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Coccidiosis is an infectious disease caused by the Eimeria species. The species can infect a bird’s digestive system, severely slow
down its growth, and is a serious economic burden for chickens. A mathematical model for the transmission dynamics of
coccidiosis disease in chickens in the presence of control interventions has been formulated and analyzed to gain insights into
the dynamics of the disease in the population. Three control interventions, namely vaccination, sanitation, and treatment, are
implemented. The study intends to assess the effects of these control interventions in coccidiosis transmission dynamics. Using the
theory of differential equations, the invariant set of the model was derived, and the model’s solution was found to be mathemati-
cally and biologically significant. Analytical methods are employed to establish equilibrium solutions and investigate the stability of
the model system’s equilibria, while numerical simulations illustrate the analytical results. The effective reproduction number is
obtained using the next-generation matrix method, and the local stability of the equilibria of the model is established. The disease-
free equilibrium is proved to be locally stable when the effective reproduction number is less than unity. Also, the nature of the
bifurcation and its implications for disease prevention are investigated through the application of the center manifold theory. On
the other hand, sensitivity analysis is carried out to investigate the parameters that impact the transmission of coccidiosis disease
using the normalized forward sensitivity index. The parameters that have a greater influence on the effective reproduction number
should be targeted for control purposes to lessen the spread of disease. Furthermore, numerical simulation is performed to
investigate the contribution of each control intervention.

1. Introduction

Coccidiosis is a poultry disease that is triggered by a proto-
zoan parasite of the genus Eimeria that invades a bird’s
digestive tract and significantly slows its growth. Worldwide,
the poultry industry is among the main suppliers of animal
protein as it provides both eggs and meat [1]. Any pathogen
that undermines the effectiveness of a poultry production sector
could endanger world food security. The chicken can be affected
by seven species of the genus Eimeria, each with different path-
ogenic properties and targeting a particular intestinal location.
The seven species are Eimeria acervulina, Eimeria brunetti,
Eimeria,maxima, Eimeriamitis, Eimeria necatrix, Eimeria prae-
cox, and Eimeria tenella. The model of transmission begins
with the ingestion of sporulated oocysts (the infection form
of the parasite). Depending on the species, the infection can

result in nutrient deficiencies, reduced rates of growth, and,
in the case of the most pathogenic species, increased mor-
tality. According to the literature, though seven species can
affect chicken, E. tenella is considered to be the most path-
ogenic [2, 3]. The infected chicken has ruffled feathers and
symptoms of depression or drowsiness. Furthermore, feed
and water consumption are reduced, and feces are watery,
whitish, and occasionally bloody. This causes dehydration,
impaired weight gain, and, in the absence of treatment,
death may occur [4, 5]. The risk of developing clinical coc-
cidiosis is greatest between 1 and 3 weeks of chicken’s life.
Mortality and morbidity rates for chickens between the ages
of 10 and 30 days and 35 and 60 days may exceed 80% [6].
Coccidiosis control and prevention are based on the use of
vaccines, natural feed additives, prophylactic anticoccidial
drugs, and improved farm handling practices. Some beneficial
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practices include facility cleaning and disinfection, proper
ventilation, and safe drinking water, all of which helped
to contribute of keeping litter conditions that limit oocyst
sporulation [7, 8].

To help identify crucial intervention points and reduce
disease-relatedmortality, mathematical modeling has emerged
as a crucial tool. Researchers can forecast a phenomenon’s
future by using mathematical models. For example, we can
obtain a wealth of knowledge regarding the transmission
dynamics, eradication, and future spread of infectious or viral
diseases in society through the use of mathematical models
and simulations of these diseases [9, 10]. Recently, few mathe-
matical models have been made in the area of coccidiosis. For
example, Kachanova et al. [11] conducted an experimental
model of coccidiosis by E. tenella in broiler chicken. The find-
ings showed that the infected chicken gained much less weight
each day than the noninfected bird. The outcomes also demon-
strated that the dose of infection affects the quantity of oocysts
expelled with feces. Also, Zou et al. [6] construct a principle
component analysis-based model for assessing chicken coccidi-
osis resistance. The findings suggested that a better parameter
for assessing an individual biological resistance to coccidiosis
illness may be the infection index (II). Further, Johnston et al.
[12] developed a model of the chicken infection caused by
E. maxima and E. praecox within the host. Assumptions about
the quantity of available host cells, the average life expectancy of
these cells, and the age structure inside the host-cell population
were made and the mathematical models combined with exper-
imental data to test whether these conditions could reproduce
the crowding effect in the two species were studied. The findings
revealed that, at very low infectious doses, experimental data
indicated that crowding occurred during in vivo infections.
However, none of the models could accurately simulate crowd-
ing at the same dosages while preserving accurate estimations of
the dynamics of the enterocyte pool. Despite the studies that
have been conducted to curb coccidiosis, the disease remains
one of the most common parasite infections in the poultry.
Coccidiosis causes an annual loss to the poultry business of
over $3 billion worldwide, of which more than 70% is attribut-
able to chickens’ stunted growth and lower feed conversion rates
[6, 13]. To the best of our knowledge, no mathematical model
has attempted to examine the role of treatment, vaccination, and
sanitation or cleaning of the environment as a control strategy in
the transmission dynamics of coccidiosis disease. Vaccination is
administered to protect the susceptible chicken from coccidiosis
for a sufficient period. The current vaccines available in the
market for coccidiosis pathogens include live virulent, live atten-
uated, and subunit vaccines [1]. Environmental hygiene and
sanitation involve raising people’s awareness about biosecurity
measures to free the environment from coccidiosis pathogens.
This is attained by ensuring cleanliness in the chicken’s yard
and its surroundings to prevent indirect transmission of the
pathogens to the chicken from the unhygienic environment
[7]. Therefore, relying on several clinical and epidemiological
studies conducted on the transmission of coccidiosis disease
in chickens, in this study, we developed amathematical model
to examine the role of treatment, vaccination, and sanitation
in the transmission dynamics of coccidiosis in chickens. The

implementation of these three control strategies will contrib-
ute to the reduction and possible elimination of coccidiosis in
the chicken population. The current study will add up knowl-
edge to the existing literature and provide a cornerstone for
further research on poultry infectious diseases.

