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In this paper, we extend the results obtained by Ezearn on annihilated points for his higher-order nonexpansive mappings to the
context of general higher-order nonexpansive mappings. Precisely in his thesis, Ezearn introduced the concept of annihilated
points, which extends the notion of fixed points, and it is only meaningful in the context of higher-order nonexpansive
mappings and gave some mild conditions when the annihilated points could exist in strictly convex Banach spaces. In the last
direction, we also extend Ezearn’s result on the approximate fixed point sequence for higher-order nonexpansive mappings to
general higher-order nonexpansive mappings.

1. Introduction

Given a complete metric space ðX , dÞ, the most well-studied
examples of such mappings are those that can be immedi-
ately put in the form

d Tx, Tyð Þ ≤ c · d x, yð Þ, ð1Þ

For all x, y ∈X where c > 0 is a fixed real number. Such
mappings are referred to as Lipschitz continuous mappings.
Lipschitz continuous mappings are generally classified into
three categories: T is a

(i) contraction mapping if 0 < c < 1
(ii) nonexpansive mapping if c = 1
(iii) expansive mapping if c > 1

In [1], the concept of mean nonexpansive mappings was
introduced which is often seen as a generalization of nonex-

pansive mappings. Thus, let C be a nonempty subset of a
Banach space X , and let T be a self-mapping on C . Then
T is called a mean nonexpansive (or α-nonexpansive) if

〠
n

k=1
αk Tkx − Tky
  ≤ x − yk k, ð2Þ

For all x, y ∈C and for some α = ðα1, α2,⋯, αnÞ, we have
∑n

k=1αk = 1, αk ≥ 0 for all k, and α1, αn > 0.
Clearly, it is seen that all nonexpansive mappings are

mean nonexpansive mappings, but the reverse is not always
true, as demonstrated in ([2], Examples 2.3 and 2.4). A more
general class of ðα, pÞ-nonexpansive maps was further intro-
duced in [1]. That is, a self-map T on a subset C of a Banach
space X is called ðα, pÞ-nonexpansive if

〠
n

k=1
αk Tkx − Tky
 p ≤ x − yk kp, ð3Þ
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For all x, y ∈C and for some α = ðα1, α2,⋯, αnÞ, we have
∑n

k=1αk = 1, αk ≥ 0 for all k, α1, αn > 0 and for some p ∈ ½1,∞Þ.
It is obvious that ðα, pÞ-nonexpansive map for p > 1 is also
α-nonexpansive, but the reverse is not always true, as
shown in [3].

Now, given a metric space ðX , dÞ, a more general class of
mappings which extend inequality (1) can be put in the fol-
lowing form:

d Trx, Tryð Þ ≤ 〠
r−1

k=0
ckd Tkx, Tky
� �

 ∀x, y ∈X , ð4Þ

where r ∈ℕ and ck ≥ 0, for all 0 ≤ k ≤ r − 1. Such mappings
are called higher-order Lipschitz mappings (or rth-order
Lipschitz mappings, for short) which was introduced by
Ezearn [4] in 2015.

Now, to every higher-order Lipschitz mapping, Ezearn
associated a polynomial which is defined as

p zð Þ = zr − 〠
r−1

k=0
ckz

k, ð5Þ

and for r th-order nonexpansive mapping, we have pð1Þ = 0.
Ezearn [5] in his thesis introduced the concept of annihi-

lated points of a higher-order nonexpansive mapping as
defined below:

Definition 1 (Annihilated point of T). Let T : S ⟶X be a
higher-order nonexpansive mapping on a subset S of a
Banach space X , and let p be the associated polynomial of
T . Then x is an annihilated point (respectively, a totally
annihilated point) of T if pðTÞ annihilates x (respectively,
the Picard iterates of x) that is, pðTÞx = 0 (respectively,
pðTÞTnx = 0 for all n ≥ 0).

Ezearn is denoted by AðTÞ (respectively, A∞ðTÞ) the
set of annihilated (respectively, a totally annihilated)
points of T . Ezearn, in an attempt to prove a fixed point
result for higher-order nonexpansive mappings, proved
the following theorems on sufficient conditions for an
annihilated point when the Banach space is strictly convex:
a strictly convex Banach space is a Banach space such that
whenever x ≠ 0 and y ≠ 0, then kx + yk = kxk + kyk if and
only if x = ky for some constant k > 0.

Theorem 2. Let C be a convex subset of a strictly Banach
space X , and let T : C ⟶C an rth-order nonexpansive
mapping of the form

Try − Trxk k ≤ 〠
r−1

k=0
ck Tky − Tkx
� �

: ð6Þ

Suppose u, v ∈ AðTÞ and Trx − pðTÞx ∈ convfTr , Trvg.
Then, x ∈ AðTÞ.

Theorem 3. Let T be an rth-order nonexpansive mapping
on a convex subset C of a strictly convex Banach space

X . Suppose u, v ∈ FixðTÞ and fTkxgr−1k=0 ⊂ convfu, vg. Then
x ∈ A∞ðTÞ.

With a mild condition on the set of totally annihilated
points, A∞ðTÞ, Ezearn proved the following fixed point
result in a general Banach space.

