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In this paper, we extend the results obtained by Ezearn on annihilated points for his higher-order nonexpansive mappings to the
context of general higher-order nonexpansive mappings. Precisely in his thesis, Ezearn introduced the concept of annihilated
points, which extends the notion of fixed points, and it is only meaningful in the context of higher-order nonexpansive
mappings and gave some mild conditions when the annihilated points could exist in strictly convex Banach spaces. In the last
direction, we also extend Ezearn’s result on the approximate fixed point sequence for higher-order nonexpansive mappings to

general higher-order nonexpansive mappings.

1. Introduction

Given a complete metric space (X, d), the most well-studied
examples of such mappings are those that can be immedi-
ately put in the form

d(Tx, Ty) <c-d(x,y), (1)

For all x, y € & where ¢ >0 is a fixed real number. Such
mappings are referred to as Lipschitz continuous mappings.
Lipschitz continuous mappings are generally classified into
three categories: T is a

(i) contraction mapping if 0 <c<1
(ii) nonexpansive mapping if c =1
(iii) expansive mapping if ¢ > 1

In [1], the concept of mean nonexpansive mappings was
introduced which is often seen as a generalization of nonex-

pansive mappings. Thus, let € be a nonempty subset of a
Banach space &, and let T be a self-mapping on €. Then
T is called a mean nonexpansive (or a-nonexpansive) if

n
Y a| - T < 2, @
k=1

For all x,y € € and for some a= (a,a,, -
Yo% =1,a,>0 for all k, and ay, a, > 0.

Clearly, it is seen that all nonexpansive mappings are
mean nonexpansive mappings, but the reverse is not always
true, as demonstrated in ([2], Examples 2.3 and 2.4). A more
general class of (&, p)-nonexpansive maps was further intro-
duced in [1]. That is, a self-map T on a subset € of a Banach
space X is called (a, p)-nonexpansive if

-, ), we have

C p
Y o T - T < ey, 3)
k=1
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For all x, y € € and for some o = (o}, a,, -, or,, ), we have
Yio0 =1, >0forall k, a, a, >0 and for some p € [1,00).
It is obvious that (a, p)-nonexpansive map for p > 1 is also
a-nonexpansive, but the reverse is not always true, as
shown in [3].

Now, given a metric space (2, d), a more general class of
mappings which extend inequality (1) can be put in the fol-
lowing form:

r—1
d(T"x, T'y) < Z ckd(Tkx, Tky> Vx,ye X, (4)
k=0

where r € N and ¢, >0, for all 0 <k <r— 1. Such mappings
are called higher-order Lipschitz mappings (or rth-order
Lipschitz mappings, for short) which was introduced by
Ezearn [4] in 2015.

Now, to every higher-order Lipschitz mapping, Ezearn
associated a polynomial which is defined as

r—1
=z - Z 25, (5)
k=0

and for r th-order nonexpansive mapping, we have p(1) = 0.

Ezearn [5] in his thesis introduced the concept of annihi-
lated points of a higher-order nonexpansive mapping as
defined below:

Definition 1 (Annihilated point of T). Let T : § — & be a
higher-order nonexpansive mapping on a subset & of a
Banach space 2, and let p be the associated polynomial of
T. Then x is an annihilated point (respectively, a totally
annihilated point) of T if p(T) annihilates x (respectively,
the Picard iterates of x) that is, p(T)x=0 (respectively,
p(T)T"x=0 for all n>0).

Ezearn is denoted by A(T) (respectively, A, (T)) the
set of annihilated (respectively, a totally annihilated)
points of T. Ezearn, in an attempt to prove a fixed point
result for higher-order nonexpansive mappings, proved
the following theorems on sufficient conditions for an
annihilated point when the Banach space is strictly convex:
a strictly convex Banach space is a Banach space such that
whenever x#0 and y+0, then ||x+y| = ||| +||y|| if and
only if x=ky for some constant k> 0.