2. Model Description and Formulation

The chicken population at any time t, denoted by NðtÞ : is
divided into five subpopulations based on the disease status as
follows; susceptible chickens who are at risk of acquiring coccid-
iosis disease, SðtÞ :, vaccinated chicken, VðtÞ :, chicken infected
with a coccidiosis disease who are capable of transmitting the
infection to susceptible chicken, IðtÞ:, and the recovered chicken,
RðtÞ :. The number of coccidiosis viruses in a contaminated envi-
ronment is denoted by HðtÞ :. It is assumed that chickens are
recruited at a constant rateΛ. Susceptible chickens are vaccinated
at rate τ in which vaccinated chickens who did not respond to
vaccination wane out at the rate η and become susceptible again.
It is also assumed that a susceptible chicken can be infected with
coccidiosis if it comes into effective contact with an infectious
chicken at a force of infection λ¼ βIþ αH, where β denotes
transmission rate for infectious chicken and α denotes ingestion
rate of coccidiosis pathogen by chicken. Infected chicken shed
pathogens into the environment at a rate ϵ. The term pathogens
refers to infectious agents that course infection and illness in the
chickens. These pathogens are shed from an infected chicken
through its feces, containing oocysts. These oocysts can spread
and contaminate the environment including water, food, and
litter [14]. A newly infected chicken can progress to the infec-
tious chicken class at rate γ. Sanitation is very important as it
leads to the death of the coccidiosis pathogen. By so doing, the
number of infectionsmay significantly be reduced. Furthermore,
it is assumed that the infected chicken in the IðtÞ: compartment
receives treatment at a rate θ. Moreover, all recovered chickens
acquire temporary immunity, which wanes out at the rate ψ and
becomes susceptible again. The disease-inducedmortality occurs
in the compartment, IðtÞ : at rate δ. The pathogens deplete natu-
rally at a rate μh or by sanitation measures at the rate ρ. All
chickens in different subgroups experience natural death at a rate
μ. The model flow diagram is in Figure 1.

Putting together all assumptions and model descriptions,
we obtain the following system of nonlinear differential
equations:

dS
dt

¼ Λ − λS − τ þ μð ÞSþ ηV þ ψR;

dV
dt

¼ τS − ηþ μð ÞV ;
dE
dt

¼ λS − γ þ μð ÞE;
dI
dt

¼ γE − θ þ ϵþ μþ δð ÞI;
dR
dt

¼ θI − ψ þ μð ÞR;
dH
dt

¼ ϵI − ρþ μhð ÞH

; ð1Þ

where λ¼ βIþ αH.
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The initial conditions of the model system (1) are Sð0Þ : ≥ 0,
Vð0Þ : ≥ 0, Eð0Þ : ≥ 0, Ið0Þ: ≥ 0, Rð0Þ : ≥ 0, and Hð0Þ: ≥ 0.

3. Model Analysis

3.1. Invariant Region. Since the model system (1) deals with
human beings, it is assumed that all parameters and variables
in the model are nonnegative for all t ≥ 0. The discussion on
the invariant region involves the description of the region
in which the solution of the system makes epidemiological
sense. We state and prove the following theorem.

Theorem 1. The region Ω¼fðS;V ; E; I;R;HÞ 2R5þ :
NðtÞ≤ Λ

μg : is positively invariant under the flow induced by
the model system (1).

Proof. Consider the population size: NðtÞ : ¼ SðtÞ : þVðtÞ : þ
EðtÞ : þ IðtÞ : þRðtÞ : þHðtÞ : and the rate of change given by:

dN
dt

¼ dS
dt

þ dV
dt

þ dE
dt

þ dI
dt

þ dR
dt

þ dH tð Þ
dt

;

⇒
dN
dt

¼ Λ − Nμ − δI þ ρHð Þ − μh:
ð2Þ

From Equation (2) we have:

dN
dt

≤ Λ − Nμ: ð3Þ

Solving Equation (3) for N yields N ≤ Λ
μ þ ce−ut implying

that N ≤ Λ
μ as t →1, where c is the constant of integration.

Therefore, the feasible region solution set of the system
enters the region Ω. Thus, the region Ω is a positively invari-
ant set under the flow induced by the model and the model is
well-posed and also it is biologically meaningful. □

3.2. Positivity of the Solutions. In this section, we describe the
positivity of the solution of the model system.

Theorem 2. The solution set Ω¼
n
ðSðtÞ;VðtÞ; EðtÞ; IðtÞ;

RðtÞ;HðtÞÞ: 2R5þ :ðSð0Þ;Vð0Þ; Eð0Þ; Ið0Þ;Rð0ÞHð0ÞÞ :>0
o

of
the model system (1) is positive for all t ≥ 0:

Proof. Consider the first equation of the model system (1):

dS
dt

¼ Λþ ηV þ ψR − βI þ αH þ τ þ μð ÞS: ð4Þ

It follows that

dS
dt

≥ − βI þ αH þ τ þ μð ÞS: ð5Þ

Integrating Equation (5) by separation of variables, we
obtain:

ln S tð Þ ≥ − βI þ αH þ τ þ μð Þt þ K; ð6Þ

where K is the constant of integration.
Applying the initial conditions Sð0Þ:, in Equation (6) gives:

S tð Þ ≥ S 0ð Þe− βIþαHþτþμð Þt>0 provided  βI þ αH þ τ þ μð Þ<1:

ð7Þ

Similarly, the remaining other equations in the model
system (1) give the following results:

V tð Þ ≥ V 0ð Þe− ηþμð Þt>0 provided  ηþ μð Þ<1;
E tð Þ ≥ E 0ð Þe− γþμð Þt>0 provided  γ þ μð Þ<1;
I tð Þ ≥ I 0ð Þe− θþϵþμþδð Þt>0 provided  θ þ ϵþ μþ δð Þ<1;ð
R tð Þ ≥ R 0ð Þe− ψþμð Þt>0 provided  ψ þ μð Þ<1;
H tð Þ ≥ H 0ð Þe− ρþμhð Þt>0 provided  ρþ μhð Þ<1:

ð8Þ

Therefore, the solutions of the model are positive for all
values of t>0: □

3.3. Existence of Equilibrium. In this part, we shall establish
the equilibrium point. To find the existence equilibrium of
the model, the right-hand side of the model system (1) is
equated to zero. Thus, we have the following model system:

0 ¼ Λ − λS − τ þ μð ÞSþ ηV þ ψR;

0 ¼ τS − ηþ μð ÞV ;
0 ¼ λS − γ þ μð ÞE;
0 ¼ γE − θ þ ϵþ μþ δð ÞI;
0 ¼ θI − ψ þ μð ÞR;
0 ¼ ϵI − ρþ μhð ÞH;

8>>>>>>>>><
>>>>>>>>>:

ð9Þ

given that

λ ¼ βI þ αH: ð10Þ

The equilibrium of the model system is therefore given
by E∗ ¼ S∗;V∗; E∗; I∗;R∗;H∗ as follows:

E IS
λSΛ

ηV
μS

μE μR(μ + δ)l

(μh + ρ)HμV

τS

V H

γE

I

ψR

R
θI

FIGURE 1: The schematic diagram for the transmission dynamics of
coccidiosis in chicken population.
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S∗ ¼ −
a2a6 −a5Λþ I∗θψð Þ

a5 I∗αa2ϵþ I∗a2a6β þ a6 −ηð Þτ þ a1a2a6ð Þ ;

V∗ ¼ −
a6τ −a5Λþ I∗θψð Þ

a5 I∗αa2ϵþ I∗a2a6β þ a6 −ηð Þτ þ a1a2a6ð Þ ;

E∗ ¼ −
I∗a2 a6β þ αϵð Þ −a5Λþ I∗θψð Þ

a3a5 −a6ητ þ a2 a6 a1 þ I∗βð Þ þ I∗αϵð Þð Þ
I∗ ¼ E∗γ

a4
;