Theorem 4. Let T be an affine higher-order nonexpansive
mapping on a convex subset C of a Banach space X . Then,
FixðTÞ =∅ only if A∞ðTÞ =∅. In particular, the identity A
ðTÞ = A∞ðTÞ holds, and if x ∈ A∞ðTÞ, then

1

∑r−1
k=0bk

〠
r−1

k=0
bkT

kx ∈ Fix Tð Þ: ð7Þ

Finally, Ezearn proved the following approximate fixed
point sequence result for his higher-order nonexpansive
mapping in a general Banach space.

Theorem 5. Let C be a closed bounded star-convex subset of
a Banach space, and let T be an affine rth-order nonexpan-
sive self-mapping on C . Then, T has an approximate fixed
point sequence in C . That is, there exists fxngn≥1 ⊂C such
that limn⟶∞ðxn − TxnÞ = 0.

In 2021, the author [6] introduced the following map-
pings which generalize both inequality (3) and (4).

Definition 6 (General higher-order Lipschitz mappings).
Given a metric space ðX , dÞ, a self-map T on X is called a
ðr, pÞ-general rth-order Lipschitz mapping if

〠
r

k=l+1
αkd Tkx, Tky
� �p

≤ 〠
l

k=0
αkd Tkx, Tky
� �p

 ∀x, y ∈X ,

ð8Þ

where p ≥ 1, r ∈ℕ, and αk ≥ 0 for all k, α0 · αr ≠ 0, and
l ∈ f0,⋯, r − 1g.

It is obvious that inequality (8) reduces to (3) when l = 0.
In the same vein, inequality (8) reduces to (4) when p = 1
and l = r − 1.

Now to every ðr, pÞ-general higher-order Lipschitz map-
ping, the author associated the following polynomial:

h zð Þ = 〠
r

k=l+1
αkz

k − 〠
l

k=0
αkz

k: ð9Þ

The author classified ðr, pÞ-general higher-order
Lipschitz mappings as follows:

(i) T is ðr, pÞ-general higher-order contraction map-
ping if hð1Þ > 0

(ii) T is ðr, pÞ-general higher-order non-expansive
mapping if hð1Þ = 0
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(iii) T is ðr, pÞ-general higher-order expansive mapping
if hð1Þ < 0

In this paper, we generalize Theorem 2 and Theorem 3
to ðr, pÞ-general higher-order nonexpansive mapping when
p = 1 except that in the second case (Theorem 3), it will
not be totally annihilated points but just annihilated points
because in Ezearn’s case, all the constants are on the right,
and therefore, by induction, he could obtain that result for
a totally annihilated point. In the other direction, we gener-
alize Theorem 4 to ðr, pÞ-general higher-order nonexpansive
mappings, but in the context of an affine subset of a given
Banach space. In the last direction, we generalize Theorem
5 to ðr, pÞ-general higher-order nonexpansive mappings.
That is, in this paper, we prove the following results:

Theorem 7. Let C be a convex subset of a strictly convex
Banach space X , and define T : C ⟶C to be a (r,1)-gen-
eral-higher order nonexpansive mapping of the form

〠
r

k=l+1
αk Tky − Tkx
� �

 ≤ 〠
l

k=0
αk Tky − Tkx
� �

: ð10Þ

Suppose u, v ∈ AðTÞ and ∑r
k=l+1αkT

kx − hðTÞx ∈ conv
f∑r

k=l+1αkT
ku,∑r

k=l+1αkT
kvg. Then, x ∈ AðTÞ.

Theorem 8. Let T be an (r,1)-general higher-order nonex-
pansive mapping on a convex subset C of a strictly convex
Banach space (X , k·k). Suppose u, v ∈ FixðTÞ and

fTkxgr−1k=0 ⊂ convfu, vg. Then, x ∈ AðTÞ.

Theorem 9. Let T be an affine general higher-order nonex-
pansive mapping on an affine subset C of a Banach space
X . The FixðTÞ =∅ only if A∞ðTÞ =∅. In particular, the
identity AðTÞ = A∞ðTÞ holds and if x ∈ A∞ðTÞ, then

1

∑r−1
k=0bk

〠
r−1

k=0
bkT

kx ∈ Fix Tð Þ: ð11Þ

Theorem 10. Let C be a closed, bounded star-convex subset
of a Banach space, and let T be an affine ðr, pÞ-general
higher-order nonexpansive self-mapping on C . Then T has
an approximate fixed point sequence in C . That is, there
exists fxngn≥1 ⊂C such that limn⟶∞ðxn − TxnÞ = 0.

