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In this paper, under appropriate hypotheses, we have the existence of a solution semigroup of partial differential equations with
delay operator. These equations are used to describe time–age-structured cell cycle model. We also prove that the solution
semigroup is a frequently hypercyclic semigroup.

1. Introduction

Partial differential equations with delay have been studied for
many years and arise in various applications, like biology,
medicine, control theory, climate models, and many others.
For example, the following mathematical problem involving
a delayed nonlocal dynamical described by a particular par-
tial differential equation as follows:

∂u
∂t

þ c xð Þ ∂u
∂x

¼ g t; u; utð Þ;   ð1Þ

where ut : σ 2 −½ τ; 0� : → u tð þ σÞ : 2X¼ Lp;  τ>0 and with an
initial condition:

u t; xð Þ ¼ ϕ t; xð Þ;  for  t;  xð Þ 2 −τ; 0½ � × 0; 1½ �: ð2Þ

This equation is considered as a particular time–age-
structured cell cycle model that was motivated by the biolog-
ical process of hematological cells.

When c xð Þ: ¼ x and g t;ð u; utÞ : ¼ λu; λ is the constant,
then equation can be written as follows:

∂u
∂t

þ x
∂u
∂x

¼ λu;  t ≥ 0; 0 ≤ x ≤ 1; ð3Þ

with the initial condition:

u 0; xð Þ ¼ v xð Þ; 0 ≤ x ≤ 1: ð4Þ

This equation is so called the Lasota equation (see, e.g.,
[1–5]) and the references cited therein.

This equation has been developed as a model of the
dynamics of a self-reproducing cell population, such as the
population of developing red blood cells (erythrocyte pre-
cursors). It also has been applicable to a conceptualization of
abnormal blood cell production, such as leukemia. Although
this equation is linear but the solution also has chaotic
behavior and is studied by many authors

In this paper, we are interested in g t;ð u; utÞ : ¼Φut ;Φ is a
delay operator, and the first-order partial differential equation
with delay is expressed as follows:

∂u
∂t

þ x
∂u
∂x

¼ Φut;  t ≥ 0; 0 ≤ x ≤ 1; ð5Þ

with an initial condition:

u 0ð Þ ¼ w and u0 ¼ f ; ð6Þ

where Φ, w, and f see later hypotheses.
Here, we study the partial differential equations with

delay in an abstract way.
Under the appropriate hypotheses that follow Bátkai and

Piazzera’s [6] study, we can switch the linear delay differen-
tial equations to be an abstract Cauchy problem in an
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appropriate Banach space. That means, we can use a semi-
group approach to deal with those equations.

We introduce the abstract delay equation and hypotheses
first. List the standing hypotheses as follows:

(H1) X is a Banach space.
(H2) Usually B just needs to be a closed, densely defined,

linear operator, but here we choose B¼ − x ∂u
∂x to let

the equations have the frequently hypercyclic
property.

(H3) f 2 Lp −1;½ð 0�;XÞ :; 1≤ p<1.
(H4) Φ2W1;p

−1;½ð 0�;XÞ : → X is a bounded linear oper-
ator, called the delay operator.

(H5) Θ : ¼X × Lp −1;½ð 0�;XÞ :.

Under these hypotheses and for given elements x2X
and f 2 Lp −1;½ð 0�;XÞ :.

The following initial value problem will be called an
abstract delay equation:

DEð Þp
u0 tð Þ ¼ Bu tð Þ þ Φut; t ≥ 0

u 0ð Þ ¼ w       

u0 ¼ f        

8><>: : ð7Þ

For a function u : −½ τ;1Þ : → X; t ≥ 0 and ut : σ 2 −½ τ; 0�
: → u tþð σÞ : 2X.

Chaotic phenomena are interesting and abundant topics
in different areas and attract many mathematicians (see, e.g.,
[1, 2, 7–10]). Alberto Conejero et al. [7] introduced different
kinds of chaotic operators, such as Devaney chaos, frequent
hypercyclicity, and so on. In [7] the authors provide a lot of
examples. Here, we are interesting in a tape of C0-semi-
group so called frequently hypercyclic semigroup. Moti-
vated by Birkhoff ’s ergodic theorem, Bayart and Grivaux
[11] introduced the notion of frequently hypercyclic opera-
tors trying to quantify the frequency with which an orbit
meets the open set. This concept was extended to C0-semi-
group in [12].

When a semigroup S tð Þf gt≥0 is a frequently hypercyclic
semigroup, then for every t0>0 the operator S t0ð Þ : is fre-
quently hypercyclic, but the chaotic semigroup does not nec-
essarily satisfy this condition. By the results of Bayart and
Bermúdez [13], there are chaotic C0-semigroup S tð Þf gt≥0
such that no single operator S tð Þ : is chaotic and a C0-semi-
group S tð Þf gt≥0 containing a nonchaotic operator S t0ð Þ :;
t0>0 and a chaotic operator S t1ð Þ : for some t1>0. However,
if a frequently hypercyclic semigroup S tð Þf gt≥0 satisfies fre-
quently hypercyclic criterion, then S tð Þ : is also chaotic for
every t>0 [12, Proposition 2.7]. This is one of the reason
for us to study frequently hypercyclic semigroups.