R∗ ¼ −
I∗θ
a5

;

H ¼ I∗ϵ
a6

;

ð11Þ

where

a1 ¼ τ þ μ; a2 ¼ ηþ μ; a3 ¼ γ þ μ; a4 ¼ θ þ ϵþ μþ δ;
a5 ¼ ψ þ μ; a6 ¼ ρþ μh:

ð12Þ

Then, substituting E∗ into I∗ fromEquation (11), we obtain:

I∗ AI∗ þ Bð Þ ¼ 0; ð13Þ

where

A ¼ αa2γθψϵþ αa3a4a5a2ϵþ a6a2βγθψ þ a3a4a5a6a2β;
B ¼ − αa2a5γΛϵ − a2a6a5βγΛ − a3a4a6a5ητ þ a1a2a3a4a6a5

:

ð14Þ

Now, solving Equation (13), we obtain one of the solu-
tion is I∗ ¼ 0, which represent the existence of disease-free
equilibrium (DFE) and the remaining equation as follows:

AI∗ þ B¼ 0; ð15Þ

indicate the existence of the endemic equilibrium point.

3.4. Disease-Free Equilibrium (DFE) Point. DFE is obtained
in the absence of infection: It always exists when I¼ 0. Sub-
stitute I¼ 0 into equations in model system (9) to get:

E0 ¼ R0 ¼ H0 ¼ 0;

S0 ¼ Λa2
a1a2 − ητ

;

V0 ¼ τΛ

a1a2 − ητ
:

ð16Þ

Therefore, the DFE is given by:

E0 ¼ S0;V0; E0; I0;R0;H0ð Þ ¼ Λa2
a1a2 − ητ

;
τΛ

a1a2 − ητ
; 0; 0; 0; 0

� �
:

ð17Þ

3.5. The Effective Reproduction Number. The reproduction
number that is used to investigate whether an infection intro-
duced into a population will be eliminated or become endemic
is obtained. It is defined as the expected number of secondary
cases produced in a completely susceptible population by a
typical infectious individual during its period of infectious-
ness [15, 16].

Following the ideas in [15, 17–19], the effective reproduc-
tion number Re, is obtained by using the next-generation
matrix method, which is given by the next-generation matrix’s
spectral radius. We can rewrite the equations in the model
system (1) starting with infectious classes first and then the
rest follow. This leads to the following system:

dE
dt

¼ λS − a3E;

dI
dt

¼ γE − a4I;

dH
dt

¼ ϵI − a6H;

dS
dt

¼ Λ − λS − a1Sþ ηV þ ϕR;

dV
dt

¼ τS − a2V ;

dR
dt

¼ θI − a5R:

ð18Þ

From system (18) Fi and Vi are obtained as follows:

Fi ¼
λS

0

0

2
64

3
75; ð19Þ

where λ¼ βIþ αH and

Vi ¼
a3E

a4I − γE

a6H − ϵI

2
64

3
75: ð20Þ

The partial differentiation of Fi and Vi with respect to E,
I, and H gives:

DFi ¼
0 βS αS

0 0 0

0 0 0

2
64

3
75; DVi ¼

a3 0 0

−γ a4 0

0 −ϵ a6

2
64

3
75: ð21Þ
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At DFE point (by substituting E0), we get:

F ¼
0 βS0 αS0

0 0 0

0 0 0

2
64

3
75;

V ¼
a3 0 0

−γ a4 0

0 −ϵ a6

2
64

3
75:

V−1 ¼

1
a3

0 0

γ

a3a4

1
a4

0

γϵ

a3a4a6

ϵ

a4a6

1
a6

2
66666664

3
77777775
:

ð22Þ

Thus, FV−1 is computed and given as follows:

FV−1 ¼
βa6 þ αϵð ÞγS0

a3a4a6

βa6 þ αϵð ÞS0
a4a6

αS0

a6
0 0 0

0 0 0

2
6664

3
7775: ð23Þ

Therefore, the eigenvalues of matrix FV−1 are λ1 ¼ 0,
λ2 ¼ 0, and λ3 ¼ðβa6 þ αϵÞ :γS0=a3a4a6: Thus, the effective
reproduction number is as follows:

Re ¼
βa6 þ αϵð ÞγS0

a3a4a6
; ð24Þ

where S0 ¼Λa2=a1a2 − ητ:

3.6. Endemic Equilibrium Point. The endemic equilibrium
point is obtained when coccidiosis exists in the population.
In this case, the endemic equilibrium point is obtained by
solving Equation (15) and get:

I∗ ¼ a1a2a3a4a5a6 Re − 1ð Þ
a6β þ αϵð Þ a2γθψ þ a3a4a5ð Þ : ð25Þ

Then, substituting Equation (28) to Equation (11) the
endemic equilibrium E∗ ¼ðS∗;V∗; E∗; I∗;R∗;H∗Þ :; is explic-
itly given as follows:

S∗ ¼ a3a4a6
a6βγ þ αγϵ

;

V∗ ¼ a3a4a6τ
αa2γϵþ a6a2βγ

;

E∗ ¼ a1a22a4a5 Re − 1ð Þ a3a4a5Λ a6β þ αϵð Þ þ a2θψ αγΛϵþ a6 βγΛ − a1a3a4ð Þð Þð Þ
a6β þ αϵð Þ a2γθψ þ a3a4a5ð Þ a2γθψ a1a2 − ητð Þ þ a3a4a5 a1a2 − ητð Þð Þ ;

I∗ ¼ a1a2a3a4a5a6 Re − 1ð Þ
a6β þ αϵð Þ a2γθψ þ a3a4a5ð Þ ;

R∗ ¼ −
θ αa2γΛϵþ a6a2βγΛþ a3a4a6ητ − a1a3a4a6a2ð Þ

a2 a6β þ αϵð Þ a3a4a5 þ γθψð Þ ;

H∗ ¼ a1a2a3a4a5ϵ Re − 1ð Þ
a6β þ αϵð Þ a2γθψ þ a3a4a5ð Þ :

ð26Þ

Therefore, it can be noted that the model system (1) has a
unique endemic equilibrium point when Re>1.