Theorem 2. Let € be a convex subset of a strictly Banach
space X, and let T : € —> € an rth-order nonexpansive

mapping of the form

1Ty = T'x|| <

gck (Tky - Tkx)

Suppose u,ve A(T) and T'x—p(T)x € conv{T", T"v}.
Then, x € A(T).

‘. (6)

Theorem 3. Let T be an rth-order nonexpansive mapping
on a convex subset € of a strictly convex Banach space
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. Suppose u,v € Fix(T) and {Tkx},r;z c conv{u,v}. Then
xeA(T).

With a mild condition on the set of totally annihilated
points, A (T), Ezearn proved the following fixed point
result in a general Banach space.

Theorem 4. Let T be an affine higher-order nonexpansive
mapping on a convex subset € of a Banach space X. Then,
Fix(T) =@ only if A (T) = D. In particular, the identity A
(T)=A,(T) holds, and if x € A (T), then

! z b T*x € Fix(T). (7)

bkko

Finally, Ezearn proved the following approximate fixed
point sequence result for his higher-order nonexpansive
mapping in a general Banach space.

Theorem 5. Let € be a closed bounded star-convex subset of
a Banach space, and let T be an affine rth-order nonexpan-
sive self-mapping on €. Then, T has an approximate fixed
point sequence in €. That is, there exists {x,} ., CE such
that lim -Tx,)=

n>1

Vl—>00(

In 2021, the author [6] introduced the following map-
pings which generalize both inequality (3) and (4).

Definition 6 (General higher-order Lipschitz mappings).
Given a metric space (2, d), a self-map T on X is called a
(r, p)-general rth-order Lipschitz mapping if

r

,(;H akd<Tkx’ Tky> Zakd( x, TF )p Vx,y e,
(8)

where p>1, reN, and a; >0 for all k, «,-a,+0, and
le{0,---,r—1}.

It is obvious that inequality (8) reduces to (3) when / =0.
In the same vein, inequality (8) reduces to (4) when p=1
and I=r—-1.

Now to every (r, p)-general higher-order Lipschitz map-
ping, the author associated the following polynomial:

Z ockz - Zakz (9)
k=Il+1

The author classified
Lipschitz mappings as follows:

(r,p)-general higher-order

(i) T is (r,p)-general higher-order contraction map-
ping if (1) >0

(i) T is (r,p)-general higher-order non-expansive
mapping if h(1) =
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(iii) T is (r, p)-general higher-order expansive mapping

ifh(1)<0

In this paper, we generalize Theorem 2 and Theorem 3
to (r, p)-general higher-order nonexpansive mapping when
p=1 except that in the second case (Theorem 3), it will
not be totally annihilated points but just annihilated points
because in Ezearn’s case, all the constants are on the right,
and therefore, by induction, he could obtain that result for
a totally annihilated point. In the other direction, we gener-
alize Theorem 4 to (r, p)-general higher-order nonexpansive
mappings, but in the context of an affine subset of a given
Banach space. In the last direction, we generalize Theorem
5 to (r,p)-general higher-order nonexpansive mappings.
That is, in this paper, we prove the following results:

Theorem 7. Let € be a convex subset of a strictly convex
Banach space X, and define T : € — € to be a (r,1)-gen-
eral-higher order nonexpansive mapping of the form

1

Z o (Tky - Tkx>

k=0

r

Z o, (Tky - Tkx)

k=I+1

<

‘. (10

Suppose u,ve A(T) and Y, 0. T"x —h(T)x € conv
(Xt 0T, Yy 0 TV Then, x e A(T).

Theorem 8. Let T be an (r,1)-general higher-order nonex-
pansive mapping on a convex subset € of a strictly convex
Banach space (2, |||)- Suppose wu,veFix(T) and

{T*x}iy € conv{u, v}. Then, x € A(T).

