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Throughout this paper, we will present a new extension of the Wright hypergeometric matrix function by employing the extended
Pochhammer matrix symbol. First, we present the extended hypergeometric matrix function and express certain integral
equations and differential formulae concerning it. We also present the Mellin matrix transform of the extended Wright
hypergeometric matrix function. After that, we present some fractional calculus findings for these expanded Wright
hypergeometric matrix functions. Lastly, we present several theorems of the extended Wright hypergeometric matrix function
in fractional Kinetic equations.

1. Introduction and Preliminaries

Special functions are significant in many disciplines of math-
ematics nowadays because specific forms of these functions
have become vital tools in several sciences such as mathe-
matical physics, probability theory, computer science, and
engineering (see [1, 2]).

Special matrix functions demonstrate their relevance in
addressing several physics issues, and their applications in
statistics, lie groups, and differential equations are develop-
ing and becoming an active area in recent projects. Indepen-
dent research is being conducted on new extensions of
special matrix functions such as the beta matrix function,
gamma matrix function, and Gaussian hypergeometric
matrix function.

In this paper, the null matrix and identity matrix in ℂr×r

will be denoted as O and I, respectively. If a matrix ζ ∈ℂr×r ,
then, the spectrum of ζ is the collection of all eigenvalues of
ζ and is represented by σðζÞ. A matrix ζ ∈ℂr×r is a positive
stable if Re ðνÞ > 0 for all ν ∈ σ (ζ).

If gðzÞ and hðzÞ are holomorphic functions defined on
an open set D ⊆ℂ and if ζ is a matrix in ℂr×r such that σð
ζÞ⊂D then gðζÞhðζÞ = hðζÞgðζÞ (see [3]). Additionally, if ζ
is a matrix in ℂr×r such that σðζÞ⊂D and ζη = ηζ, then, gðζ
ÞhðηÞ = hðηÞgðζÞ. If ζ is a positive stable matrix in ℂr×r , then,

the gamma matrix function ΓðζÞ is defined as follows (see
[3–6]):

Γ ζð Þ =
ð∞
0
tζ−Ie−t dt where tζ−I = e ζ−Ið Þ ln t: ð1Þ

If ζ and η are positive stable matrices in ℂr×r , then, the
beta matrix function is defined by (see [3–6])

β ζ, ηð Þ =
ð1
0
tζ−I 1 − tð Þη−I dt: ð2Þ

Also, if ζ, η and ζ + η are positive stable matrices in ℂr×r

such that ζη = ηζ then (see [3, 4])

β ζ, ηð Þ = Γ ζð ÞΓ ηð ÞΓ−1 ζ + ηð Þ: ð3Þ

If ζ is a matrix in ℂr×r such that

ζ + nI is invertible for all n ≥ 0, ð4Þ
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then, the version Pochhammer matrix symbol is defined
by (see [3])

ζð Þn = ζ ζ + Ið Þ ζ + 2Ið Þ⋯ :: ζ + n − 1ð ÞIð Þ
where n ≥ 1 and ζð Þ0 = I:

ð5Þ

From [7], if ζ, ρ are positive stable matrices in ℂr×r and ζ
satisfies condition (4), then the extended Gamma matrix
function is defined by

Γ ζ, ρð Þ =

ð∞
0
tζ−Ie−It−ρ/tdt, if ρ ≠ 0,

Γ ζð Þ, if ρ = 0:

8><
>: ð6Þ

and the new extended Pochhammer matrix symbol is given
by

ζ, ρð Þn =
Γ−1 ζð ÞΓ ζ + nI, ρð Þ, if ρ ≠ 0,
ζð Þn, if ρ = 0:

(
ð7Þ

The new extended Pochhammer matrix symbol is satis-
fying the following property (see [7]):

ζ, ρð Þm+n = ζð Þn ζ + nI, ρð Þm: ð8Þ

The Gauss hypergeometric matrix function 2F1ðζ, η,
ν ; zÞ is defined as follows (see [3, 8, 9]):

2F1 ζ, η ; ν ; zð Þ = 〠
∞

n=0
ζð Þn ηð Þn νð Þn

Â Ã−1 zn
n!

, ð9Þ

where ζ, η and ν ∈ℂr×r , ν satisfies the condition (4)
and jzj < 1.