3.7. Local Stability of the DFE. Here, we investigate the local
stability of the DFE of the model system (1). For local stabil-
ity, the spread of infection depends on the initial size of the
subpopulation. To prove the local stability of the DFE, the
eigenvalues of the Jacobian matrix of the system computed at
the DFE point are obtained. The Jacobian matrix is obtained
from the linearization of the model system (1). The Jacobian
matrix J evaluated at DFE point, ðE0Þ : is given by:

J ¼

− a1ð Þ η 0 −βS0 η −αS0

τ −a2 0 0 0 0

0 0 −a3 βS0 0 0

0 0 γ −a4 0 0

0 0 0 θ −a5 0

0 0 0 ϵ 0 −a6

2
6666666664

3
7777777775

; ð27Þ

where a1; a2; a3; a4; a5, and a6 have the same meaning as in
Equation (12) The DFE point is stable if all eigenvalues of the

Abstract and Applied Analysis 5



Jacobian matrix at the DFE point are negative. The eigenva-
lues of the Jacobian matrix (27) are established from the

characteristic equation jJ − λIj : ¼ 0. To obtain the eigenvalues
of Equation (27):

J E0ð Þ ¼

− a1ð Þ − λ η 0 −βS0 φ −αS0

τ −a2 − λ 0 0 0 0

0 0 −a3 − λ βS0 0 αS0

0 0 γ −a4 − λ 0 0

0 0 0 θ −a5−λ 0

0 0 0 ϵ 0 −a6 − λ

2
6666666664

3
7777777775

: ð28Þ

The model system (28) can be written as follows:

J E0ð Þ ¼ −a1 − λð Þ

−a2 − λ 0 0 0 0

0 −a3 − λ βS0 0 αS0

0 γ −a4 − λ 0 0

0 0 θ −a5−λ 0

0 0 ϵ 0 −a6 − λ

2
6666664

3
7777775

−τ

η 0 −βS0 φ −αS0

0 −a3 − λ βS0 0 αS0

0 γ −a4 − λ 0 0

0 0 θ −a5−λ 0

0 0 ϵ 0 −a6 − λ

2
6666664

3
7777775

¼ −a1 − λð Þ −a2 − λð Þ½ �

−a3 − λ βS0 0 αS0

γ −a4 − λ 0 0

0 θ −a5−λ 0

0 ϵ 0 −a6 − λ

2
66664

3
77775

−τη

−a3 − λ βS0 0 αS0

γ −a4 − λ 0 0

0 θ −a5−λ 0

0 ϵ 0 −a6 − λ

2
66664

3
77775

: ð29Þ

It follows that:

J E0ð Þ ¼ −a1 − λð Þ −a2 − λð Þ − τη½ � −a5 − λð Þ
−a3 − λ βS0 αS0

γ −a4 − λ 0

0 ϵ −a6 − λ

2
64

3
75 : ð30Þ

From system (30), we have negative eigenvalue:

λ1 ¼ −a5; ð31Þ

the polynomial equation

P1 λð Þ ¼ −a1 − λð Þ −a2 − λð Þ − τη; ð32Þ

6 Abstract and Applied Analysis



and matrix

J2 E0ð Þ ¼
−a3 − λ βS0 αS0

γ −a4 − λ 0

0 ϵ −a6 − λ

2
64

3
75: ð33Þ

Simplify the polynomial Equation (32) to obtain:

P1 λð Þ ¼ λ2 þ a1 þ a2ð Þλþ a1a2 − τη : ð34Þ

ByRouth–Hurwitz criteria [16] the polynomial Equation (34)
have negative root if a1a2>τη. Furthermore, the two eigenvalues
λ2 and λ3 in Equation (34) can be rewritten as follows:

λ2 ¼ − a1 þ a2ð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ a22 þ 2 2τη − a1a2ð Þ

p
2

λ3 ¼ − a1 þ a2ð Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ a22 þ 2 2τη − a1a2ð Þ

p
2

: ð35Þ

The rest of the eigenvalues are the roots of the polyno-
mial obtained in Jacobian matrix (33) which is given by:

λ3 þ C2λ
2 þ C1λþ C0 ¼ 0; ð36Þ

where

C0 ¼ a3a4a6 − ϵαþ βa6ð ÞγS0;
C1 ¼ a6 a3 þ a4ð Þ þ a3a4;
C2 ¼ a3 þ a4 þ a6;

S0 ¼ Λa2
a1a2 − ητ

:

ð37Þ

By Routh–Hurwitz criteria the third-order polynomial
Equation (36) has all roots in the open left half-plane if C0;
C1;C2 are positive and C1C2>C0 [16]. It is clear that C2 is
positive, and C1 is positive if a6ða3 þ a4Þ : þ a3a4>βγS0. Thus,
we need to see the condition for C0>0:

C0 ¼ a3a4a6 − ϵαþ βa6ð ÞγS0;
C0 ¼ a3a4a6 1 −

ϵαþ βa6ð ÞγS0
a3a4a6

� �
;

C0 ¼ a3a4a6 1 −
ϵαþ βa6ð Þγa2Λ

a3a4a6 a1a2 − ητð Þ
� �� �

;

C0 ¼ a3a4a6 1 − Reð Þ:

ð38Þ

From Equation (38), C0 is positive if Re<1. Hence, we
have the following result.

Theorem 3. The DFE point is locally asymptotically stable if
Re<1 and unstable if the inequality is reversed.

3.8. Global Stability of DFE. For global stability, the spread of
the infection is independent of the initial size of the

population. By using the comparison method [20], we estab-
lish the following theorem.

Theorem 4. The DFE is globally asymptotically stable if Re<1
and unstable if the inequality is reversed.

Proof. Let F and V be the Jacobian matrices of Fi and Vi

defined as F¼ ½∂Fi∂xj
ðx0Þ� : and V ¼ ½∂Vi

∂xj
ðx0Þ� :; 1≤ i; j≤m, where

x is the number of individuals in each compartment, x0 is a
DFE, Fi is the rate of appearance of new infections in com-
partment i, Vi ¼V−

i −Vþ
i , in which Vþ

i is the transfer rate of
individuals into compartment i and V−

i is the rate of transfer
of individuals out of compartment i. The rate of change of
variables representing the infected components of the model
system (1) can be rewritten as follows:

E0 tð Þ
I0 tð Þ
H0 tð Þ

2
64

3
75¼ F − Vð Þ

E tð Þ
I tð Þ
H tð Þ

2
64

3
75 −

βI þ αHð ÞS0 1 −
S
S0

� �

0

0

2
6664

3
7775

E tð Þ
I tð Þ
H tð Þ

2
64

3
75;

ð39Þ

implying that

E0 tð Þ
I0 tð Þ
H0 tð Þ

2
64

3
75 ≤ F − Vð Þ

E tð Þ
I tð Þ
H tð Þ

2
64

3
75; ð40Þ

where the matrices F and V are defined as follows:

F ¼
0 βS0 αS0

0 0 0

0 0 0

2
64

3
75; ð41Þ

V ¼
a3 0 0

−γ a4 0

0 −ϵ a6

2
64

3
75; ð42Þ

where a3; a4; a6, and S0 have the same meaning as it is in
Equations (12) and (37), respectively.