From Definition 1, for any (r,p)-general higher-order
nonexpansive mapping, the fixed point set is always a subset
of the annihilated point set and they coincide when l = 0 and
r = 1. To see this, for l = 0 and r = 1, we have the following:

h Tð Þ = 〠
r

k=l+1
αkT

k − 〠
l

k=0
αkT

k = α1T − α0: ð12Þ

Given that TðzÞ = z, then we have

h Tð Þz = α1Tz − α0z = α1z − α0z = α1 − α0ð Þz = 0 · z = 0:
ð13Þ

In the same vein, since for any (r,p)-general higher-order
nonexpansive mapping, we have

〠
r

k=l+1
αk = 〠

l

k=0
αk, ð14Þ

then, we have the following:

h Tð Þz = 〠
r

k=l+1
αkT

kz − 〠
l

k=0
αkT

kz: ð15Þ

Now, since Tz = z⇒ Tkz = z for k ≥ 1, then the above
equation reduces to

h Tð Þz = 〠
r

k=l+1
αkz − 〠

l

k=0
αkz, = 〠

r

k=l+1
αk − 〠

l

k=0
αk

 !
· z, = 0 · z, = 0:

ð16Þ

2. Preliminaries

Proposition 11. Define T to be an ðr, pÞ-general higher-order
Lipschitz mapping, and let hðzÞ be the associated polynomial
for T as stated in Definition 6.

(i) If hð1Þ > 0, then we can always find a certain
λ ∈ ð0, 1Þ, which is unique and positive if αk ≠ 0, such
that hðλÞ = 0

(ii) If hð1Þ = 0, then there exists 1 as the only positive
root of h

(iii) If hð1Þ < 0, then we can find a unique positive λ > 1
such that hðλÞ = 0

Now, let us define T to be an ðr, pÞ-general higher-order
Lipschitz mapping on a complete metric space ðX , dÞ as
given in inequality (8) and let λ be the unique root of the
polynomial hðzÞ as guaranteed by Proposition 11. Define
the following on the space X :

Dp x, yð Þ = 〠
r−1

k=0
bkd Tkx, Tky
� �p !1/p

, ð17Þ

where

bk = 〠
k

j=0
αjλ

j−k−1 sgn jð Þ, ð18Þ
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and p ≥ 1 for all x, y ∈X , 0 ≤ k ≤ r − 1 and

sgn jð Þ =
1 if j ≤ l

−1 if j > l

 
: ð19Þ

Corollary 12. bk stated in equation (17) is non-negative.

Lemma 13. Dpðx, yÞ stated in equation (17) is a metric on the
space X .

Proposition 14. Define bk in equation (17). Then the follow-
ing results hold:

α0 = λb0, br−1 − αr = 0,
λbk = bk−1 + αk sgn kð Þ, 1 ≤ k ≤ r − 1:

ð20Þ

Lemma 15. Given a metric space ðX , dÞ (not necessarily com-
plete) and define T : X ⟶X to be an ðr, pÞ-general higher-
order Lipschitz mapping. Then

Dp Tx, Tyð Þ ≤ λ1/pDp x, yð Þ: ð21Þ

Moreover, a sequence fxngn≥1 ⊂ ðX ,DpÞ is Cauchy in

ðX ,DpÞ if and only if the sequence fTkxngn≥1 ⊂ ðX , dÞ is
Cauchy in ðX , dÞ for all 0 ≤ k ≤ r − 1.

Theorem 16. Define the mapping,

�T : �X ⟶ �X ,  xn½ �⟶ Txn½ �: ð22Þ

Then, we have

�Dp
�T yn½ �, �T xn½ �À Á

≤ λ1/p �Dp yn½ �, xn½ �ð Þ: ð23Þ

In particular, if ðX , dÞ is complete, thenT has a fixed point
in ðX , dÞ if and only if �T has a fixed point in ð �X , �DpÞ.

3. Main Result

We prove the main result of this paper, which is already
stated in Theorem 7, Theorem 8, Theorem 9, and Theorem
10. The proofs follow similarly as in Ezearn [5] except for
few modifications as necessary.

Proof of Theorem 17. Let

〠
r

k=l+1
αkT

kx − h Tð Þx = c 〠
r

k=l+1
αkT

ku + 1 − cð Þ 〠
r

k=l+1
αkT

kv,

ð24Þ

for some c ∈ ½0, 1�. Then, given that ∑r
k=l+1αkT

k − hðTÞ =

∑l
k=0αkT

k, then the following identity holds:

〠
l

k=0
αk Tkx − Tkv
� �

= 〠
l

k=0
αkT

kx − 〠
l

k=0
αkT

kv,

= 〠
r

k=l+1
αkT

kx − h Tð Þx − 〠
l

k=0
αkT

kv,

= c 〠
r

k=l+1
αkT

ku + 1 − cð Þ 〠
r

k=l+1
αkT

kv

− 〠
l

k=0
αkT

kv, = c〠
l

k=0
αkT

ku

+ 1 − cð Þ〠
l

k=0
αkT

kv − 〠
l

k=0
αkT

kv,

= c〠
l

k=0
αkT

ku − c〠
l

k=0
αkT

kv,

= c 〠
r

k=l+1
αkT

ku − h Tð Þu
 !

− c 〠
r

k=l+1
αkT

kv − h Tð Þv
 !

,

= c 〠
r

k=l+1
αk Tku − Tkv
� �

:

ð25Þ

Hence, we have

〠
l

k=0
αk Tkx − Tkv
� �

= c 〠
r

k=l+1
αk Tku − Tkv
� �

: ð26Þ

Similarly, one can also have

〠
l

k=0
αk Tku − Tkx
� �

= 〠
l

k=0
αkT

ku − 〠
l

k=0
αkT

kx,

= 〠
l

k=0
αkT

ku − 〠
r

k=l+1
αkT

kx − h Tð Þx
 !