The structure of this paper is following. In Section 2, we
will introduce some useful terminologies and proposition. In
Section 3, first, we prove that the semigroup J0 tð Þf gt≥0 gen-
erated by A0 (see later) is frequently hypercyclic in Theo-
rem 1. Then, we describe the solution semigroup U tð Þf gt≥0
using J0 tð Þf gt≥0 and purtubation theorem. Then by

constructing the new set having frequently hypercyclic char-
acteristics with positive lower density, we prove the purtuba-
tion of a frequently hypercyclic semigroup is also a frequently
hypercyclic semigroup in Theorem 2. In Section 4, we give
some examples.

2. Terminologies

First, we introduce some useful terminologies and proposi-
tions. We recall that the lower density of a measurable set
M ⊂ Rþ is defined by the following equation:

Dens Mð Þ ≡ lim  inf
N→1

μ M ∩ 0;N½ �ð Þ=N; ð8Þ

where μ is the Lebesgue measure on Rþ. A C0-semigroup
S tð Þf gt≥0 is called frequently hypercyclic on the sunspace M⊆

X if there exists x2M such that Dens t 2 Rþ : S tð Þx 2 Uf gð Þ
:>0 for any nonempty open set U ⊂M.

The lower density of a set A ⊂ N is defined by the follow-
ing equation:

Dens Að Þ ≡ lim  inf
N→1

# n ≤ N : n 2 Af g=N: ð9Þ

An operator S2 L Xð Þ: is said to be frequently hypercyclic
on the sunspace M ⊆X if there exists x2M (called fre-
quently hypercyclic vector) such that for any nonempty open
set U ⊂M, the set n2f N : Snx2Ug: has positive lower den-
sity. If x2X is a frequently hypercyclic vector for S tð Þf gt≥0,
then, for every t>0, the x is also a frequently hypercyclic
vector for the operator S tð Þ :, for detail see Mangino and
Peris’s [12] study.

Proposition 1. See [14, Proposition 2.1].
Let S tð Þf gt≥0 be a C0-semigroup on a separable Banach

space X. Then, the following conditions are equivalent:

(1) S tð Þf gt≥0 is frequently hypercyclic,
(2) for every t>0, the operator S tð Þ : is frequently hyper-

cyclic, and
(3) there exist t0>0 such that the operator S t0ð Þ : is fre-

quently hypercyclic.

By Proposition 1, to prove S tð Þ : is frequently hypercyclic
just need to prove S t0ð Þ : is frequently hypercyclic operator for
some fixed t0.

3. The Frequently Hypercyclic
Semigroup S tð Þf gt≥0

In order to use the semigroup approach to deal with DEð Þp,
we switch DEð Þp to an abstract Chachy problem and hope
the solution of DEð Þp is equal to the solution of the abstract
Chachy problem.

If u : −½ τ;1Þ : → X is a classical solution of DEð Þp, then
the function:

U :
u tð Þ
ut

 !
2 Θ; ð10Þ
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is a classical solution of the abstract Chachy problem:

ACPð Þp
u0 tð Þ ¼ Au tð Þ

u 0ð Þ ¼
x

f

 !8><>: ; ð11Þ

with A¼
B Φ

0
d
dσ

 !
:, where d

dσ denotes the distributional

derivative domain:

D Að Þ ¼ x

f

 !
2 D Bð Þ ×W1;p

−1; 0;X½ �ð Þ; f 0ð Þ ¼ x

( )
:

ð12Þ

Reversely, for every classical solution U of ACPð Þp, the
function u is defined as follows:

u tð Þ ¼ Π1 ∘ Uð Þ tð Þ;  if  t ≥ 0

f tð Þ;  if  t 2 −1; 0½ Þ

(
: ð13Þ

Then, u is a classical solution of DEð Þp and Π2 ∘ Uð Þ : tð Þ
: ¼ ut for all t ≥ 0, where Π1 is the canonical project from Θ
onto X and similarly Π2 is the canonical project from Θ to
Lp −1;½ð 0�;XÞ:.

As we want, we can transform the problem of solving the
delay equation DEð Þp to solving ACPð Þp.

We write:

A¼
B Φ

0
d
dσ

0@ 1A; ð14Þ

as the sum A¼A0 þC, where A0 ¼
B 0

0
d
dσ

 !
:;C¼

0 Φ

0 0

� �
: 2 L D A0ð Þ;ð ΘÞ :; 1≤ p<1 and D A0ð Þ : ¼D Að Þ : ¼

x

f

� �
2

�
D Bð Þ×W1;p

−1;½ð 0�;XÞ; f 0ð Þ¼ x

�
:.