The matrix ðF −VÞ : is given by:

J2 Gð Þ ¼
−a3 βS0 αS0

γ −a4 0

0 ϵ −a6

2
64

3
75: ð43Þ

The eigenvalues of matrix (43) are established from the
characteristic equation jJ2ðGÞ− λIj : ¼ 0.
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J2 Gð Þ − λI ¼
−a3 − λ βS0 αS0

γ −a4 − λ 0

0 ϵ −a6 − λ

2
64

3
75: ð44Þ

The polynomial obtained in matrix (44) is given by:

λ3 þ D2λ
2 þ D1λþ D0 ¼ 0; ð45Þ

where

D2 ¼ a3 þ a4 þ a6;
D1 ¼ a6 a3 þ a6ð Þ þ a3a4 − βγS0;
D0 ¼ a3a4a6 − ϵαþ βa6ð ÞγS0;

¼ a3a4a6 1 −
ϵαþ βa6ð ÞγS0

a3a4a6

� �

¼ a3a4a6 1 − Reð Þ:

ð46Þ

By Routh–Hurwitz criteria, the third-order polynomial
Equation (45) has all roots in the open left half-plane if D0;
D1;D2 are positive and D1D2>D0 [16]. It is clear that D2 is
positive, and D1 is positive if a6ða3 þ a4Þ : þ a3a4>βγS0. Also,
from Equation (46) D0 is positive if Re<1. This result sig-
nifies that the eigenvalues of matrix ðF −VÞ : have negative
real parts if Re<1. Therefore, system (1) is stable for Re<1. It
follows that ðE0; I0;H0Þ : → ð0; 0; 0Þ: as t →1. Furthermore,
examining the first, second, third, fourth, fifth, and sixth
equations of system (9), gives S¼Λa2=a1a2 − ητ, and V ¼
τΛ=a1a2 − ητ whenever E0 ¼ I0 ¼H0 ¼ 0. Therefore, by
employing the comparison method [21] it follows that ðS0;
V0; E0; I0;R0Þ : → ðΛa2=a1a2 − ητ; τΛ=a1a2 − ητ; 0; 0; 0; 0Þ : as
t →1 for Re<1: Hence, E0 is globally asymptotically stable
whenever Re<1. Thus, the system will come to a DFE point
from any starting point. □

3.8.1. The Impact of Intervention Strategies. The effects of
implementing intervention strategies are investigated. Since,
the interventions have been invested in controlling pneumo-
nia disease, it is very important to understand the benefits of
implementing these interventions. The three intervention
strategies’ contribution is observed by comparing the basic
reproduction number and the effective reproduction number.

Consider the reproduction number in the presence of all
three interventions as presented in Equation (47):

Re ¼
βa6 þ αϵð ÞγS0

a3a4a6
; ð47Þ

where

S0 ¼ Λa2
a1a2 − ητ

a1 ¼ τ þ μ;
a2 ¼ ηþ μ;
a3 ¼ γ þ μ;
a4 ¼ θ þ ϵþ μþ δ;
a6 ¼ ρþ μh:

ð48Þ

Substituting Equation (48) in Equation (47) gives:

Re ¼
β ρþ μhð Þ þ αϵð Þγ Λ ηþμð Þ

τþμð Þ ηþμð Þ−ητ
γ þ μð Þ θ þ ϵþ μþ δð Þ ρþ μhð Þ

¼ β ρþ μhð Þ þ αϵð ÞγΛ ηþ μð Þ
τ þ μð Þ ηþ μð Þ − ητð Þ γ þ μð Þ θ þ ϵþ μþ δð Þ ρþ μhð Þ ;

¼ γΛ ηþ μð Þ β ρþ μhð Þ þ αϵð Þ
μ τ þ μþ ηð Þ γ þ μð Þ θ þ ϵþ μþ δð Þ ρþ μhð Þ :

ð49Þ

The basic reproduction number (the reproduction num-
ber of the model in the absence of interventions) is given by:

R0 ¼
γΛ βμh þ αϵð Þ

μ γ þ μð Þ ϵþ μþ δð Þμh
: ð50Þ

Then, the reproduction number ðReÞ : in the presence of
all three interventions can be presented as follows:

Re ¼ R0k; ð51Þ

where

k¼ μh ηþ μð Þ ϵþ μþ δð Þ β ρþ μhð Þ þ αϵð Þ
ρþ μhð Þ τ þ μþ ηð Þ θ þ ϵþ μþ δð Þ βμh þ αϵð Þ :

ð52Þ

In Equation (52),

μh < ρþ μhð Þ;
ηþ μð Þ < τ þ μþ ηð Þ;

ϵþ μþ δð Þ < θ þ ϵþ μþ δð Þ;
ð53Þ

This indicates that the value of the numerator is less than
the value of the denominator. Consequently, it implies that
k<1. This demonstrates that vaccination, treatment, and
sanitation effectively curb initial disease transmission and
halt-epidemic spread.
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3.9. Bifurcation Analysis. The presence of forward or back-
ward bifurcations has a significant impact on infectious dis-
ease epidemiological control efforts. The bifurcation analysis
of the equilibrium points determines whether the disease
can be entirely eradicated or whether it will remain in the
population. The bifurcation analysis is carried out at the DFE
using the centermanifold theory proposed by Castillo-Chavez
and Song [22]. This is accomplished by renaming the model’s
state variables of the model system (1) as follows: let x1 ¼ S,
x2 ¼V , x3 ¼E, x4 ¼ I, X5 ¼R, and x6 ¼H and the system can
be written in the form of:

dXi

dt
¼ F Xið Þ; ð54Þ

where Xi = ðx1; x2; :::; x6ÞT , F = ð f1; f2; :::; f6ÞT , and ð:ÞT
denote amatrix transpose. Themodel system (1) takes the form:

dx1
dt

¼ f1 ¼ Λ − βx1x4 − αx1x6 − a1x1 − ηx3 þ ψx5;

dx2
dt

¼ f2 ¼ τx1 − a2x2;

dx3
dt

¼ f3 ¼ βx1x4 þ αx1x6 − a3x3;

dx4
dt

¼ f4 ¼ γx3 − a4x4;

dx5
dt

¼ f5 ¼ θx4 − a5x5;

dx6
dt

¼ f6 ¼ ϵx4 − a6x6:

ð55Þ

Let β∗ be the bifurcation parameter, then, system (55) is
linearized at a DFE point when β¼ β∗ with Re ¼ 1. Hence,
solving for β∗ from Re ¼ 1 in Equation (47) gives:

β∗ ¼ a3a4a6 a1a2 − ητð Þ
a2Λγ a6 þ ϵαð Þ : ð56Þ

Then, the linearized system (55) is transformed with β¼
β∗ which has a simple zero eigenvalue, and center manifold
theory is used to analyze the dynamics of Equation (55) near
β¼ β∗. Thus, the Jacobian matrix of system (55) at DFE E0
denoted by Jðβ∗Þ : is given by:

J b∗ð Þ ¼

−a1 η 0 β∗k1 θ −αk1

τ −a2 0 0 0 0

0 0 −a3 β∗k1 0 αk1

0 0 γ −a4 0 0

0 0 0 θ −a5 0

0 0 0 ϵ −a6 0

0
BBBBBBBBB@

1
CCCCCCCCCA
;

ð57Þ

where k1 ¼Λa2=a1a2 − ητ.