,

= 〠
l

k=0
αkT

ku − c 〠
r

k=l+1
αkT

ku + 1 − cð Þ 〠
r

k=l+1
αkT

kv

 !
,

= 〠
l

k=0
αkT

ku − c〠
l

k=0
αkT

ku + 1 − cð Þ〠
l

k=0
αkT

kv

 !
,

= 1 − cð Þ〠
l

k=0
αkT

ku − 1 − cð Þ〠
l

k=0
αkT

kv,

= 1 − cð Þ 〠
r

k=l+1
αkT

ku − h Tð Þu
 !

− 1 − cð Þ 〠
r

k=l+1
αkT

kv − h Tð Þv
 !

:

ð27Þ
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Hence, we have

〠
l

k=0
αk Tku − Tkx
� �

= 1 − cð Þ 〠
r

k=l+1
αk Tku − Tkv
� �

: ð28Þ

From equation (26), it follows that when c = 0, then

〠
r

k=l+1
αk Tkx − Tkv
� �

 ≤ 〠
l

k=0
αk Tkx − Tkv
� �

 = 0: ð29Þ

and that implies that

〠
r

k=l+1
αkT

kx = 〠
r

k=l+1
αkT

kv: ð30Þ

Note also that when c = 0, then ∑r
k=l+1αkT

kx − hðTÞ
x = 0 ·∑r

k=l+1αkT
ku + ð1 − 0Þ∑r

k=l+1αkT
kv and it follows

that

〠
r

k=l+1
αkT

kx − h Tð Þx = 〠
r

k=l+1
αkT

kv: ð31Þ

Combining equation (30) and equation (31), we
have that

〠
r

k=l+1
αkT

kx = 〠
r

k=l+1
αkT

kv≔ 〠
r

k=l+1
αkT

kx − h Tð Þx, ð32Þ

giving hðTÞ = 0 or equivalently x ∈ AðTÞ.
Similarly, from equation (28), when c = 1, then

〠
r

k=l+1
αk Tku − Tkx
� �

 ≤ 〠
l

k=0
αk Tku − Tkx
� �

 = 0: ð33Þ

and that implies that

〠
r

k=l+1
αkT

ku = 〠
r

k=l+1
αkT

kx: ð34Þ

Note also that when c = 1, then ∑r
k=l+1αkT

kx − hðTÞ
x = 1 ·∑r

k=l+1αkT
ku + ð1 − 1Þ∑r

k=l+1αkT
kv and it follows

that

〠
r

k=l+1
αkT

kx − h Tð Þx = 〠
r

k=l+1
αkT

ku: ð35Þ

Combining equation (34) and equation (35), we
have that

〠
r

k=l+1
αkT

kx = 〠
r

k=l+1
αkT

ku≔ 〠
r

k=l+1
αkT

kx − h Tð Þx, ð36Þ

giving hðTÞ = 0 or equivalently x ∈ AðTÞ.

Hence, we assume that c ∈ ð0, 1Þ. We observe that

〠
r

k=l+1
αkT

ku ≠ 〠
r

k=l+1
αkT

kx ≠ 〠
r

k=l+1
αkT

kv: ð37Þ

To see this, we note that if ∑r
k=l+1αkT

ku =∑r
k=l+1αkT

kx,
then we have the following

〠
l

k=0
αk Tkx − Tkv
� �

 = c 〠
r

k=l+1
αk Tku − Tkv
� �

,
= c 〠

r

k=l+1
αk Tkx − Tkv
� �

,
≤ c 〠

l

k=0
αk Tkx − Tkv
� �

,
ð38Þ

leading to the contradiction that c ≥ 1.
Also if ∑r

k=l+1αkT
kv =∑r

k=l+1αkT
kx, then we have

〠
l

k=0
αk Tku − Tkx
� �

 = 1 − cð Þ 〠
r

k=l+1
αk Tku − Tkv
� �

,
= 1 − cð Þ 〠

r

k=l+1
αk Tku − Tkx
� �

,
≤ 1 − cð Þ 〠

l

k=0
αk Tku − Tkx
� �

,
ð39Þ

leading to the contradiction that c ≤ 1.
Now, given that

〠
r

k=l+1
αk Tku − Tkv
� �

 = 〠
r

k=l+1
αk Tku − Tkx + Tkx − Tkv
� �

,
≤ 〠

r

k=l+1
αk Tku − Tkx
� �


+ 〠

r

k=l+1
αk Tkx − Tkv
� �

,
≤ 〠

l

k=0
αk Tku − Tkx
� �


+ 〠

l

k=0
αk Tkx − Tkv
� �

,
= 1 − cð Þ 〠

r

k=l+1
αk Tku − Tkv
� �


+ c 〠

r

k=l+1
αk Tku − Tkv
� �

,
= 〠

r

k=l+1
αk Tku − Tkv
� �

:

ð40Þ
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It follows from the above that

〠
r

k=l+1
αk Tku − Tkx
� �

 + 〠
r

k=l+1
αk Tkx − Tkv
� �

 = 〠
r

k=l+1
αk Tku − Tkv
� �

,
ð41Þ

and since

〠
r

k=l+1
αkT

ku ≠ 〠
r

k=l+1
αkT

kx ≠ 〠
r

k=l+1
αkT

kv: ð42Þ

Then from the strict convexity of X , there exists λ > 0
such that the following holds:

〠
r

k=l+1
αk Tkx − Tkv
� �

= λ 〠
r

k=l+1
αk Tku − Tkx
� �" #

: ð43Þ

Set λ≔ β/ð1 − βÞ ðthusβ ∈ ð0, 1ÞÞ, and equation (43)
becomes equivalent to the following:

〠
r

k=l+1
αkT

kx = β 〠
r

k=l+1
αkT

ku + 1 − βð Þ 〠
r

k=l+1
αkT

kv: ð44Þ

Consequently, we have

〠
r

k=l+1
αk Tkx − Tkv
� �

 = β 〠
r

k=l+1
αk Tku − Tkv
� �

 ð45Þ

and

〠
r

k=l+1
αk Tku − Tkx
� �

 = 1 − βð Þ 〠
r

k=l+1
αk Tku − Tkv
� �

:
ð46Þ

Now, since

β 〠
r

k=l+1
αk Tku − Tkv
� �

 = 〠
r

k=l+1
αk Tkx − Tkv
� �

,
≤ 〠

l

k=0
αk Tkx − Tkv
� �

,
= c 〠

r

k=l+1
αk Tku − Tkv
� �

,
ð47Þ

then, we have that β ≤ c. Similarly, since

1 − βð Þ 〠
r

k=l+1
αk Tku − Tkv
� �

 = 〠
r

k=l+1
αk Tku − Tkx
� �

,
≤ 〠

l

k=0
αk Tku − Tkx
� �

,
= 1 − cð Þ 〠

r

k=l+1
αk Tku − Tkv
� �

,
ð48Þ

and that gives us β ≥ c and therefore we must have β = c.
Hence, we have shown that

〠
r

k=l+1
αkT

kx = c 〠
r

k=l+1
αkT

ku + 1 − cð Þ 〠
r

k=l+1
αkT

kv,≔ 〠
r

k=l+1
αkT

kx − h Tð Þx,

ð49Þ

and so we have hðTÞ = 0 or equivalently x ∈ AðTÞ and that
completes the proof.

Proof of Theorem 18.
Let ck ∈ ½0, 1� for all 0 ≤ k ≤ r − 1 and Tkx≔ cku + ð1 −

ckÞv, then we have ckðu − TkxÞ = ð1 − ckÞðTkx − vÞ, and that
also follows that

u − Tkx
  = 1 − ckð Þ u − vk k and Tkx − v

  = ck u − vk k:
ð50Þ

Now, if c0 = 1, then x = u, and this means that x ∈
FixðTÞ and since by definition FixðTÞ ⊂ AðTÞ, then it fol-
lows that x ∈ AðTÞ. Similarly, for c0 = 0, then x = v and
also follows that x ∈ AðTÞ. Hence, we may assume that
c0 ∈ ð0, 1Þ. First and foremost, we may observe that u ≠
Tx ≠ v, and to see this, we note that if u = Tx, then u =
Tk+1x for all 0 ≤ k ≤ r − 1 and since by assumption c0 ≠ 1,
then we have

D1 x, vð Þ = 〠
r−1

k=0
bk Tkx − Tkv
 , = 〠

r−1

k=0
bk Tkx − v
 ,

= 〠
r−1

k=0
bkck u − vk k, < 〠

r−1

k=0
bk u − vk k, since c0 ≠ 1 b0 ≠ 0ð Þ,

= 〠
r−1

k=0
bk Tk+1x − Tk+1v
 , =D1 Tx, Tvð Þ ≤D1 x, vð Þ,

ð51Þ

leading to the contradiction that D1ðx, vÞ <D1ðx, vÞ. In the
same vein, if v = Tx, then v = Tk+1x for all 0 ≤ k ≤ r − 1. Since
by assumption, c0 ≠ 0, then we have the following:
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D1 x, vð Þ = 〠
r−1

k=0
bk Tku − Tkx
 , = 〠

r−1

k=0
bk u − Tkx
 ,

= 〠
r−1

k=0
bk 1 − ckð Þ u − vk k, < 〠

r−1

k=0
bk u − vk k, since c0 ≠ 0 b0 ≠ 0ð Þ,

= 〠
r−1

k=0
bk Tk+1u − Tk+1x
 , =D1 Tu, Txð Þ ≤D1 u, xð Þ,

ð52Þ

leading to the contradiction that D1ðu, xÞ <D1ðu, xÞ.
Given that T is an (r,1)-general higher-order nonexpansive
mapping, we have