Theorem 9. Let T be an affine general higher-order nonex-
pansive mapping on an affine subset € of a Banach space
X. The Fix(T) =@ only if A(T)=@. In particular, the
identity A(T) = A (T) holds and if x € A (T), then

r—1
LZ by Tkx € Fix(T). (11)

r—1
k:Obk k=0

Theorem 10. Let € be a closed, bounded star-convex subset
of a Banach space, and let T be an affine (r,p)-general
higher-order nonexpansive self-mapping on €. Then T has
an approximate fixed point sequence in €. That is, there
exists {x,},.; C € such that lim x, - Tx,)=0.

n>1 n—»oo(

From Definition 1, for any (r,p)-general higher-order
nonexpansive mapping, the fixed point set is always a subset
of the annihilated point set and they coincide when I =0 and
r=1. To see this, for /=0 and r = 1, we have the following:

r !
h(T) = Z a, Tk~ Zaka=(x1T—(x0. (12)
k=0

k=Il+1

Given that T(z) = z, then we have
hTz=a,Tz-ayz=az—ayz= (o, —y)z=0-2=0.

(13)

In the same vein, since for any (r,p)-general higher-order
nonexpansive mapping, we have

r 1
D %= ) (14)

k=lt1 k=0

then, we have the following:

!
h(T)z= Z a "z - Zakaz. (15)
k=I+1 k=0

Now, since Tz=z= T*z=z for k> 1, then the above
equation reduces to

r l r l
h(T)z= z oz - Zockz,=<z o — Z(xk> -2,=0-2,=0.
k=0 k=0

k=I+1 k=l+1
(16)

2. Preliminaries

Proposition 11. Define T to be an (r, p)-general higher-order
Lipschitz mapping, and let h(z) be the associated polynomial
for T as stated in Definition 6.

(i) If h(1)>0, then we can always find a certain
A€ (0, 1), which is unique and positive if oy # 0, such

that h(A) =0
(ii) If h(1) =0, then there exists 1 as the only positive
root of h

(iii) If h(1) < 0, then we can find a unique positive A > 1
such that h(1) =0

Now, let us define T to be an (r,p)-general higher-order
Lipschitz mapping on a complete metric space (Z,d) as
given in inequality (8) and let A be the unique root of the
polynomial h(z) as guaranteed by Proposition 11. Define
the following on the space X

r—1 lp
Dy(x,y) = <kz bkd(Tkx, Tky>p> , (17)

where

k
be= Y a )V sgn (j), (18)

j=0



andp>1forallx,ye Z,0<k<r-1and

. 1 ifj<i
0=y (19)

Corollary 12. b, stated in equation (17) is non-negative.

Lemma 13. D, (x, y) stated in equation (17) is a metric on the
space .

Proposition 14. Define b, in equation (17). Then the follow-
ing results hold:

ay=Aby b, —a,=0,

(20)

Ab =b_ +oasgn(k), 1<k<r-1.

Lemma 15. Given a metric space (2, d) (not necessarily com-
plete) and define T : & — X to be an (r, p)-general higher-
order Lipschitz mapping. Then

D,(Tx, Ty) <AD,(x, y). (21)

Moreover, a sequence {x,},.,C(Z,D,) is Cauchy in

n=1

(Z,D,) if and only if the sequence {T*x,} o, € (X d) s
Cauchy in (2,d) for all 0<k<r-1
Theorem 16. Define the mapping,
T-X—Z, |x,]| —[Tx,] (22)
Then, we have
Dy (T[y,) Tlx,]) <A™ Dy([y,]: [x,]). (23)

In particular, if (', d) is complete, then T has a fixed point
in (&, d) if and only if T has a fixed point in (2, D, ).

3. Main Result

We prove the main result of this paper, which is already
stated in Theorem 7, Theorem 8, Theorem 9, and Theorem
10. The proofs follow similarly as in Ezearn [5] except for
few modifications as necessary.