The Wright hypergeometric matrix function is defined
in [10] as follows:

2R
τð Þ
1 ζ, η, ν ; z½ � = Γ−1 ηð ÞΓ νð Þ〠

∞

n=0
ζð ÞnΓ−1

Á ν + nτIð ÞΓ η + nτIð Þ z
n

n!
,

ð10Þ

where τ ∈ R+ and ζ, η and ν are positive stable matrix in ℂr×r

and ν satisfies the condition (4).
If η and ν are positive stable matrices function in

ℂr×r and ν satisfies the condition (4) then the Wright
Kummer hypergeometric matrix function is defined in [10]
as follows:

1R1 η, ν ; zð Þ = Γ−1 ηð ÞΓ νð Þ〠
∞

n=0
Γ−1 ν + τnIð ÞΓ η + τnIð Þ z

n

n!
:

ð11Þ

This article is organized into five sections. In Section 2,
we will provide a new extension of the Wright hypergeo-

metric matrix function and prove some theorems about inte-
gral and derivative formula of the extension of the Wright
hypergeometric matrix function 2R

τ
1½ðζ, ρÞ, η, ν ; z�. In Sec-

tion 3, we state the Mellin matrix transform of the extended
Wright hypergeometric matrix function.

In Section 4, we applied certain fractional calculus
ideas to the extended Wright hypergeometric matrix func-
tion. Lastly, in Section 5, we discuss several applications of

2R
τ
1½ðζ, ρÞ, η, ν ; z� in fractional kinetic equations.

2. The Extended Wright Hypergeometric
Matrix Function

In terms of the generalized Pochhammer matrix symbol
ðζ, ρÞn, we introduce the extended Gauss hypergeometric
matrix function 2F1½ðζ, ρÞ, η, ν ; z� and the extended Wright

hypergeometric matrix function 2R
ðτÞ
1 ½ðζ, ρÞ, η ; ν ; z� as

follows.

Definition 1. Let ζ, η, ν, and ρ be positive stable matrices in
ℂr×r and ν satisfies the condition (4) then the extended
Gauss hypergeometric matrix function is given by

2F1 ζ, ρð Þ, η ; ν ; z½ � = 〠
∞

n=0
ζ, ρð Þn ηð Þn νð Þn

Â Ã−1 zn
n!

: ð12Þ

Definition 2. Let ζ, η, ν, and ρ are positive stable matrices in
ℂr×r and ν satisfies the condition (4) then the extended
Wright hypergeometric matrix function is

2R
τð Þ
1 ζ, ρð Þ, η ; ν ; z½ � = Γ−1 ηð ÞΓ νð Þ〠

∞

n=0
ζ, ρð ÞnΓ−1

Á ν + τnIð ÞΓ η + τnIð Þ z
n

n!
,

ð13Þ

where τ ∈ ð0,∞Þ.

Remark 3. Several particular remarks of the extended Wright
hypergeometric matrix function are mentioned below:

(i) When ρ = 0 in (13), we get the Wright hypergeo-
metric matrix function defined in (10)

(ii) If we put τ = 1 and ρ = 0 in (13), we get the Gauss
hypergeometric matrix function as in (9)

(iii) If ρ = 0 and ζ = αI, η = βI, ν = γI (where α, β, and γ
are in ℂ) in (13) then we get the Gauss hypergeo-
metric function (see [11])

2.1. Integral and Derivative Formula of 2R
τ
1½ðζ, ρÞ, η, ν ; z�. In

this part, we will provide integral representation and deriva-
tive formula of the extended Wright hypergeometric matrix
function.
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Theorem 4. Let ζ, η, ν, and P be matrices in ℂr×r such that
νη = ην and ν, η, ν‐η, and P are positive stable, then for jzj
< 1, τ ∈ R+, we have

2R
τ
1 ζ, ρð Þ, η, ν ; z½ � = Γ ηð Þ−1Γ−1 ν − ηð ÞΓ νð Þx

ð1
0
tη−I

Á 1 − tð Þν−η−I 1F0 ζ, ρð Þ,−,−;z½ � dt,
ð14Þ

where 1F0½ðζ, ρÞ,−,−;z� =∑∞
n=0ðζ, ρÞnðzn/n!Þ.

Proof. From (2) and (3), we find that

Γ−1 ηð ÞΓ−1 ν + nτIð ÞΓ νð ÞΓ η + nτIð Þ

= Γ−1 ηð ÞΓ−1 ν − ηð ÞΓ νð Þ
ð1
0
tη+ nτ−1ð ÞI 1 − tð Þν−η−I dt:

ð15Þ

Now, we can write

2R
τð Þ
1 ζ, ρð Þ, η, ν ; z½ �

= Γ−1 ηð ÞΓ νð Þ〠
∞

n=0
ζ, ρð ÞnΓ−1 ν + τnIð ÞΓ η + τnIð Þ z

n

n!