D1 u, vð Þ ≤D1 u, Txð Þ +D1 Tx, vð Þ, =D1 Tu, Txð Þ +D1 Tx, Tvð Þ,

≤D1 u, xð Þ +D1 x, vð Þ, = 〠
r−1

k=0
bk Tku − Tkx
 

+ 〠
r−1

k=0
bk Tkx − Tkv
 , = 〠

r−1

k=0
bk u − Tkx
 

+ 〠
r−1

k=0
bk Tkx − v
 , = 〠

r−1

k=0
bk 1 − ckð Þ u − vk k

+ 〠
r−1

k=0
bkck u − vk k, = 〠

r−1

k=0
bk u − vk k,

= 〠
r−1

k=0
bk Tku − Tkv
 , =D1 u, vð Þ,

ð53Þ

which implies that D1ðu, TxÞ +D1ðTx, vÞ =D1ðu, vÞ or
equivalently

〠
r−1

k=0
bk u − Tk+1x
  + Tk+1x − v

  − u − vk k
� �

= 0: ð54Þ

Now, given that ku − Tk+1xk + kTk+1x − vk − ku − vk ≥ 0
and bk > 0ðsince br−1 = αr ≠ 0Þ, then for all 0 ≤ k ≤ r − 1, we
have

u − Tk+1x
  + Tk+1x − v

  = u − vk k: ð55Þ

Since u ≠ Tx ≠ v, then whenever u ≠ Tk+1x ≠ v, it follows
from the strict convexity ofX that there exists λk > 0 such that

Tk+1x − v
� �

= λk u − Tk+1x
� �

: ð56Þ

Now, set λ k≔ βk/ð1 − βk Þ ðthus, βk ∈ ð0, 1ÞÞ. Then,
equation (56) becomes

Tk+1x = βku + 1 − βkð Þv: ð57Þ

Now, when u = Tk+1x (respectively v = Tk+1x) then we
choose βk = 1 (respectively βk = 0). Comparing equation (57)
to the definition Tk+1x≔ ck+1u + ð1 − ck+1Þv, it follows that
βk = ck+1 for all 0 ≤ k ≤ r − 2. Now, we show that

βr−1 =
1
αr

〠
r−1

k=0
ckαk sgn kð Þ: ð58Þ

We observe that kTk+1x − vk = βkku − vk and ku − Tk+1

xk = ð1 − βkÞku − vk and hence, we have the following eval-
uation:

〠
r−1

k=0
bkβk u − vk k = 〠

r−1

k=0
bk Tk+1x − v
 , =D1 Tx, vð Þ, =D1 Tx, Tvð Þ,

≤D1 x, vð Þ = 〠
r−1

k=0
bk Tkx − v
 , = 〠

r−1

k=0
bkck u − vk k:

ð59Þ

Hence, we have

〠
r−1

k=0
bk βk − ckð Þ ≤ 0, ð60Þ

since u ≠ v. Similarly, we have the following evaluation:

〠
r−1

k=0
bk 1 − βkð Þ u − vk k = 〠

r−1

k=0
bk u − Tk+1x
 , =D1 u, Txð Þ,

=D1 Tu, Txð Þ, ≤D1 u, xð Þ,

= 〠
r−1

k=0
bk u − Tkx
 , = 〠

r−1

k=0
bk 1 − ckð Þ u − vk k:

ð61Þ

Hence, we have

〠
r−1

k=0
bk βk − ckð Þ ≥ 0, ð62Þ

again because u ≠ v.
Now, combining equations (60) and (62) and invoking

Proposition 14 gives the following:

0 = 〠
r−1

k=0
bk βk − ckð Þ = 〠

r−2

k=0
bk βk − ckð Þ + br−1 βr−1 − cr−1ð Þ,

= 〠
r−2

k=0
bk βk − ckð Þ + αr βr−1 − cr−1ð Þ, = 〠

r−2

k=0
bk ck+1 − ckð Þ

+ αr βr−1 − cr−1ð Þ, = −b0c0 − 〠
r−2

k=0
ck bk − bk−1ð Þ + br−2cr−1

+ αr βr−1 − cr−1ð Þ, = −α0c0 − 〠
r−2

k=0
ckαk sgn kð Þ

+ αr − αr−1 sgn kð Þð Þcr−1 + αr βr−1 − cr−1ð Þ,

= 〠
r−1

k=0
ckαk sgn kð Þ + αrcr−1 − αrcr−1 + αrβr−1,

= 〠
r−1

k=0
ckαk sgn kð Þ + αrβr−1

ð63Þ
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and that gives us

αrβr−1 = 〠
r−1

k=0
ckαk sgn kð Þ: ð64Þ

Since α0 · αr ≠ 0, then, we have

βr−1 =
1
αr

〠
r−1

k=0
ckαk sgn kð Þ, ð65Þ

as claimed. Since T is an (r,1)-general higher-order nonex-
pansive mapping, we have that

〠
r

k=l+1
αk = 〠

l

k=0
αk, αr = 〠

l

k=0
αk − 〠

r−1

k=l+1
αk, = 〠

r−1

k=0
αk sgn kð Þ, ð66Þ

and finally, we have

1 = 1
αr

〠
r−1

k=0
αk sgn kð Þ, ð67Þ

since α0 · αr ≠ 0.
Finally, recall that Trx = βr−1u + ð1 − βr−1Þv and Tkx =

cku + ð1 − ckÞv for all 0 ≤ k ≤ r − 1, thus we have

Trx = βr−1u + 1 − βr−1ð Þv, = 1
αr

〠
r−1

k=0
ckαk sgn kð Þu

+ 1
αr

〠
r−1

k=0
αk sgn kð Þ − 1

αr
〠
r−1

k=0
ckαk sgn kð Þ

 !
,

= 1
αr

〠
r−1

k=0
αk sgn kð Þ cku + 1 − ckð Þvð Þ, 1

αr
〠
r−1

k=0
αk sgn kð ÞTkx:

ð68Þ

Hence, we have

αrT
rx = 〠

r−1

k=0
αkT

kx sgn kð Þ ð69Þ

Observe that

h Tð Þx = 〠
r

k=l+1
αkT

kx − 〠
l

k=0
αkT

kx, = αrT
rx + 〠

r−1

k=l+1
αkT

kx

− 〠
l

k=0
αkT

kx, = αrT
rx − 〠

r−1

k=0
αkT

kx sgn kð Þ:

ð70Þ

Hence, we have

h Tð Þx = αrT
rx − 〠

r−1

k=0
αkT

kx sgn kð Þ: ð71Þ

By combining equations (69) and (71), we get that
hðTÞx = 0 or x ∈ AðTÞ, and that completes the proof.

Proof of Theorem 19.
Clearly, if A∞ðTÞ =∅, then Fix ðTÞ =∅ since by defini-

tion we have that Fix ðTÞ ⊆ A∞ðTÞ ⊆ AðTÞ. We first show
that A∞ðTÞ = AðTÞ. Since by definition, A∞ðTÞ ⊆ AðTÞ, we
then show that AðTÞ ⊆ A∞ðTÞ. Indeed, assume that Tix ∈
AðTÞ for some i ≥ 0, and then, we have

h Tð ÞTix = 0, 〠
r

k=l+1
αkT

i+kx − 〠
l

k=0
αkT

i+kx = 0, 〠
r

k=l+1
αkT

i+kx

= 〠
l

k=0
αkT

i+kx, αrTr+ix = 〠
l

k=0
αkT

i+kx

− 〠
r−1

k=l+1
αkT

i+kx, αrTr+ix

= 〠
r−1

k=0
αkT

i+kx sgn kð Þ:

ð72Þ

Since αr ≠ 0, then we have

Tr+ix = 〠
r−1

k=0

αk
αr

sgn kð ÞTi+kx: ð73Þ

By operating both sides of equation (73) under T , we
obtain the following:

Tr+i+1x = T Tr+ix
À Á

= T 〠
r−1

k=0

αk
αr

sgn kð ÞTi+kx

 !
,

= 〠
r−1

k=0

αk
αr

sgn kð ÞTk+i+1x,
ð74Þ

where the last identity follows because T is affine and that
∑r−1

k=0αk/αr sgn ðkÞ = 1. Hence, we have that Ti+1x ∈ AðTÞ
and so by induction if x ∈ AðTÞ, we have Tnx ∈ AðTÞ for
all n ≥ 0. Hence, x ∈ A∞ðTÞ, and that completes the first
part of the proof that A∞ðTÞ = AðTÞ. Finally, let qðTÞ =
∑r−1

k=0bkT
k; thus the above theorem states that if hðTÞx = 0,

then

1
∑r−1

k=0bk
q Tð Þx ∈ Fix Tð Þ: ð75Þ

To see this, observe that (from Proposition 11, noting that
here λ = 1)
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q Tð ÞTx − q Tð Þx = 〠
r−1

k=0
bk Tk+1x − Tkx
� �

,

= br−1T
rx − b0x − 〠

r−1

k=1
bk − bk−1ð ÞTkx,

= αrT
rx − α0x − 〠

r−1

k=1
bk − bk−1ð ÞTkx,

= αrT
rx − α0x − 〠

r−1

k=1
αkT

kxsgn kð Þ,

= αrT
rx − α0x + 〠

r−1

k=l+1
αkT

kx − 〠
l

k=1
αkT

kx,

= αrT
rx + 〠

r−1

k=l+1
αkT

kx − α0x − 〠
l

k=1
αkT

kx,

= 〠
r

k=l+1
αkT

kx − 〠
l

k=0
αkT

kx, = h Tð Þx:

ð76Þ

Since T is affine, then we have

T
1

∑r−1
k=0bk

q Tð Þx
 !

= 1
∑r−1

k=0bk
q Tð ÞTx, = 1

∑r−1
k=0bk

q Tð Þx + h Tð Þxð Þ:

ð77Þ

and so we have

T
1

∑r−1
k=0bk

q Tð Þx
 !

= 1
∑r−1

k=0bk
q Tð Þx: ð78Þ

Once hðTÞx = 0, and that completes the proof.

Proof of Theorem 20. For n ≥ 1, define Tn : C ⟶C by

Tnx = T γnu + 1 − γnð Þxð Þ, ð79Þ

where u ∈ kerðCÞ is arbitrary and that fγngn≥1 ∈ ð0, 1Þ is
a null sequence. We show that

Tk
n = γn 〠

k

i=1
1 − γnð Þi−1Tiu + 1 − γnð ÞkTkx, ð80Þ

for all k ≥ 1.
We prove that equation (80) is true by induction. Now,

for the case where k = 1, by the affiness of T , we have

Tnx = T γnu + 1 − γnð Þxð Þ, = γnTu + 1 − γnð ÞTx: ð81Þ

Now, let us assume that equation (80) is true for k ≥ 1.