Proof of Theorem 17. Let

Zocka h(T) —CZ(kau+ 1-c¢) ZockTv,
k=l+1 k=l+1 k=l+1
(24)
for some c€[0,1]. Then, given that Y}_,, &, T" — h(T) =
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Y40 T, then the following identity holds:

l

Z o (Tkx - Tkv)

k=0

! !
Z (kakx - Z ockav,
k=0
r
Z a TEx — h(T)x - ZockT v,
k=1+1
r
=c Z o Tru+ (1-¢) Z a, Tk
k=l+1 k=l+1
! !
- Z ockav, =c Z ockau
k=0 k=0
! !
+(1-¢) Z a Tr - Z a T,
k=0 k=0

I I
=c Z (kaku -c Z (kakv,
k=0 k=0

= c( Zr: a TFu — h(T)u)
k=I1+1

—c<i akav—h(T)v>,
k=I+1
= i (Tku—Tkv).

k=I+1

Hence, we have
1 r
Zock(Tkx— Tkv) =c Z o (Tku— Tkv). (26)
k=0 k=l+1

Similarly, one can also have

!

Z(x ( T*u—Trx ) Z(ka u- szka
k=0
= Z(ka"u— < i ockax—h(T)x>,
k=0

k=l+1
! r r
= ZakT"u— <c Z a Tru + (I-¢) Z ockav>,
k=0 k=1+1 k=l+1
! ! !
= Z o, Thu - (CZ a TFu + (I-c¢) Z (kakv>,
k=0 k=0 k=0
! !
=(1-¢) Z @ TFu—(1-¢) Z @ T,
k=0 k=0
(I-c¢ <Z o, TFu - h(T) >
k=l+1
;
-1 —c)< D ockav—h(T)v).
k=1+1
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Hence, we have

i o (Tku - Tkv) . (28)

!
Z o (Tku - Tkx) =(1-¢)
k=I+1

k=0

From equation (26), it follows that when ¢ =0, then

r 1
Z ock(Tkx - Tkv) < Z o (Tkx ~ Tkv) =0. (29)
k=1+1 k=0
and that implies that
Z a, Trx = Z a T . (30)
k=l+1 k=l+1

Note also that when c=0, then Y, o T"x—h(T)
x=0- Y Tiu+ (1-0)Y, 0 T" and it follows
that

Z a TFx — h(T)x = Z a T . (31)
k=1+1 k=l+1

Combining equation (30) and equation (31), we
have that

Z a Trx = Z a Tr = Z aTix—h(T)x,  (32)
k=l+1 k=l+1 k=l+1

giving h(T)=0 or equivalently x e A(T).
Similarly, from equation (28), when ¢ =1, then

r 1
Z (xk(Tku - Tkx) < Z o (Tku - Tkx) =0. (33)
k=1+1 k=0
and that implies that
Z a TFu = Z a T x. (34)

k=I1+1 k=I1+1

Note also that when c¢=1, then Y}_, a,T"x —h(T)
x=1-YaTu+ (1-1)Y, 0T and it follows
that

z T x — h(T)x = Z a T u. (35)
k=l+1 k=l+1

Combining equation (34) and equation (35), we
have that

Z a T x = Z a TFu = Z aTix—h(T)x,  (36)
k=1+1 k=1+1 k=1+1

giving h(T)=0 or equivalently x e A(T).

Hence, we assume that c € (0, 1). We observe that

r r r
Y qTus Y T+ Y o T (37)
k=I+1 k=I+1 k=I+1

To see this, we note that if erc:m“ka” = Z;:Mockax,
then we have the following

! r
Z o (Tkx - Tkv) =c z o (Tku - Tkv) ,
k=0 k=l+1
r
=c z o (Tkx— Tkv) . (38)
k=I+1
!
<c Z o (Tkx - Tkv) ,
k=0
leading to the contradiction that ¢ > 1.
Also if ¥, 0. TFv =Y}, &, T*x, then we have
! r
Zak (Tku— Tkx) =(1-¢) ock(Tku— Tkv> ,
k=0 k=l+1
r
=(1-¢) (xk(Tku—Tkx> ,
k=l+1
<(1-¢) Z ock(Tku - Tkx) ,
k=0
(39)
leading to the contradiction that c < 1.
Now, given that
Z ock(Tku - Tkv> = z ock(Tku —Trx+ TFx - Tkv) ,
k=1+1 k=1+1
< z ock(Tku— Tkx)
k=I+1
+ z ock<Tkx— Tkv) S
k=1+1
1
< z ock(Tku — Tkx)
k=0 (40)