Then, the right and left eigenvectors corresponding with
the zero eigenvalues are now computed. ω¼ ½ω1;ω2;ω3;ω4;
ω5;ω6� :T gives the right eigenvector associated with the zero
eigenvalue, and the following equations are obtained:

−a1ω1 þ ηω2 þ β∗k1ω4 þ θω5 − αk1ω6 ¼ 0;

τω1 − a2ω2 ¼ 0;

−a3ω3 þ β∗k1ω4 þ αk1ω6 ¼ 0;

γω3 − a4ω4 ¼ 0;

θω4 − a5ω5 ¼ 0;

ϵω4 − a6ω5 ¼ 0:

8>>>>>>>>><
>>>>>>>>>:

ð58Þ

Solving system (58) for ωi0s, i¼ 1; 2; :::; 6, gives the fol-
lowing right eigenvectors:

ω1 ¼
αk1a6
ηαk1ϵ

a3a4 − γβ∗k1
γ

� �
−
β∗k1a6
τϵ

þ θ

η

� �
ηa2ω5

ητ − a1a2
;

ω2 ¼
αk1a6
ηαk1ϵ

a3a4 − γβ∗k1
γ

� �
−
β∗k1a6
τϵ

þ θ

η

� �
ητω5

ητ − a1a2
;

ω3 ¼
a4a6ω5

γϵ
;

ω4 ¼
a6ω5

ϵ
;

ω6 ¼
a3a4
γ

− αk1

� �
a6ω5

αk1ϵ
;

ω5 ¼ ω5>0:

ð59Þ

Furthermore, to calculate the left eigenvectors given by
v¼ ½v1; v2; v3; v4; v5; v6�T which satisfy v:ω¼ 1, the matrix
Jðβ∗Þ : should be transposed and becomes:

J b∗ð ÞT ¼

−a1 τ 0 0 0 0

η −a2 0 0 0 0

0 0 −a3 γ 0 0

β∗k1 0 β∗k1 −a4 θ ϵ

θ 0 0 0 −a5 −a6

−αk1 0 αk1 0 0 0

0
BBBBBBBBB@

1
CCCCCCCCCA
:

ð60Þ

Then, solving Jðb∗ÞT , the following equations are obtained:

−a1v1 þ τv2 ¼ 0;

ηv1 − a2v2 ¼ 0;

−a3v3 þ γv4 ¼ 0;

β∗k1v1 þ β∗k1v2 − a4v4 þ θv5 þ ϵv6 ¼ 0;

−αk1v1 þ αk1v3 ¼ 0:

8>>>>>><
>>>>>>:

ð61Þ

Solving system (61) for vi0s, i¼ 1; 2; :::; 9, the following
left eigenvectors are obtained:
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v1 ¼ v1>0;

v2 ¼
ηv1
a2

;

v3 ¼ v1;

v4 ¼
θ

a5
−

β∗k1η
a2

−
a4a3
γ

þ θ2

a5

� �
a6

θa6 − ϵa5

� �
v1;

v5 ¼ β∗k1 þ
β∗k1η
a2

−
a4a3
γ

� �
a5v1

θa6 − ϵa5
:

ð62Þ

To establish the conditions for the occurrence of forward
or backward bifurcations, the Castillo-Chavez and Song The-
orem 4:1 in [22] is used. The theorem is provided below for
easy reference since it is important for providing the local
stability of the endemic equilibrium point around R0 ¼ 1:

Theorem 5. Consider the following general system of ordinary
differential equations with a parameter ϕ such that

dx
dt

¼ f x;ϕð Þ; f :Rn × R→ R and f 2 C2 Rn × Rð Þ;
ð63Þ

where 0 is an equilibrium point of the system (that is, f ð0;ϕÞ
:≡ 0 for allϕÞ : and

(1) A¼Dxf ð0; 0Þ : ¼ð∂fi∂xi
ð0; 0ÞÞ : is the linearization matrix

of system (63) around the equilibrium 0 with ϕ eval-
uated at 0.

(2) Zero is a simple eigenvalue of A, and all other eigen-
values of A have negative real parts.

(3) Matrix A has a nonnegative right eigenvector ω and a
left eigenvector v corresponding to the zero eigenvalue.

Let fk be the kth components of f and

a¼ ∑
n

k;i;j¼1
vkωiωj

∂2fk
∂xi∂xj

0; 0ð Þ;

b¼ ∑
n

k;i¼1
vkωi

∂2fk
∂xi∂ϕ

0; 0ð Þ:
ð64Þ

The local dynamics of the system around the equilibrium
point are totally determined by the signs of a and b for jϕj

:<<1;

(i) a>0, b>0. When ϕ<0, 0 is locally asymptotically
stable and there exists a positive unstable equilib-
rium; when 0<ϕ<<1; 0 is unstable and there exists
a negative, locally asymptotically stable equilibrium.

(ii) a<0; b<0. Whenϕ<0, 0 is unstable; when 0<ϕ<<1;
0 is asymptotically stable equilibrium, and there exists
a positive unstable equilibrium.

(iii) a>0; b<0: When ϕ<0, 0 is unstable, and a positive
unstable equilibrium appears.

(iv) a<0; b>0: When ϕ changes from positive to nega-
tive, 0 changes its stability from stable to unstable. Cor-
respondingly, a negative unstable equilibrium becomes
positive and locally asymptotically stable.

Particularly, if a>0, and b>0, then, a subcritical (or
backward) bifurcation occurs at ϕ¼ 0:

To govern the local dynamics of the transformed system
(55), the values of a and b are determined to explore whether
the model system (55) exhibits forward or backward bifurca-
tion. For system (55), the associated nonzero second-order
partial derivatives at DFE and β¼ β∗ are given by:

∂2f1
∂x1∂x4

¼ −β;
∂2f1

∂x1∂x6
¼ −α;

∂2f3
∂x1∂x4

¼ β;

∂2f3
∂x1∂x6

¼ α:
ð65Þ

Therefore,

a ¼ −v1ω1ω4β − v1ω1ω6αþ v3ω1ω4β þ v3ω1ω6α

¼ ω1ω4β þ ω1ω6αð Þ v3 − v1½ � and ;

ð66Þ

a>0 if v1<0 and a<0 if v1>0 as a is positive if ðω1ω4βþ
ω1ω6αÞ :v3>ðω1ω4βþω1ω6αÞ :v1 and a is negative if
ðω1ω4βþω1ω6αÞ :v3<ðω1ω4βþω1ω6αÞ :v1.

For the sign of b, it can be shown that the associated
nonvanishing partial derivatives are as follows:

∂2f1
∂x4∂β∗

¼ −Λa2
a1a2 − ητ

;
∂2f3

∂x4∂β∗
¼ Λa2
a1a2 − ητ

: ð67Þ

Then, it follows from the above expression that:

b ¼ −v1ω4Λa2
a1a2 − ητ

þ v3ω4Λa2
a1a2 − ητ

¼ Λa2ω4

a1a2 − ητ
v3 − v1½ �

; ð68Þ

b>0 if v1<0 and a1a2>ητ otherwise b will be <0.

Theorem 6. The unique endemic equilibrium is ensured, and
by Theorem 5, the model is locally asymptotically stable for
R0>1. Moreover, according to Theorem 5 item (i), the model
experiences backward bifurcation when a>0. This is true only
if v1<0, and a1a2<ητ are present; otherwise, forward bifur-
cation occurs.