= Γ−1 ηð ÞΓ−1 ν − ηð ÞΓ νð Þ
"ð1

0
tη+ nτ−1ð ÞI

Á 1 − tð Þν−η−I 〠
∞

n=0
ζ, ρð Þn

zn

n!
dt

#

= Γ−1 ηð ÞΓ−1 ν − ηð ÞΓ νð Þ
"ð1

0
tη−I

Á 1 − tð Þν−η−I 〠
∞

n=0
ζ, ρð Þn

ztτð Þn
n!

dt

#

= Γ−1 ηð ÞΓ−1 ν − ηð ÞΓ νð Þ
ð1
0
tη−I

Á 1 − tð Þν−η−I1F0 ζ, ρð Þ,−,−;ztτð Þ dt:

ð16Þ

This complete the proof.

Theorem 5. Let ζ, η, ν, κ, and ρ be matrices in ℂr×r such that
νη = ην and ρ, ν, η, and ν + κ are positive stable. Then, for
jαzj < 1, we have

Γ−1 κð ÞΓ−1 νð ÞΓ ν + κð Þ
ðz
0
tν−I z − tð Þκ−I 2 R τð Þ

1 ζ, ρð Þ, η ; ν ; αt½ �dt

= zν+κ−I 2 R τð Þ
1 ζ, ρð Þ, η ; ν ; αz½ �:

ð17Þ

Proof. We observe that

Γ−1 κð ÞΓ−1 νð ÞΓ ν + κð Þ
ðz
0
tν−I z − tð Þκ−I 2 Rτ

1 ζ, ρð Þ, η, ν ; αt½ �dt

= Γ−1 κð ÞΓ−1 νð ÞΓ ν + κð Þ
ðz
0
tν−I z − tð Þκ−I

×
(
Γ−1 ηð ÞΓ νð Þ〠

∞

n=0
ζ, ρð ÞnΓ−1

Á ν + τnIð ÞΓ η + τnIð Þ αtð Þn
n!

)
dt,

ð18Þ

substituting t = zu, we find that

Γ−1 κð ÞΓ−1 νð ÞΓ ν + κð Þ
ðz
0
tν−I z − tð Þκ−I 2 R τð Þ

1 ζ, ρð Þ, η ; ν ; αt½ �dt

= Γ−1 κð ÞΓ−1 νð ÞΓ ν + κð ÞΓ−1 ηð ÞΓ νð Þ〠
∞

n=0

Á
�
ζ, ρð ÞnΓ−1 ν + τnIð ÞΓ η + τnIð Þ

×
ð1
0
zν−Iuν−Izκ−I 1 − uð Þκ−Iun αzð Þn

n!
zdu
�

= Γ−1 ηð ÞΓ−1 κð ÞΓ ν + κð Þβ ν, κð Þzν+κ−I

× 〠
∞

n=0
ζ, ρð ÞnΓ−1 ν + nτIð ÞΓ η + nτIð Þ αzð Þn

n!

= Γ−1 ηð ÞΓ−1 κð ÞΓ ν + κð ÞΓ νð ÞΓ κð ÞΓ−1 ν + κð Þ

× zν+κ−IΓ−1 ηð ÞΓ νð Þ〠
∞

n=0
ζ, ρð ÞnΓ−1

Á ν + nτIð ÞΓ η + nτIð Þ αzð Þn
n!

= zν+κ−I 2 R τð Þ
1 ζ, ρð Þ, η ; ν ; αz½ �,

ð19Þ

this completes the proof.

Theorem 6. Let ζ, η, ν, and ρ be positive stable matrices in
ℂr×r then each of the following integrals hold true:

(i)

2R
τð Þ
1 ζ, ρð Þ, η ; ν ; z½ �
= 1
τ
Γ−1 τIð ÞΓ−1 ν − τIð ÞΓ νð Þ

×
ð1
0
1 − t1/τ
À Áν− τ+1ð ÞI

2
R τð Þ
1 ζ, ρð Þ, η ; τI ; tz½ � dt

ð20Þ
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(ii)

2R
τð Þ
1 ζ, ρð Þ, η ; ν ; z½ �
= Γ−1 τIð ÞΓ−1 ν − τIð ÞΓ νð Þ

×
ð1
0
t τ−1ð ÞI 1 − tð Þν− τ+1ð ÞI

2R
τð Þ
1

Á ζ, ρð Þ, η ; ν − τI ; z 1 − tð Þτ½ � dt

ð21Þ

Proof.