+

1
Z o <Tkx - Tkv> S

k=0

r

z o (Tku - Tkv)

k=1+1

(1-¢)

r

z o (Tku - Tkv>

k=1+1

+c

>

r

Z ock<Tku - Tkv)

k=I+1




It follows from the above that

r

z oy (Tku - Tkx>

k=l+1

+

.
= Z ock<Tku—Tkv) s

k=I+1

,
Z oy (Tkx - Tkv>

k=l+1

(41)

and since

r

Z a Tru # Z a, Trx + Z a, T (42)
k=l+1 k=I+1 k=I+1

Then from the strict convexity of 2, there exists A >0
such that the following holds:

i ock(Tkx— Tkv) =/\[ Z ock<Tku— Tkx)]. (43)

k=l+1 k=I+1

Set A:=p/(1-p) (thus e (0,1)), and equation (43)
becomes equivalent to the following:

r

Z T x=p i aTru+ (1-p) i a T . (44)

k=I+1 k=I+1 k=I+1
Consequently, we have

r

Z o (Tkx - Tkv)

k=Il+1

r

Z o (Tku - Tkv)

k=Il+1

-

‘ (45)

and

r

Z oy (Tku - Tkx)

r

z o (Tku - Tkv)

=(1-p)

k=1+1 k=1+1
(46)
Now, since
B Z o, (Tku— Tkv) = Z oy, (Tkx— Tkv) ,
k=1+1 k=1+1
!
< Z o (Tkx - Tkv> , (47)
k=0
=c Z oy (Tku - Tkv) ,
k=1+1

then, we have that 8 < c. Similarly, since
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r

Z ock(Tku - Tkv)

k=1+1

(1-B)

.
Z ock(Tku—Tkx) ,

k=I+1

!
z oy (Tku - Tkx>

k=0

=(1-¢)

<

>

r

Z o (Tku - Tkv)

k=1+1

>

(48)

and that gives us > c and therefore we must have S=c.
Hence, we have shown that

r T T T
z aTfx=c Z aTFu+(1-¢) Z a Tr, = z @ T*x - h(T)x,
k=1+1 k=1+1 k=1+1 k=1+1

(49)

and so we have h(T) =0 or equivalently x € A(T) and that
completes the proof. O

Proof of Theorem 18.

Let ¢, €[0,1] for all 0<k<r—1 and T'x=cu+ (1 -
¢;)v, then we have ¢, (1 — T¥x) = (1 - ¢;)(T*x - v), and that
also follows that

Hu— Tka =(1-¢)|ju~-v| and HTkx—vH =c¢llu—v|-

(50)

Now, if ¢, =1, then x=u, and this means that xe
Fix(T) and since by definition Fix(T) c A(T), then it fol-
lows that x € A(T). Similarly, for ¢, =0, then x=v and
also follows that x € A(T). Hence, we may assume that

€ (0,1). First and foremost, we may observe that u#
Tx+#v, and to see this, we note that if u= Tx, then u=
T 1x for all 0<k<r—1 and since by assumption ¢, # 1,
then we have

r=1 r=1
D (x,v) = ZkaTkx—Tkv , = thHTkx—v ,
k=0 k=0
r—1 r—1
= z bie]ju—v|, < z by||u— v, sincec, # 1(b, #0),
k=0 k=0
,=D,(Tx, Tv) < D,(x,v),

(51)

r—1
— Z thTkJrlx _ Tk+1V
k=0

leading to the contradiction that D, (x,v) < D, (x, v). In the
same vein, if v = Tx, then v = T*"!x for all 0 < k < r — 1. Since
by assumption, ¢, # 0, then we have the following:
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Dy(xv) =

