrix ψ, using the MATLAB command
cond.

In the following implementation, the convection-diffu-
sion problems (9), (10), and (11) are investigated in a rect-
angular domain ½0, 1� × ½0, 1�, the coefficients

D =
ρ 0

0 ρ

" #
,

v = 3 − x, 4 − yf g,
β = 1,

ð19Þ

and ρ is a given constant of diffusion coefficient.

The boundary conditions are considered as follows:

u 0, xð Þ = 0,

u 1, yð Þ = 0,

u x, 0ð Þ = 0,

u x, 1ð Þ = 1:

ð20Þ

Table 2: Comparison of results obtained by applying the RBF collocation method with GA, CB, HybRBF, and MHybRBF with different ρ.

ρ
GA

Time
CB

Time
RMSE MAXE CN RMSE MAXE CN

100 3.615045e-06 6.990812e-06 1.537902e+23 0.123355 1.470723e-07 3.059453e-07 4.684657e+11 0.116703

10 3.476547e-04 6.694427e-04 1.304255e+22 0.116527 1.428050e-05 3.034218e-05 5.151761e+10 0.179804

1 2.280170e-02 4.270190e-02 1.026336e+21 0.132901 1.109043e-03 2.366442e-03 1.191804e+10 0.122082

0.5 5.552731e-02 1.055118e-01 1.724032e+21 0.132075 3.293163e-03 7.376807e-03 1.054947e+10 0.122629

0.1 3.533230e-01 8.452437e-01 5.881338e+20 0.123835 5.047532e-02 1.422299e-01 6.712422e+10 0.118474

0.01 5.981820e-01 2.266399e+00 1.198877e+21 0.125228 3.421569e-01 1.458199e+00 3.078447e+11 0.125130

0.001 2.114194e-01 1.248382e+00 3.568844e+20 0.126839 1.732781e+01 7.510594e+01 1.602582e+13 0.124880

0.0001 4.240498e-01 2.052057e+00 6.242204e+21 0.114314 1.062712e+00 8.896234e+00 3.631293e+11 0.146026

ρ
HybRBF MHybRBF

RMSE MAXE CN Time RMSE MAXE CN Time

100 7.705245e-06 1.434408e-05 7.463696e+12 0.122474 8.164123e-07 1.778744e-06 7.935031e+11 0.121252

10 6.449282e-04 1.200222e-03 7.820077e+11 0.134633 8.006966e-05 1.725578e-04 8.404555e+10 0.128443

1 2.337358e-03 4.480407e-03 1.454403e+11 0.140067 6.479810e-03 1.319792e-02 1.359125e+10 0.164191

0.5 5.209617e-01 1.127411e+00 1.149173e+11 0.132664 2.108005e-02 4.226807e-02 9.773317e+09 0.116316

0.1 5.209617e-01 1.127411e+00 3.183265e+11 0.114587 1.658683e-01 3.137132e-01 1.585630e+10 0.120703

0.01 3.210199e-01 8.306938e-01 4.371672e+11 0.115497 4.172998e-01 1.540322e+00 2.048141e+12 0.135795

0.001 4.251006e-01 1.577832e+00 4.997906e+11 0.114875 1.235107e+00 4.180278e+00 3.094705e+11 0.117116

0.0001 3.209438e+00 9.752944e+00 8.167756e+11 0.137506 5.994588e-01 2.263910e+00 1.955926e+11 0.118089

10–4

10–4

10–2

100

102

10–6

10–8
10–3 10–2 10–1 100 101 102

RM
SE

𝜌

GA
CB

HybRBF
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Figure 1: RMSE of the collocation method using GA, CB, HybRBF,
and MHybRBF with different ρ.
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The exact solution for this problem is given by