(i) let W = Ð 10ð1 − t1/τÞν−ðτ+1ÞI2RðτÞ
1 ½ðζ, ρÞ, η ; τI ; tz� dt

From the definition of 2R
ðτÞ
1 ½ðζ, ρÞ, η ; ν ; z�, we have

W =
ð1
0
1 − t1/τ
À Áν− τ+1ð ÞI

Γ−1 ηð ÞΓ τIð Þ

× 〠
∞

n=0
ζ, ρð Þn Γ−1 n + 1ð ÞτIð ÞΓ η + nτIð Þ tzð Þn

n!
dt,

ð22Þ

put s = t1/τ, and using the definition of beta matrix function,
we have

W = τΓ−1 ηð ÞΓ τIð Þ〠
∞

n=0
ζ, ρð ÞnΓ n + 1ð ÞτIð ÞΓ η + nτIð Þ

×
ð1
0
s nτ+τ−1ð ÞI 1 − sð Þν− τ+1ð ÞI z

n

n!
ds

= τΓ−1 ηð ÞΓ τIð Þ〠
∞

n=0
ζ, ρð ÞnΓ−1 1 + nð ÞτIð ÞΓ

Á η + nτIð Þβ n + 1ð ÞτI, ν − τIð Þ z
n

n!

= τΓ−1 ηð ÞΓ τIð Þ〠
∞

n=0

�
ζ, ρð ÞnΓ−1 n + 1ð ÞτIð ÞΓ

Á η + nτIð ÞΓ n + 1ð ÞτIð ÞΓ ν − τIð ÞΓ−1 ν + nτIð Þ z
n

n!

�

= τΓ−1 νð ÞΓ ν − τIð ÞΓ τIð Þ2R
τð Þ
1 ζ, ρð Þ, η ; ν ; z½ �:

ð23Þ

This can easily be written as

2R
τð Þ
1 ζ, ρð Þ, η ; ν ; z½ �
= 1
τ
Γ−1 τIð ÞΓ−1 ν − τIð ÞΓ νð Þ

×
ð1
0
1 − t1/τ
À Áν− τ+1ð ÞI

2R
τð Þ
1 ζ, ρð Þ, η ; τI ; tz½ �dt,

ð24Þ

and this finishes the proof of (i)

(ii) Let K =
Ð 1
0t

ðτ−1ÞI ð1 − tÞν−ðτ+1ÞI2RðτÞ
1 ½ðζ, ρÞ, η ; ν − τI ;

ð1 − tÞτz�dt by using the definition of 2R
ðτÞ
1 ½ðζ, ρÞ, η

; ν ; z�, we find that

K =
ð1
0
t τ−1ð ÞI 1 − tð Þν− τ+1ð ÞIΓ−1 ηð ÞΓ ν − τIð Þ

× 〠
∞

n=0
ζ, ρð ÞnΓ−1 ν − 1 − nð ÞτIð ÞΓ η + nτIð Þ z

n 1 − tð Þτn
n!

dt

= Γ−1 ηð ÞΓ ν − τIð Þ〠
∞

n=0

�
ζ, ρð ÞnΓ−1 ν − 1 − nð ÞτIð ÞΓ

Á η + nτIð Þ z
n

n!
×
ð1
0
t τ−1ð ÞI 1 − tð Þν− τ−nτ+1ð ÞI dt

�

= Γ−1 ηð ÞΓ ν − τIð Þ〠
∞

n=0

��
ζ, ρð ÞnΓ−1 ν + 1 − nð ÞτIð ÞΓ

Á η + nτIð Þ z
n

n!
× Γ τIð ÞΓ ν − 1 − nð ÞτIð ÞΓ−1 ν + τnIð Þ

�

= Γ−1 νð ÞΓ τIð ÞΓ ν − τIð Þ
"
Γ−1 ηð ÞΓ νð Þ〠

∞

n=0

Á ζ, ρð ÞnΓ−1 ν + nτIð ÞΓ η + nτIð Þ z
n

n!