HTku Tx
k=0

r—1
= z kau - Trx R
k=0

r—1 r—1
=) b(1-¢)||u—-v|,< Zkau—vH,sincecO#O(boaéo),
0

= k=0

r—

1
= thTk“u—Tk“xH,:Dl(Tu, Tx) <D, (u, x),
0

(52)
leading to the contradiction that D, (u,x) < D, (u,x).
Given that T is an (r,1)-general higher-order nonexpansive

mapping, we have

D, (u,v) <D, (u, Tx) + D;(Tx,v),=D,(Tu, Tx) + D, (Tx, Tv),

r=1
<D, (u,x) + D (x,v),= Z kaTku - Tka
k=0
r-1 r-1
+ 3 by| =] = Y byf|u— 1'%
k=0 k=0

r=1
+ ZkaTkx—v , =
k=0

r—1
2 b1 =a)lu-v|
k=0

r—1 r—1
+ Y bellu=vll,= Y byllu-v],
k=0 k=0

r—1
= z ka Thu - ||, = D, (u,v),
k=0
(53)
which implies that D, (u, Tx) + D, (Tx,v) = D, (u,v) or

equivalently

,;Z;b"(H” =T+ [T - uv) =0 (59

Now, given that ||u— T*" x| + || T*'x = v|| - lu - v|| = 0
and b, > 0(since b, ; =a, #0), then for all 0<k<r-1, we
have

Hu_ Tk+1x

’+HT"“x—vH=||u—v||. (55)

Since u # Tx # v, then whenever u # T x # v, it follows
from the strict convexity of 2" that there exists A, > 0 such that

(Tk“x - v) = A (u - Tk“x> . (56)

Now, set A_k:=f,/(1-p,) (thus, 5, €(0,1)). Then,
equation (56) becomes

"l x = B+ (1- v (57)

Now, when u=T*"'x (respectively v=T!x) then we
choose B, =1 (respectively 8, = 0). Comparing equation (57)
to the definition T"*'x:= ¢, u+ (1 -c,,)v, it follows that
B = ¢y for all 0 <k <r—2. Now, we show that

r—1

B = ‘X—Z co sgn (k). (58)

7 k=0

We observe that || T"'x —v|| = B, |lu~-v| and |ju— T*
x|l = (1-B,)|lu—v| and hence, we have the following eval-
uation:

D,(Tx,v),=D,(Tx, Tv),

r—1 r—1
k
Y biBdlu-vi= Y b T v, -
k=0 k=0
r—1 r—1
<D(x,v) = ZkaTkx—v . ZbkckHu—vH.
k=0 k=0

(59)

Hence, we have

Z b(Br— k) < (60)
since u # v. Similarly, we have the following evaluation:

r—1 r—1
Y b1 Bollu=vll= Y b[ju-7"%]|. = Dy (. ),
k=0 k=0
=D, (Tu, Tx), <D, (u, x),
r—1 r—1
= Zkau—Tkx = Y b1 - ).
k=0 k=0

(61)

Hence, we have

Zbk

-¢) =0, (62)

again because u # v.
Now, combining equations (60) and (62) and invoking
Proposition 14 gives the following:

r—1
0= Zbk(IBk—Ck Zbk By —c) + b1 (B
= zbk zbk (Cka1 —
r—2

+ o, (B,oy = €1)r=—byco - Z (b —
k=0
r=2

+ 0, (B, = €m1)r =06 — Z o sgn (k)
k=0

C t ar(ﬁr—l - Cr—l)’

_Cr—l)’

bk—l) + br—ZCr—l

+ (ar - &, Sgn (k))

r-1
= z Cr& Sgn (k) a2 R S arﬁr—l’
k=0

r—1
= z croy sgn (k) + a8,
k=0

(63)



and that gives us
r—1

B, = Y oy sgn (k). (64)

k=0
Since « - &, # 0, then, we have

Bry=— Z cro sgn (k) (65)

rkO

as claimed. Since T is an (r,1)-general higher-order nonex-
pansive mapping, we have that

Zak—Z(xk,a—Z(xk Zock, Zocksgn 66)

k=I1+1 k=0 k=I+1

and finally, we have

1=— z oy sgn (k), (67)

”kO

since a; -, £ 0.
Finally, recall that T"x=p, ju+(1-f, ,)v and T*x=
cu+ (1—¢)v for all 0 <k <r -1, thus we have

r—1

T =Byt (1=, v = 3 o sgn (R

=i
( Z o sgn (k Z 0 Sgn (k))

7k0 TkO

k)T*
2 Z(xksgn (k) T"x.