u x, yð Þexact = sin xð Þ 1 − e− 2 1−xð Þð Þ/ρ
� �

1 − e− 3 1−yð Þð Þ/ρ
� �

: ð21Þ

In all case studies, the nodal distributed model is used:
21 × 21 (441 points) uniformly distributed points in a
domain and on the boundary points. In the first case study,
the collocation method using GA, CU, HybRBF, and
MHybRBF is examined to solve the convection-diffusion
problem at different diffusion coefficients ρ. Here, the value
of the shape parameter contained in HybRBF, MHybRBF,
and GA is often selected as 3, and the weight α of MHybRBF
is given as 0.5. Table 2 shows a summary of all results
obtained by the collocation method using all four RBFs.
It can be observed that the errors obtained by applying
each method differ slightly. When the diffusion coefficient
ρ is very small, or the problem becomes a convection-
dominated problem, the errors of the collocation method
using all four RBFs become large and lead to oscillatory
results. In terms of stability, the CN of collocation matrix is
analyzed, and it is discovered that the CN obtained by using
CB, HybRBF, and MHybRBF is similar. The CN has an order
of magnitude between 10+9 and 10+12 as shown in Table 2.
Figure 1 also depicts a comparison of the RMSE of the collo-
cation method using all four RBFs with various diffusion
coefficients ρ. It can be noted that when the diffusion coeffi-
cient ρ is large (i.e., ρ ≥ 1), the computational effectiveness of
these methods can produce good results. However, GA can
still perform slightly better than the others when the diffusion
coefficient is small (e.g., ρ = 0:001). This means that the RBF
collocation method using GA can alleviate the convection-
dominated problem for choosing the shape parameter as 3.
Although GA yields the numerical results that agree with
the exact solution for a very small diffusion coefficient, CN
obtained by GA is higher than that obtained by CU, HybRBF,
and MHybRBF. Therefore, GA is combined with CU to
obtain a lower CN which becomes HybRBF. In particular,
the comparison of HybRBF and MHybRBF is considered,
and it is found that MHybRBF provides slightly better results
than HybRBF. As the results shown in Figure 1 and Table 1,
the optimal shape parameter is discussed and chosen by
using the minimum RMSE to improve the computational
effectiveness of the collocation method using HybRBF and
MHybRBF with a very small diffusion coefficient, and it can
be written in mathematical form as

Minimizeα,εξ α, εð Þ,
subject to 0 < ε < 100, 0 < α < 1,

ð22Þ

where ξ is the objective function computed through the
RMSE and α, ε are the parameters in the hybrid RBF.

Let HybRBF2 and MHybRBF2 denote the HybRBF
and MHybRBF using the optimal shape parameter, respec-
tively. The value of the shape parameter ε of both RBFs is
tested by varying the value between 0 and 100. In this

investigation, MHybRBF and MHybRBF2 are computed
with a specific α = 0:5.

Table 3 shows the results of HybRBF2 and MHybRBF2
using the optimal shape parameter for different diffusion
coefficients ρ, and Figure 2 depicts the comparison of the
RMSE of the collocation method using HybRBF, MHybRBF,
HybRBF2, and MHybRBF2. It can be found that choosing
the optimal shape parameter of HybRBF2 and MHybRBF2
is helpful. For different values of ρ in the convection-
diffusion problem, the errors obtained by both HybRBF2
and MHybRBF2 decrease, which indicates that HybRBF2
and MHybRBF2 can perform well and improve the solution
of the convection-diffusion problem with different diffusion
coefficients ρ including the convection-dominated problem.

Moreover, the comparison of the collocation method
using all six RBFs is discussed, and the RMSE of these
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Figure 2: The comparison of RMSE of HybRBF, MHybRBF,
HybRBF2, and MHybRBF2 with different ρ.
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Figure 4: The approximate solution of MHybRBF and MHybRBF2 for ρ = 0:001.
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Figure 5: The comparison of the numerical results of MHybRBF with optimal α, ε and the analytical solution.
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methods is illustrated in Figure 3. It can be observed that the
errors of the method using HybRBF2 and MHybRBF2 are
quite smaller than those of the technique using other RBFs.
It can also be found that, for different values of ρ, the pro-
posed collocation method using MHybRBF, HybRBF2, and
MHybRBF2 performs better than HybRBF. Furthermore, for
ρ = 0:001, the approximate solutions obtained by applying
MHybRBF and MHybRBF2 are compared and shown in
Figure 4. As illustrated in Figure 4, MHybRBF2 provides the
approximate solutions that agree with the exact solution,
whereas MHybRBF still yields oscillatory solutions. In addi-
tion, in Tables 2 and 3, the CN of the matrix system is similar
with or without the optimal shape parameter for the different
values of ρ.