#

= Γ−1 νð ÞΓ τIð ÞΓ ν − τIð Þ2R
τð Þ
1 ζ, ρð Þ, η ; ν ; z½ �,

ð25Þ

and this can easily be written as

 
2 R τð Þ

1 ζ, ρð Þ, η ; ν ; z½ �

= Γ−1 τIð ÞΓ−1 ν − τIð ÞΓ νð Þ ×
ð1
0
t τ−1ð ÞI 1 − tð Þν− τ+1ð ÞI

2R
τð Þ
1

Á ζ, ρð Þ, η ; ν − τI ; 1 − tð Þτz½ �dt:
ð26Þ

This completes the proof.

Theorem 7. Let ζ, η, ν, and ρ be positive stable matrices in
ℂr×r then the following derivative formula hold true

d
dz

zη−I 2R
τð Þ
1 ζ, ρð Þ, η ; ν ; αzτ½ �

n o
= zη−2I t

n
ν − Ið Þ2R

τð Þ
1 ζ, ρð Þ, η ; ν − I ; αzτ½ �

+ η − νð Þ2R
τð Þ
1 ζ, ρð Þ, η ; ν ; αzτ½ �

o
:

ð27Þ

Proof. From the definition of extended Wright hypergeo-
metric matrix function, we have

d
dz

zη−I2R
τð Þ
1 ζ, ρð Þ, η ; ν ; αzτ½ �

n o

= d
dz

(
Γ−1 ηð ÞΓ νð Þ〠

∞

n=0
ζ, ρð Þn

Á α
nzη+ τn−1ð ÞIΓ−1 ν + τnIð ÞΓ η + τnIð Þ

n!

)
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= Γ−1 ηð ÞΓ νð Þ
(

〠
∞

n=0
ζ, ρð Þn η + τn − 1ð ÞIð Þ

Á α
nzη+ τn−2ð ÞIΓ−1 ν + τnIð ÞΓ η + τnIð Þ

n!

)

= zη−2IΓ−1 ηð ÞΓ νð Þ
(

〠
∞

n=0
ζ, ρð Þn

Á z
τnΓ−1 ν + τnIð ÞΓ η + τnIð Þαn τnI + ν − I + η − νð Þ

n!

)

= zη−2I
(

ν − Ið ÞΓ−1 ηð ÞΓ ν − Ið Þ〠
∞

n=0
ζ, ρð Þn

Á αzτð ÞnΓ−1 ν + τn − 1ð ÞIð ÞΓ η + τnIð Þ
n!

+ η − νð ÞΓ−1 ηð ÞΓ νð Þ〠
∞

n=0
ζ, ρð Þn

Á αzτð ÞnΓ−1 ν + τnIð ÞΓ η + τnIð Þ
n!

)

= zη−2I
n

ν − Ið Þ2R
τð Þ
1 ζ, ρð Þ, η ; ν − I ; αzτ½ �

+ η − νð Þ2R
τð Þ
1 ζ, ρð Þ, η ; ν ; αzτ½ �

o
:

ð28Þ

This completes the proof.

Theorem 8. Let ζ, η, ν, and ρ be positive stable matrices in
ℂr×r, then the following derivative formula hold true:

d
dz

� �n

zν−I 2R
τð Þ
1 ζ, ρð Þ, η ; ν ; αzτ½ �

n o
= Γ−1 ν − nIð ÞΓ νð Þzν− n+1ð ÞI

2R
τð Þ
1 ζ, ρð Þ, η ; ν − nI ; αzτ½ �:

ð29Þ

Proof. By using Definition (2) and differentiating term by
term under the sign of summation, we have

d
dz

� �n

zν−I2R
τð Þ
1 ζ, ρð Þ, η ; ν ; αzτ½ �

n o

= Γ−1 ηð ÞΓ νð Þ 〠
∞

m=0
ζ, ρð ÞmΓ−1 ν + τmIð ÞΓ

Á η + τmIð Þ α
m

m!

d
dz

� �n

zν+ τm−1ð ÞI

= Γ−1 ηð ÞΓ νð Þ 〠
∞

m=0
ζ, ρð ÞmΓ−1 ν + τm − nð ÞIð ÞΓ

Á η + τmIð Þ α
m

m!
zν+ τm−n−1ð ÞI

= zν− n+1ð ÞIΓ−1 ηð ÞΓ νð Þ 〠
∞

m=0
ζ, ρð ÞmΓ−1

Á ν + τm − nð ÞIð ÞΓ η + τmIð Þ αzτð Þm
m!