=
:—Z o sgn (k) (ciu+ (1—c)v)
%r k=0 r k=0

(68)
Hence, we have
r—1
a, T x= Z a, Trx sgn (k) (69)
k=0

Observe that

r—1

h(T)x = Z ocka—Zaka—ocT’x+ Z a T x

k=l+1 k=0 k=l+1
r—1
- ZockT x=a,T x- Z(ka x sgn (k).
k=0 k=0
(70)
Hence, we have
r—1
h(T)x=a,T x - Zockax sgn (k). (71)

k=0
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By combining equations (69) and (71), we get that
h(T)x=0 or x€ A(T), and that completes the proof. [

Proof of Theorem 19.

Clearly, if A, (T) = @, then Fix (T) = & since by defini-
tion we have that Fix (T) €A (T) CA(T). We first show
that A (T) = A(T). Since by definition, A (T) € A(T), we
then show that A(T) C A (T). Indeed, assume that T'x €
A(T) for some i >0, and then, we have

r ! r
T)T'x=0, Z a, T x - Z a, T x =0, Z a, T x
k=I+1 k=0 k=I+1

1 1
Z (XkTHkX, arTrﬂx: Z (kaHkx
k=0 k=0
r—1

_ Z (kaz+kx, (XTTHIx

k=1+1
r—1 )
= ) o T x sgn (k).
k=0
(72)
Since a, # 0, then we have
Tr+z Z _k Tt+k (73)
k=0 %r

By operating both sides of equation (73) under T, we
obtain the following:

r—1
Ty = T(T“’k) =T (Z % sgn (k) Ti+kx> ,
=0T (74)

= Z— sgn (k

kOr

Tk+z+1x’

where the last identity follows because T is affine and that
Y/, sgn (k) =1. Hence, we have that T"'x e A(T)
and so by induction if x € A(T), we have T"x € A(T) for
all n>0. Hence, x € A (T), and that completes the first
part of the proof that A (T)=A(T). Finally, let q(T) =

iob, T%; thus the above theorem states that if h(T)x =0,
then

r_—lbq(T)x € Fix(T). (75)
k=0%%

To see this, observe that (from Proposition 11, noting that
here A=1)
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q(T)Tx—q( x—Zb (Tk”x Tk)

k=0
r—1
=b,_T'x—byx - Z(bk ~ b)) Trx,
k=1
r=1
=a, T x—oyx — Z(bk — b Trx,

k=1
r=1
=a,T'x—oyx — Z a T xsgn(k),
k=1
r=1
=a,T'x—oyx + Z a Trx — Zoc Tkx,
k=l+1 k=1
r—1
=a,T'x+ Z a TFx — apx — Z(ka x,
k=I+1

Z ockT X = Zakax,

k=1+1
(76)

Since T is affine, then we have

and so we have

1 1
T| ——qg(T)x | = ——ag(T)x. 78
(zz_abkq( >> 1, 0 8)

Once h(T)x =0, and that completes the proof. O

Proof of Theorem 20. For n > 1, define T, : € — € by
Tx= T(ynu + (1 - Yn)x)’ (79)

where u € ker(C) is arbitrary and that {y, }
a null sequence. We show that

€(0,1) is

nx1

k
Th=y,) (1-y,) ' Tu+ (1-y,)T',  (80)
i=1

for all k> 1.
We prove that equation (80) is true by induction. Now,
for the case where k = 1, by the affiness of T, we have

Tnx:T(leu-l—(l_Vn)x)’:VnTu+(1_Yn)Tx' (81)

Now, let us assume that equation (80) is true for k> 1.