Although the proposed collocation method using
MHybRBF yields slightly better results than those obtained
by using HybRBF, both methods produce results that are
not quite in good agreement with the exact solution, espe-
cially for a very small ρ. For example, when the proposed
collocation method using MHybRBF is applied to ρ =
0:0001, the numerical results remain oscillatory and do not
agree with those obtained by the exact solution, as shown
in Figure 5(a). Therefore, for a very small diffusion coeffi-
cient ρ, finding the optimal weight α is discussed in depth
to control the contribution of the hybrid RBF and improve
the results of the MHybRBF. It can be seen in Table 4 that
when the proposed approach is employed with the optimal
values of ε and α, the errors obtained by this method
decrease. This implies that the numerical results obtained
by MHybRBF with the optimal weight α are improved and
slightly agree with those obtained by the exact solution, as
illustrated in Figures 5(b)–5(d).

In addition, in Table 4, the optimal weight α used for
MHybRBF is found to be about 0.95 for solving the
convection-diffusion problem with each diffusion coefficient
ρ. On the other hand, the discovered optimal shape param-
eter ε shows an increasing trend as the diffusion coefficient ρ
decreases. Also, the CN does not change significantly.

5. Conclusion

In this paper, a modified RBF collocation method using a
hybrid RBF is proposed for the numerical solution of the
convection-diffusion problem. A hybrid RBF proposed by

Mishra et al. [36] is further utilized in conjunction with
the RBF collocation method, and some promising results
are obtained. The advantages of the Gaussian and cubic
RBFs are extended to modify the hybrid RBF by adding
the extra weight which controls the contribution of the
Gaussian and cubic RBFs. It is worth noting that when using
the modified hybrid RBF, the quality of the results is signif-
icantly improved and agrees with the exact solution. How-
ever, the performance of the proposed method will be
reduced when the problem has a very small diffusion coeffi-
cient or is a convection-dominated problem. This means
that the numerical solutions obtained using this method
are still oscillatory for a small diffusion coefficient. To
improve the accuracy of the modified RBF collocation
method using the hybrid RBF, finding the optimal shape
parameter of the Gaussian part and the optimal weight of
a modified hybrid RBF is discussed and found through a
numerical experiment with the minimum root mean square
error. The numerical study demonstrates that choosing the
optimal shape parameter produces better results, and the
obtained results are acceptable and agree with the exact solu-
tion. Moreover, the proposed scheme can overcome the
convection-dominated problem (the instability issue), which
is a challenging problem in science and engineering. It can
also be noted that the optimal weight of the hybrid RBF
plays an important role in the numerical solution to the
convection-diffusion problem, especially the convection-
dominated. Moreover, the combination of the Gaussian
RBF and cubic RBF works well. Finally, when stability is
considered, the CN obtained by the modified RBF colloca-
tion method does not differ significantly in solving the
convection-diffusion problem with different diffusion coeffi-
cients. However, the proposed approach yields a lower CN
than using only the Gaussian RBF.

In future work, the proposed scheme will be extended to
solve other types of PDEs, including the modeling of both
time-independent and time-dependent PDEs. Another impor-
tant aspect to investigate concerns the study of the nodal distrib-
utedmodel: irregular points and refinement points. Furthermore,
the combination of other RBFs is worth investigating.

Data Availability

The data used to support the findings of this study are
included within the article.

Table 4: The results of MHybRBF with optimal α, ε and different ρ.

ρ α ε
MHybRBF

Time
RMSE MAXE CN

100 0.56 3.54 4.848361e-06 6.972640e-06 3.408575e+12 0.120996

10 0.95 3.56 1.791690e-05 3.549015e-05 5.803703e+10 0.120914

1 0.95 3.93 9.070883e-04 1.876517e-03 1.343570e+10 0.133980

0.5 0.95 8.93 2.556100e-04 8.988170e-04 5.582259e+09 0.124727

0.1 0.9 9.03 2.804490e-03 8.193785e-03 1.128277e+10 0.114545

0.01 0.98 33.70 3.355029e-02 3.797075e-01 1.780515e+10 0.125761

0.001 0.93 46.49 4.263947e-02 1.883747e-01 6.525949e+09 0.118694

0.0001 0.95 58.5 1.655461e-01 8.865616e-01 1.677765e+11 0.111952
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