= zν− n+1ð ÞIΓ−1 ν − nIð ÞΓ νð Þ2R
τð Þ
1 ζ, ρð Þ, η ; ν − nI ; αzτ½ �:

ð30Þ

This finishes the proof,

3. Mellin Matrix Transform

Definition 9. Let FðζÞ be a function defined on the set of all
positive stable matrices contained in ℂr×r , then the Mellin
transform is defined as follows:

M F ζð Þ: ζ⟶ λf g =
ð∞
0
ζλ−I F ζð Þ dζ: ð31Þ

Such that the integral in right hand side exists.

The following lemma will be a useful tool in next theorem.

Lemma 10. Let ζ, ρ, λ, and ζ + λ are positive stable matrices
in ℂr×r, then

M Γ ζ, ρð Þ: ρ⟶ λf g = Γ λð ÞΓ ζ + λð Þ: ð32Þ

Proof. From (31), the Mellin transform of Γðζ, ρÞ in ρ is

M Γ ζ, ρð Þ: ρ⟶ λf g =
ð∞
0
ρλ−I

ð∞
0
tζ−Ie−t− ρ/tð Þ dt dρ: ð33Þ

From Fubini theorem with a little calculation (see [12]),
we get

M Γ ζ, ρð Þ: ρ⟶ λf g = Γ λð Þ
ð∞
0
tζ+λ−Ie−tdt = Γ λð ÞΓ ζ + λð Þ:

ð34Þ

This completes the proof.

Theorem 11. Let ζ, η, ν, λ, and ζ + λ be positive stable matri-
ces in ℂr×r and ν satisfies the condition (4), then

M 2R
τð Þ
1 ζ, ρð Þ, η ; ν ; z½ �: ρ⟶ λ

n o
= Γ λð ÞΓ−1 ζð ÞΓ ζ + λð Þ2R

τð Þ
1 ζ + λ, η ; ν ; z½ �:

ð35Þ

5Abstract and Applied Analysis



Proof.

M 2R
τð Þ
1 ζ, ρð Þ, η ; ν ; z½ �: ρ⟶ λ

n o
=
ð∞
0
ρλ−I2R

τð Þ
1 ζ, ρð Þ, η ; ν ; z½ � dρ

=
ð∞
0
ρλ−IΓ−1 ηð ÞΓ νð Þ〠

∞

n=0
ζ, ρð ÞnΓ−1

Á ν + τnIð ÞΓ η + τnIð Þ z
n

n!
dρ

= Γ−1 ηð ÞΓ νð ÞΓ−1 ζð Þ〠
∞

n=0
Γ−1 ν + τnIð ÞΓ

Á η + τnIð Þ z
n

n!

ð∞
0
ρλ−IΓ ζ + nI, ρð Þdρ

= Γ−1 ηð ÞΓ νð ÞΓ−1 ζð Þ〠
∞

n=0
Γ−1 ν + τnIð ÞΓ

Á η + τnIð Þ z
n

n!
M Γ ζ + nI, ρð Þ: ρ⟶ λf g

= Γ−1 ηð ÞΓ νð ÞΓ−1 ζð Þ〠
∞

n=0
Γ−1 ν + τnIð ÞΓ

Á η + τnIð Þ z
n

n!
Γ λð ÞΓ ζ + λ + nIð Þ

= Γ λð ÞΓ−1 ηð ÞΓ νð ÞΓ−1 ζð ÞΓ ζ + λð Þ × 〠
∞

n=0
Γ−1

Á ζ + λð ÞΓ ζ + λ + nIð ÞΓ−1 ν + τnIð ÞΓ η + τnIð Þ z
n

n!
= Γ λð ÞΓ−1 ηð ÞΓ νð ÞΓ−1 ζð ÞΓ ζ + λð Þ

Á 〠
∞

n=0
ζ + λð ÞnΓ−1 ν + τnIð ÞΓ η + τnIð Þ z

n

n!

= Γ λð ÞΓ−1 ζð ÞΓ ζ + λð Þ2R
τð Þ
1 ζ + λ, η ; ν ; z½ �:

ð36Þ

This finishes the proof.