From Bátkai and Piazzera [6], under appropriate
assumption, we can see that A0 is the generator of semigroup
J0 tð Þf gt≥0 and the solution semigroup J0 tð Þf gt≥0 is given
by the following equation:

=0 tð Þ ¼ S tð Þ 0

St T0 tð Þ

 !
; ð15Þ

where the semigroup S tð Þf gt≥0 is generated by operator B¼
− x d

dx ;   T0 tð Þf gt≥0 is the nilpotent left semigroup on Lp −1;½ð

0�;XÞ: and St :X → Lp −1;½ð 0�;XÞ : is defined by the following
equation:

Stxð Þ −τð Þ ¼ S t − τð Þx;   if − t< − τ ≤ 0

0;    if − 1 ≤ −τ ≤ −t

(
: ð16Þ

Remark 1. We consider the set Ω¼ v2f X : v 0ð Þ¼ 0g: is the
subset X (as H1). The semigroup S tð Þf gt≥0 is generated by
operator B is described by S tð Þ:x λð Þ : ¼ x λe−tð Þ : and is fre-
quently hypercyclic on Ω, for detail see Hung and Chang’s
[15] study.

Theorem 1. If the solution semigroup S tð Þf gt≥0 is frequently
hypercyclic, then the solution semigroup J0 tð Þf gt≥0 is also

frequently hypercyclic on W¼ y

g

� �
2

�
Ω×W1;p

−1;½ð 0�;

XÞ;g 0ð Þ¼ y;g ωð Þ sð Þ¼ y se−ωð Þ
�

:.

Proof. First, we note that W is nonempty. For example, g 0ð Þ
: sð Þ : ¼ y sð Þ : ¼ s2Ω;g ωð Þ : sð Þ : ¼ se−ω, and 0 ≠

y

g

� �
: 2W. □

According to Proposition 1, to prove J0 tð Þ : is frequently
hypercyclic is equal to proving that J0 t0ð Þ : is frequently
hypercyclic operator for some fixed t0>0.

For every nonempty open subset U ¼U1 ×U2 ⊂W,
without losing the generality we can suppose U1 ¼ z2f Ω :
z − yk kX<ε1g:;U2 ¼ h2f W1;p

−1;½ð 0�;XÞ : h − gk kp<ε2g:

for some ε1; ε2>0 and
y

g

� �
: 2W. We need to check for U

the existence of frequently hypercyclic vector
w
j

� �
: 2W

such that the set E¼
�
n2N;Jn

0 t0ð Þ w
j

� �
2U

�
: has posi-

tive lower density.
Since the semigroup S tð Þf gt≥0 generated by operator B is

frequently hypercyclic, there exists a frequently hypercyclic
vector x2Ω such that for any neighborhood U with radius r
> 0 and center y¼g 0ð Þ :, (U ¼ z : z − yk kX<rf g :) then the set
E0 ¼ n2f N; Sn t0ð Þx¼ S nt0ð Þx2Ug: has positive lower
density.

Instead of proving Jn
0 t0ð Þ :

w
j

� �
: in U directly, we prove

Jn
0 t0ð Þ :

w
j

� �
: belongs to a subset of U. Now, we construct

such subset of U. Choose r1> 0 such that 1
2min ε1;f ε2g :>r1

and let U 0 ¼ z : z − yk kX<r1f g:, it is clear that U 0 ⊂ U1. Thus,
corresponding U 0, there exists a set E1 ¼ n2f N; Sn t0ð Þx¼
S nt0ð Þx2U 0g : and E1 has positive lower density.

Let U 00 ¼ h2f W1;p
−1;½ð 0�;XÞ : h 0ð Þ¼ y0 2U 0g:, then:

Abstract and Applied Analysis 3



h − gk kp ¼
Z

0

−1
h λð Þ sð Þ − g λð Þ sð Þð Þpdλ

� �1
p ¼

Z
0

−1
y0 se−λð Þ − y se−λð Þð Þpdλ

� �1
p

≤ y0 − yk kX
Z

0

−1
1dλ

� �1
p ¼ y0 − yk kX<2r1<ε2:

ð17Þ

From above inequalties, we have U 00 ⊂ U2 and U 0 ×U 00 ⊂
U1 ×U2.

Next, we need to find the set E; E1 is natural suggestion

and find a frequently hypercyclic vector,
x

f

� �
: is natural

suggestion for
w
j

� �
:.

From Equation (15), we have the following form:

=n
0 t0ð Þ x

f

 !
¼ =0 nt0ð Þ x

f

 !
¼ S nt0ð Þ 0

Snt0 T0 nt0ð Þ

 !
x

f

 !