Note that

γn 〠
k

i=1
1 − γnð Þi−1 + 1 − γnð Þk = γn

1 − 1 − γnð Þk
γn

+ 1 − γnð Þk
 !

= 1

ð82Þ

and so by the affiness of T , we have the following evalu-
ation:

Tk+1
n x = T γnu + 1 − γnð ÞTk

nx
� �

,

= γnTu + 1 − γnð ÞT γn 〠
k

i=1
1 − γnð Þi−1Tiu + 1 − γnð ÞkTkx

 !
,

= γnTu + 1 − γnð Þ γn 〠
k

i=1
1 − γnð Þi−1Ti+1u + 1 − γnð ÞkTk+1x

 !
,

= γn 〠
k+1

i=1
1 − γnð Þi−1Tiu + 1 − γnð Þk+1Tk+1x,

ð83Þ

and that completes the proof of equation (80). We have the
following evaluation:

Tk
ny − Tk

nx = γn 〠
k

i=1
1 − γnð Þi−1Tiu + 1 − γnð ÞkTky

− γn 〠
k

i=1
1 − γnð Þi−1Tiu − 1 − γnð ÞkTkx,

= 1 − γnð Þk Tky − Tkx
� �

,

ð84Þ

and as a result, we have the following:

1 − γnð Þ−k Tk
ny − Tk

nx
� �

= Tky − Tkx: ð85Þ

Now, by taking norms of equation (85) raised to the
power pðp ≥ 1Þ, we have

1 − γnð Þ−kp Tk
ny − Tk

nx
 p = Tky − Tkx

 p: ð86Þ

By Definition 6, we have

〠
r

k=l+1
αk 1 − γnð Þ−kp Tk

ny − Tk
nx

 p

= 〠
r

k=l+1
αk Tky − Tkx
 p, ≤ 〠

l

k=0
αk Tky − Tkx
 p,

= 〠
l

k=0
αk 1 − γnð Þ−kp Tk

ny − Tk
nx

 p:
ð87Þ
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Hence, we have

〠
r

k=l+1
αk 1 − γnð Þ−kp Tk

ny − Tk
nx

 p ≤ 〠
l

k=0
αk 1 − γnð Þ−kp Tk

ny − Tk
nx

 p:
ð88Þ

Since T is an ðr, pÞ − general higher-order nonexpansive
mapping, then by Proposition 11, we have

〠
r

k+l
αk 1 − γnð Þ−kp ≥ 〠

r

k=l+1
αk

 !
1 − γnð Þ−p l+1ð Þ,

= 〠
l

k=0
αk

 !
1 − γnð Þ−p l+1ð Þ,

> 〠
l

k=0
αk

 !
1 − γnð Þ−kp:

ð89Þ

Hence, inequality (88) is an ðr, pÞ − general higher-order
contraction mapping, and thus by Theorem 16, Tn has a
unique fixed point in C , thus Tnxn = xn. Now, consider

xn − Txnk k = Tnxn − Txnk k, = T γnu + 1 − γnð Þxnð Þ − Txnk k,
= γnTu + 1 − γnð ÞTxnÞ − Txnk k, = γn Tu − Txnk k:

ð90Þ

Hence, kxn − Txnk⟶ 0 as n⟶∞ since C is bounded
and that completes the proof.

4. Conclusion

As for examples of this map, the immediate examples are
algebraic operators (see, for instance, [7, 8]). An algebraic
operator is a linear operator satisfying a polynomial identity
with scalar coefficients. That is, for any Banach space X and
a given polynomial p, then T : X ⟶X is a map such that

p Tð Þ = 0: ð91Þ

For instance, given the polynomial pðzÞ = azr + ar−1z
r−1 +

⋯+a1z + a0, then by the above definition, one obtains the
following

aTr + ar−1T
r−1+⋯+a1T + a0I = 0,

a Trx − Tryð Þ + ar−1 Tr−1x − Tr−1y
À Á

+⋯
+a1 Tx − Tyð Þ + a0 x − yð Þ = 0:

ð92Þ

By taking norm of the above, we have

a Trx − Tryð Þ + ar−1 Tr−1x − Tr−1y
À Á

+⋯+a1 Tx − Tyð Þ + a0 x − yð Þ  = 0:

ð93Þ

Which by the subadditivity of norm, we have

aj j Trx − Tryk k ≤ ar−1j j Tr−1x − Tr−1y
 +⋯

+ a1j j Tx − Tyk k + a0j j x − yk k:
ð94Þ

which is a higher-order Lipschitz mapping, and hence, a
general higher-order Lipschitz mapping.

Algebraic operators are intrinsically interesting and do have
good andmany applications to other fields inmost areas of pure
mathematics such as the Connes-Moscovici index theorem for
foliated manifolds, algebraic quantum field theory, Novokov
conjecture, ordinary and partial differential equations, and
Jone’s work connecting Von Neumann algebras and geometric
topology, which gave rise to a new knot invariant.

Other generalizations (for instance, operators satisfying
a polynomial identity with nonscalar coefficients) and their
applications can also be found in [9].

Therefore, general higher-order Lipschitz mappings and
our current results indeed have the potential of being applied
in some mathematical and nonmathematical fields, just like
those results mentioned above.
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