4. Fractional Calculus of the Extended Wright
Hypergeometric Matrix Function

In this part, we will prove certain theorems concerning the
Riemann-Liouville integral of the Wright hypergeometric
matrix function. The fractional integral and derivative of
Riemann-Liouville of order μ and x > 0 are defined as fol-
lows (see [13, 14]):

Iμ f xð Þ½ � = 1
Γ μð Þ

ðx
0
x − tð Þμ−1 f tð Þ dt, ð37Þ

Dμ f xð Þ =Dn In−μ f xð Þ½ �,D = d
dx

: ð38Þ

If ζ is a positive stable matrix in Cr×r , such that Re ðμÞ
> 0 then the following relation holds true (see [10]):

Iμ xζ−I
� �

= Γ ζð ÞΓ−1 ζ + μIð Þxζ+ μ−1ð ÞI : ð39Þ

Theorem 12. Let ζ, η, ν, and ρ be positive stable matrices in
ℂr×r , μ ∈ℂ such that Re ðμÞ > 0, then for each jwzτj < 1, we
have

Iμ xν−I 2R
τð Þ
1 ζ, ρð Þ, η ; ν ;wxτ½ �

� �
= Γ νð ÞΓ−1 ν + μIð Þxν+ μ−1ð ÞI × 2R

τð Þ
1 ζ, ρð Þ, η ; ν + μI ;wxτ½ �:

ð40Þ

Proof. From (37), we find that

Iμ xν−I2R
τð Þ
1 ζ, ρð Þ, η ; ν ;wxτ½ �

� �
= 1
Γ μð Þ

ðx
0
x − tð Þμ−12R

τð Þ
1 ζ, ρð Þ, η ; ν ;wtτ½ �tν−Idt

= Γ−1 ηð ÞΓ νð Þ
Γ μð Þ × 〠

∞

n=0
ζ, ρð ÞnΓ−1 ν + τnIð ÞΓ

Á η + τnIð Þð Þw
n

n!

ðx
0
x − tð Þμ−1tν+ τn−1ð ÞI dt

� �

= Γ−1 ηð ÞΓ νð Þ〠
∞

n=0

ζ, ρð ÞnΓ−1 ν + τnIð ÞΓ η + τnIð Þwn

n!
Iμ xν+ τn−1ð ÞI
� �

= Γ−1 ν + μIð ÞΓ νð Þ
 
Γ−1 ηð ÞΓ ν + μIð Þ

× 〠
∞

n=0

ζ, ρð ÞnΓ−1 ν + τn + μð ÞIð ÞΓ η + τnIð Þ wxτð Þn
n!

!
xν+ ν−1ð ÞI

= Γ νð ÞΓ−1 ν + μIð Þxν+ μ−1ð ÞI
2R

τð Þ
1 ζ, ρð Þ, η ; ν + μI ;wxτ½ �:

ð41Þ

This completes the proof.

Theorem 13. Let ζ, η, ν, and ρ be positive stable matrices in
ℂr×r and μ ∈ℂ such that Re ðμÞ > 0 then for each jwzτj < 1,
we have

Dμ xν−I 2R
τð Þ
1 ζ, ρð Þ, η ; ν ;wxτ½ �

� �
= Γ νð ÞΓ−1 ν − μIð Þxν− μ+1ð ÞI × 2R

τð Þ
1 ζ, ρð Þ, η ; ν − μI ;wxτ½ �:

ð42Þ

Proof. From (38), we have

Dμ xν−I2R
τð Þ
1 ζ, ρð Þ, η ; ν ;wxτ½ �

� �
= d

dx

� �n

In−μ xν−I2R
τð Þ
1 ζ, ρð Þ, η ; ν ;wxτ½ �

� �h i
:

ð43Þ
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From Theorem (12), we find that

Dμ xν−I2R
τð Þ
1 ζ, ρð Þ, η ; ν ;wxτ½ �

� �
= d

dx

� �nn
Γ νð ÞΓ−1 ν + n − μð ÞIð Þ

× 2R
τð Þ
1 ζ, ρð Þ, η ; ν + n − μð ÞI ;wxτ½ �xν+ n−μ−1ð ÞI

o
:

ð44Þ

Applying (29), we get the required result in (42).

5. Applications in Fractional Kinetic Equations

In our time, the fractional kinetic equations have a great
importance in deferent branches of applied science such as
astrophysics, control system, dynamic system, and mathe-
matical physics.