The model system (1) exhibits forward bifurcation at
R0 ¼ 1 when a<0 and b>0. Biologically, this scenario dem-
onstrated that the model system (1) is globally asymptotically
stable at a DFE point when R0<1, and has a distinct endemic
equilibrium point for R0>1. When R0 is close to one the
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unique endemic equilibrium point is locally asymptotically
stable. When R0 falls below one, that is R0<1 no endemicity
exists and the disease continues to decline, and as R0 increases
to above one, that is R0>1, the disease invades the population.
Furthermore, when a>0 and b>0, the model system (1)
exhibits a backward bifurcation, as R0 approaches one, the
disease prevalence rapidly increases giving rise to a situation
in which the DFE co-exists with the endemic equilibrium. The
biological implication of backward bifurcation is that the clas-
sical requirements of having the reproduction number less
than unity, although necessary, is no longer sufficient for
disease eradication. Based on Equation (15), The model sys-
tem (1) exhibit a forward bifurcation as shown in Figure 2.

3.10. Global Stability of the Endemic Equilibrium Point. This
section applies the Korobeinikov technique, as employed in
the work of [23], to examine the global stability of the
endemic equilibrium point E∗. Using this method, an appro-
priate Lyapunov function is created in the form of:

L¼ ∑Ai xi − x∗i ln xið Þ ; ð69Þ

where Ai is a nonnegative constant, xi is the population of the
ith subpopulation, and x∗i is the endemic equilibrium point
E∗. Therefore, the following Lyapunov function is developed
as follows:

L ¼ A1 S − S∗ ln Sð Þ þ A2 V − V∗ ln Vð Þ þ A3 E − E∗ ln Eð Þ
þ A4 I − I∗ ln Ið Þ þ A5 R − R∗ ln Rð Þ þ A6 H − H∗ lnHð Þ:

ð70Þ

Given that A1;A2;A3…A6 are nonnegative constants
whereby V is Lyapunov function. The selection of the func-
tion V and its constant ensures that it is continuous and
differentiable in space at all times. Differentiating V with
respect to time gives:

dL
dt

¼ A1 1 −
S∗

S

� �
dS
dt

þ A2 1 −
V∗

V

� �
dV
dt

þ A3 1 −
E∗

E

� �
dE
dt

þ A4 1 −
I∗

Ih

� �
dI
dt

þ A5 1 −
R∗

R

� �
dR
dt

þ A6 1 −
H∗

H

� �
dH
dt

:

ð71Þ

The following is therefore obtained by substituting
equations of the model system (1)–(71).

dL
dt

¼ A1 1 −
S∗

S

� �
Λ − βI þ αHð ÞS − τ þ μð ÞSþ ηV þ ψR½ �

þ A2 1 −
V∗

V

� �
τS − ηþ μð ÞV½ � þ A3 1 −

E∗

E

� �
βI þ αHð ÞS − γ þ μð ÞE½ �

þ A4 1 −
I∗

I

� �
γE − θ þ ϵþ μþ δð ÞI½ � þ A5 1 −

R∗

R

� �
θI − ψ þ μð ÞR½ �

þ A6 1 −
H∗

H

� �
ϵI − ρþ μhð ÞH½ �:

ð72Þ

The following are obtained at the endemic equilibrium
point:

Λ ¼ βS∗I∗ þ αH∗S∗ þ τ þ μð ÞS∗ − ηV∗
− ψR∗; ηþ μ

¼ τS∗

V∗ ; γ þ μ¼ αI∗S∗

E∗ þ αH∗S∗

E∗ ;

θ þ εþ μþ δ¼ γE∗

I∗
;ψ þ μ¼ θI∗

R∗ ; ρþ μ¼ εI∗

H∗ :

ð73Þ

Then, by substituting Equation (73) to Equation (72) and
doing some simplifications, we obtain:

dL
dt

¼ −A1 1 −
S∗

S

� �
2
τ þ μð ÞSþ F S;V ; E;R;Hð Þ; ð74Þ

given that
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FIGURE 2: Forward bifurcation diagram for the model system (1)
which shows that the disease-free equilibrium and endemic equilib-
ria exchange stability when Re¼ 1 using parameter values in
Table 2. The blue curve depicts stable equilibria and the dashed red
curve depicts unstable equilibria.
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F S;V ; E;R;Hð Þ¼
A1 1 −

S∗

S

� �
R∗
Rð Þψ þ V − V∗ð Þηþ 1 −

IS
I∗S∗

� �
βI∗S∗ þ 1 −

HS
H∗I∗

� �
αH∗S∗

� �

þ A2 1 −
V∗

V

� �
1 −

S∗V
V∗S

τS

� �� �
þ A3 1 −

E∗

E

� �
1 −

I∗S∗E
E∗SI

� �
βISþ 1 −

H∗S∗E
E∗HS

� �
αHS

� �

A4 1 −
I∗

I

� �
1 −

E∗I
EI∗

� �
γE

� �
þ A5 1 −

R∗

R

� �
1 −

I∗R
R∗I

� �
θI

� �

þ A6 1 −
H∗

H

� �
1 −

I∗H
H∗I

� �
εI

� �
:

ð75Þ

Then, if S¼ S∗;V ¼V∗; E¼E∗; I¼ I∗;R¼R∗;H¼H∗,
the function (75) becomes less than or equal to zero and
dL
dt ≤ 0 for all S;V ; E; I;R;H>0, following the approach of
Korobeinikov [23]. Hence, the largest compact invariant set
in fS;V ; E; I;R;Hg: where dL

dt ¼ 0 is the singleton fS∗;V∗; E∗;
I∗;R∗;H∗g : which is the endemic equilibrium point of the
model system (1). It is implied that fS∗;V∗; E∗; I∗;R∗;H∗g: is
globally asymptotically stable in the interior region of f;V ;
E; I;R;Hg: by Lasalle’s invariant principle [24]. As a result,
the following theorem is provided:

Theorem 7. If R0>1, then the coccidiosis model (1) has a
unique endemic equilibrium point S∗;V∗; E∗; I∗;R∗;H∗

which is globally asymptotically stable in S;V ; E; I;R;H.

3.11. Sensitivity Analysis. Sensitivity indices measure the rel-
ative change in a state variable when a parameter change
[25]. Initial disease transmission is directly related to the
reproduction number. The sensitivity analysis is performed
to determine which model parameters are the most impor-
tant to disease transmission and prevalence (the parameters
that are the most sensitive with respect to the initial trans-
mission of the disease). In this study, we use it to discover
parameters that have a high impact on reproduction number,
and should be targeted by intervention strategies [26]. If a
variable is a differentiable function of the parameter, the
sensitivity indices may be alternatively defined using partial
derivatives [25]. We intend to know how each parameter

affects the effective reproduction number Re. We use the
formula of the normalized sensitivity index of a variable
for Re to achieve our goal.