Note that

1Y =y e =y =7, (%”k +<1—m"> -1

(82)

and so by the affiness of T, we have the following evalu-
ation:

Thx = T(ynu +(1- yn)Tﬁx),

k

=VnTU+(1—yn)T<VnZ(l—n)"1Tiu+(1—yn)kax>,
i=1

k

=Y, Tu+ < nz

i=1

I

i- 1T1+lu+(1 v, )ka-f-lx)’

k+1

=Vu Z (1 - yn)iilTiu +

i=1

(1 _ yn)kﬂ Tk“x,

(83)

and that completes the proof of equation (80). We have the
following evaluation:

k
Thy—Thx=y,Y (1-y,)  T'u+

i=1
k

—y, ) (1=y,) " T'u—

i=1

=(1-p) (Tt - T),

(1 - Vn)kay

(1-y, )T, (84)

and as a result, we have the following:
(L=p) (Thy-Thx) =TT (89)

Now, by taking norms of equation (85) raised to the
power p(p > 1), we have

(1-y,)™|Thy - Tix

’ = HTky— Tkap. (86)

By Definition 6, we have

- P
Y a(1-7,)| Ty - i
k=I+1

P
(kaTky Tk’ ., (87)

akHTky— Tkx‘
k=0

‘P

k=Il+1

Y a1~ 77|
k=0

ny ~ T]:tx
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Hence, we have

-t < Yoty riy- ]
k=0
(88)

Since T is an (r, p) — general higher-order nonexpansive
mapping, then by Proposition 11, we have

i (Xk(l - )/n)‘kp > ( i ‘xk) (1 _ Vn)_p(l+1),

k+l k=I+1

= (i %) (1=y,) 7", (89)

k=0

> (Zl: ‘Xk) (1- Vn)_kp-
k=0

Hence, inequality (88) is an (r, p) — general higher-order
contraction mapping, and thus by Theorem 16, T, has a
unique fixed point in €, thus T ,x, = x,,. Now, consider

Hxn - T'xn” = HTnxn - Txn”’ = ||T(Ynu + (1 _yn)xn) - T'xn”’
= HynTu + (1 _yn)Txn) - Txn

= vl Tu = Tx, ||
(90)

Hence, ||x, — Tx,|| — 0 as n — oo since € is bounded
and that completes the proof. O

4. Conclusion

As for examples of this map, the immediate examples are
algebraic operators (see, for instance, [7, 8]). An algebraic
operator is a linear operator satisfying a polynomial identity
with scalar coefficients. That is, for any Banach space 2 and
a given polynomial p, then T : & — X is a map such that

p(T)=0. (91)
For instance, given the polynomial p(z) = az” +a,_ 2! +

---+a,z + a,, then by the above definition, one obtains the
following

aT"+a, | T '++a,T + ayl =0,
a(T'x=Ty)+a, (T 'x =T "y)+- (92)
+a,(Tx—Ty) +ay(x-y)=0.

By taking norm of the above, we have

||u(T’x -Ty) +a,, (THx - THy)+-~-+a1(Tx = Ty) +ay(x—y) H =0.
(93)

Abstract and Applied Analysis
Which by the subadditivity of norm, we have

jall| T = T'y | < |,y || T 2 = Ty |+
lay|[[Tx = Ty[| + |ao|flx = y]|-

which is a higher-order Lipschitz mapping, and hence, a
general higher-order Lipschitz mapping.

Algebraic operators are intrinsically interesting and do have
good and many applications to other fields in most areas of pure
mathematics such as the Connes-Moscovici index theorem for
foliated manifolds, algebraic quantum field theory, Novokov
conjecture, ordinary and partial differential equations, and
Jone’s work connecting Von Neumann algebras and geometric
topology, which gave rise to a new knot invariant.

Other generalizations (for instance, operators satisfying
a polynomial identity with nonscalar coefficients) and their
applications can also be found in [9].

Therefore, general higher-order Lipschitz mappings and
our current results indeed have the potential of being applied
in some mathematical and nonmathematical fields, just like
those results mentioned above.
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