The standard fractional kinetic equation is defined by

N zð Þ −N0 = −C0D
−μ
t N zð Þ,

whereC > 0, z > 0 and Re μð Þ > 0,
ð45Þ

where NðzÞ is the rate of reaction, N0 =Nðz = 0Þ and 0D
−μ is

the Riemann-Liouville fractional integral operator defined in
(38). Furthermore, Saxena and Kalla (see [15]) considered
the following fractional kinetic equations:

N zð Þ −N0 f zð Þ = −Cμ
0D

−μ
t N zð Þ

whereC is a constant and Re μð Þ > 0:
ð46Þ

The Laplace transform of the Riemann-Liouville frac-
tional integral operator is (see [16])

L 0D
−μ
t h zð ÞÂ Ã

pð Þ = p−μ�h pð Þ, ð47Þ

where �hðpÞ is the Laplace transform of hðzÞ:

Theorem 14. Let ζ, η, ν, and C be positive stable matrices in
ℂr×r such that ν is invertible, ν satisfies the condition (4) and
jzj < 1, then the solution of the generalized fractional kinetic
matrix equation:

N zð ÞI −N02R
τð Þ
1 ζ, ρð Þ, η ; ν ; z½ � = −Cμ

0D
−μ
t N zð Þ, ð48Þ

is given by

N zð ÞI =N0Γ
−1 ζð ÞΓ νð Þ × 〠

∞

n=0
ζ, ρð ÞnΓ−1 ν + τnIð ÞΓ

Á η + τnIð ÞznEμ,n+1 −Cμzμð Þ,
ð49Þ

where

Eμ,n+1 −Cμzμð Þ = 〠
∞

r=0
−1ð ÞrCμr zμr

Γ μr + n + 1ð Þ , ð50Þ

and called the generalized Mittag-Leffler matrix function (see
[17, 18]).

Proof. Applying the Laplace transform on the equation (48)
and using (47), we get

I + p−μCμð Þ�N pð Þ =N0 L 2R
τð Þ
1 ζ, ρð Þ, η ; ν ; z½ �

h i
pð Þ

=N0Γ
−1 ηð ÞΓ νð Þ〠

∞

n=0
ζ, ρð ÞnΓ−1 ν + τnIð ÞΓ

Á η + τnIð Þp− n+1ð Þ,
ð51Þ

now we can write

�N pð ÞI =N0Γ
−1 ηð ÞΓ νð Þ〠

∞

n=0

"
ζ, ρð ÞnΓ−1 ν + τnIð ÞΓ η + τnIð Þ

× 〠
∞

r=0
−1ð ÞrCμrp− μr+n+1ð Þ

#
,

ð52Þ

where ðI + p−μCμÞ−1 =∑∞
r=0ð−1ÞrCμrp−μr

Taking the inverse Laplace transform, we get

�N zð ÞI =N0Γ
−1 ηð ÞΓ νð Þ〠

∞

n=0
ζ, ρð ÞnΓ−1 ν + τnIð ÞΓ

Á η + τnIð Þ × 〠
∞

r=0
−1ð ÞrCμr zμr+n

Γ μr + n + 1ð Þ

=N0Γ
−1 ζð ÞΓ νð Þ × 〠

∞

n=0
ζ, ρð ÞnΓ−1 ν + τnIð ÞΓ

Á η + τnIð ÞznEμ,n+1 −Cμzμð Þ:

ð53Þ

This completes the proof.

Theorem 15. Let ζ, η, ν, and C be positive stable matrices in
ℂr×r such that ν is invertible, ν satisfies the condition (4), α
∈ C such that RðαÞ and jzj < 1, then the solution of the gen-
eralized fractional kinetic matrix equation:

N zð ÞI −N02R
τð Þ
1 ζ, ρð Þ, η ; ν ; αμz½ � = −Cμ

0D
−μ
t N zð Þ, ð54Þ

is given by

N zð ÞI =N0Γ
−1 ζð ÞΓ νð Þ × 〠

∞

n=0
ζ, ρð ÞnΓ−1 ν + τnIð ÞΓ

Á η + τnIð ÞαμnznEμ,μn+1 −Cμzμð Þ:
ð55Þ

Proof. By using the same steps of proof in the previous the-
orem, we get the required.
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6. Conclusions

The topic of derivative with fractional parameter has
lately attracted the attention of academics. For example,
Riemann-Liouville developed the concept of fractional order
derivative. Later, Caputo and others adjusted this fractional
derivative. Because of their physical features, fractional deriv-
atives have been successfully used to mimic numerous real-
world issues. Recently, a derivative based on the classical
derivative with a fractional parameter was developed. The
derivative has highly fascinating qualities; hence, in this
work, we have attempted to present some conclusions con-
cerning fractional calculus of these extended Wright hyper-
geometric matrix functions as well as certain theorems of
the extendedWright hypergeometric matrix function in frac-
tional kinetic equations. As future work, and from a numer-
ical point of view, we aim to employ some of the derived
formulas in this paper along with suitable spectral methods
to treat numerically the differential equations with polyno-
mial coefficients.
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