The normalized forward sensitivity index of a variable, Z,
depends differentiability on index of a parameter, ϕ is
defined as follows:

γZϕ ¼
∂Z
∂ϕ

� �
ϕ

Z

� �
: ð76Þ

Applying the formula for R0 and Re, we have:

γR0
ϕ ¼ ∂R0

∂ϕ

� �
ϕ

R0

� �
; ð77Þ

γRe
ϕ ¼ ∂Re

∂ϕ

� �
ϕ

Re

� �
: ð78Þ

Applying the normalized forward sensitivity index defined
in Equations (77) and (78) yields to the results in Table 1. The
parameter values in Table 2 are used to determine the sensitiv-
ity indices.

3.11.1. Interpretation of Sensitivity Indices. The sensitivity
indices are presented in Table 1, when R0>1 (in the absence
of intervention) and when Re<1 (in the presence of inter-
ventions). Parameters that have positive sensitivity indices in
Table 1, indicated that if their values are increased while

TABLE 1: Values of sensitivity indices.

Parameters Sensitivity index for Re<1 Sensitivity index for R0>1

Λ + 1 +1
β +0.0805 + 0.7820
α +0.2180 +0.9195
μ −0.04383 −0.0944
γ +0.3733 +0.3733
θ −0.1068 —

δ −0.2137 −0.2392
η +0.0042 —

τ −0.0118 —

ϵ +0.1111 +0.7999
ρ −0.2127 —

μh −0.0053 −0.9195
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keeping other values constant, reproduction number increases.
These parameters have a greater influence on spreading the
coccidiosis infection. But the parameters with negative sensitiv-
ity indices, show that if their values are increased while keeping
the rest parameters fixed, reproduction number decreases. The
most sensitive parameter is Λ with positive sensitivity indices.
Other parameters with greater positive sensitivity indices are
β; α; and γ. These parameters have an impact on reproduc-
tion number, and should be targeted for intervention strate-
gies. These findings can be used to inform the development of
intervention strategies to control coccidiosis infection. For
example, interventions that target reducing the rate of trans-
mission, such as vaccination or improved hygiene, are likely
to be most effective.

3.12. Numerical Analysis. In this section, the model system
(1) was numerically solved using MATLAB software and the
Runge–Kutta fourth-order approach. To support previously
analytical findings, various graphical representations are
provided and discussed. Since many parameters were not
publicly available, we collected a few from the literature and
others were assumed for demonstration. For simulation, the
study employed the initial values of the parameters from
Table 2. The following initial values for the subpopulation
were assumed as follows: Sð0Þ : ¼ 400, V ¼ 300, E¼ 100, I¼
100, R¼ 80, and H¼ 5; 000.

3.13. Effects of Interventions on Infected Chickens. Figure 3
depicts how the number of exposed and infected chickens

TABLE 2: Parameters and their descriptions for the coccidiosis dynamic model Equation (1).

Parameter Descriptions Values Source

Λh Chicken recruitment rate 0:001=day Assumed
β Transmission rate for infectious chicken 0:7=day Assumed

α
Eimeria transmission rate due to the chicken-to-environment

interaction
0:8=day Assumed

μ Nature death rate of a chicken 1:37− 5:48× 10−4=day [27]
γ Chicken incubation rate 0:09=day Assumed
θ Chicken recover rate/treatment rate 0:01=day Assumed
ψ Immunity waning rate for the recovered chicken 0:09=day Assumed
δ Chicken death rate due to coccidiosis 0:02=day Assumed
η Waning rate of vaccinated chicken 0.03/day Assumed
τ Rate at which susceptible chicken are vaccinated 0.001/day Assumed
μh Parasite natural death rate 0.001/day [13]
ρ Eimeria death rate due to sanitation measures 0.04/day Assumed
ϵ Parasite shedding rate to the environment by infectious chicken 0.4/day [13]
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FIGURE 3: (a, b) Effects of interventions on coccidiosis dynamics over time.
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changes over time. It can be observed fromFigures 3(a) and 3(b)
that the number of exposed and infected chickens decreases
as time increases when there are interventions and increases
when there are no interventions. This finding implies that the
preventionmeasures of treatment, vaccination, and sanitation
have a positive impact on reducing the spread of coccidiosis in
the population.

Figure 4 depicts how the number of exposed and infected
chickens changes over time. It can be observed fromFigures 4(a)

and 4(b) that the number of exposed and infected chickens
decreases as time increases when there are interventions and
increases when there are no interventions. This finding implies
that the prevention measures of treatment, vaccination, and
sanitation have a positive impact on reducing the spread of
coccidiosis in the population.

3.14. Effect of Varying Some Parameter Values. Figure 5 illus-
trates the effects of varying treatment rates. As the rate of
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FIGURE 5: (a, b) Effects of treatment on coccidiosis dynamics over time.
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treating the infected chicken increases, the number of infected
chickens also reduces, as shown in Figure 5(a). On the other
hand, by increasing the treatment rates, the number of recov-
ered chickens increases with time as shown in Figure 5(b).
This result indicates that treating the affected chicken has a
significant effect on curbing coccidiosis as it reduces the num-
ber of sick chickens and increases the number of recovered
individuals in the population.

Figure 6 shows the impact of sanitation on infected chick-
ens and Eimeria pathogen population. The findings show that
when sanitation rates increase, the number of both infected

chickens and pathogens decreases as time passes as shown in
Figures 6(a) and 6(b). This finding demonstrated that cleanli-
ness has a major role in the complete eradication of coccidio-
sis disease in the population.

In this instance, the focus was to evaluate the contribu-
tion made by the sanitation strategy toward eradicating the
coccidiosis epidemic in the community. Figure 7 findings
demonstrate that when sanitation rates increase, the number
of infected chickens significantly decreases. In this strategy,
efforts like adequate waste disposal and hygienic practice
follow-up may be practiced with the main objective of limit-
ing the spread of this disease in the community.

4. Conclusion

A deterministic model with control interventions for chicken
coccidiosis disease is derived and analyzed to investigate the
effect of each control intervention for controlling this dis-
ease. The effective reproduction number and equilibria of the
model are derived. The stability analysis of the DFE is
derived, and it is stable when the reproduction number is
less than unity. Also, the contribution of the control inter-
ventions is assessed by comparing the basic reproduction
number ðR0Þ : and effective reproduction number (Re),
whereby it is observed that Re<R0. This result implies that
the control interventions (vaccination, sanitation, and treat-
ment) reduce the transmission rate of the disease. On the
other hand, sensitivity analysis carried out on the model
parameters shows that: the control parameters (θ (treat-
ment), ρ (sanitation), and τ (vaccination)) are the essential
parameters for effective control of the disease, as they have
negative indices. Numerical analysis of the model system (1)
is carried out to illustrate the effectiveness of the control
interventions. The results show that as the rate of the control
parameters increases, the number of infected chicken and
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FIGURE 6: Variation of sanitation rate on (a) infected chicken and (b) pathogen population.
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coccidiosis pathogens decreases. The results further show
that applying the control interventions singly or in combi-
nation reduces the infection rate, though the combination
has the most significant results. The model discussed in this
paper is not exhaustive. As a result, the model’s underlying
assumptions can be adjusted to include the aspect of the age
structure of the chicken, the role of seasonal variations on the
transmission dynamics of coccidiosis in the chicken popula-
tion, or optimal and cost-effectiveness.
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