¼ S nt0ð Þx
Snt0x þ T0 nt0ð Þf

 !
:

ð18Þ

Then, we consider the second component of
Equation (18), that is Snt0xþT0 nt0ð Þ :f . From the perform
of T0, we have T0 nt0ð Þ :f −ð τÞ : ¼ f nt0 −ð τÞ : ¼ 0, where n>n0
for some n0 and we extent f to be zero out of −½ τ; 0�:.

Then, Equation (18) becomes:

=n
0 t0ð Þ x

f

 !
¼ S nt0ð Þx

Snt0x

 !
; ð19Þ

and we have the following equation:

=n
0 t0ð Þ x

f

 !
−

y

g

 !
¼ S nt0ð Þx − y

Snt0x − g

 !
;  for 

y

g

 !
2 U 0 × U 00:

ð20Þ

Since S nt0ð Þ :x2U 0 in the first component of
Equation (20) that is S nt0ð Þx−k yk:<r1. Then, we move on
the second component of Equation (20).

If g is the second component of
y

g

� �
: 2W and n2 E1;

n>n0, we get the following equation:

Snt0x λð Þ − g λð Þ ¼ S nt0 þ λð Þx sð Þ − g λð Þ sð Þ ¼ x se−nt0−λð Þ − y se−λð Þ
¼ eS λð ÞS nt0ð Þx − y se−λð Þ
¼ eS λð Þy00 − eS λð Þy;

ð21Þ

where we define an operator S̃ as S̃ λð Þ :ω sð Þ : ¼ω se−λð Þ : and
y00 ¼ S nt0ð Þ :x2U 0. In particular, when ω¼ y, we have S̃ λð Þ
:y sð Þ : ¼ y se−λð Þ : ¼g λð Þ : sð Þ :.

From the above, we have the following equation:

Snt0x λð Þ − g λð Þ 
p ¼ eS λð Þy00 sð Þ − eS λð Þy sð Þ 

p ¼ y00 se−λð Þ − y se−λð Þk kp

¼
Z

0

−1
y00 se−λð Þ − y se−λð Þð Þpdλ

� �1
p
≤ y00 − yk kX

Z
0

−1
1dλ

� �1
p ¼ y00 − yk kX<r1:

ð22Þ

Since y00 in U 0.
From the above conclusion, we get S nt0ð Þ :x− y in U 0;

Snt0x−g in U 00, and:

=n
0 t0ð Þ x

f

 !
−

y

g

 !
¼ S nt0ð Þx − y

Snt0x − g

 !


¼ S nt0ð Þx − yk kX þ Snt0x − g
 

p<r1 þ r1<2r1;

ð23Þ
so Jn

0 t0ð Þ :

x

f

� �
: ⊂ U 0 ×U 00 ⊂ U . We get

x

f

� �
: is a frequently

hypercyclic vector and E0
1 ¼ n2f N; n2 E1; n>n0g: has post-

ive lower density. Therefore, E0
1 is the set that we wanted.

This implies that J0 t0ð Þ : is a frequently hypercyclic operator
on U and the theorem is proved.

Since we have the structure of J0 tð Þf gt≥0, we can move
on to study the existence of the solution semigroup of
Equation (5), we add the condition (H6) and state as follows:

(H6) There exist some t0>0 and 0≤ q<1 such that:Z
t0

0
C=0 rð Þxk kdr ≤ q xk k for all x 2 D A0ð Þ: ð24Þ

Under the condition (H6), we consider the perturbation
case. The existence of solution semigroup  U tð Þ f gt≥0 gener-
ated by A follows from Theorem 3.2 Miyadera–Voigt in [6].

The semigroup U tð Þf gt≥0 is given by the Dyson–Phillips
series and denoted as U tð Þ:x¼∑1

n¼0 VnJ0ð Þ : tð Þ :x for all x2X;
t ≥ 0 and converging uniformly on compact subset of R+.
Here, V 2 L C Rþ;ðð L Xð ÞÞÞ : is the abstract Volterra operator
defined by the following equation:
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VFð Þ tð Þz ¼
Z

t

0
F t − sð ÞC=0 sð Þzds;  for t ≥ 0; ð25Þ

and

VFð Þ tð Þz ¼ lim
n→1 VFð Þ tð Þzn;  for z 2 Xð Þ; t ≥ 0: ð26Þ

Here, F 2C Rþ;ð L Xð ÞÞ :; zn 2D A0ð Þ : is a sequence such
that z¼ limn→1 zn.

Let F (t) to beJ0 tð Þ :, from Equation (25), we have VJ0ð Þ
: tð Þ :z¼ R t0J0 t −ð sÞ :CJ0 sð Þ :zds and we also have VJ0 is norm
continuous for t ≥ 0 for detail see Bátkai and Piazzera’s [6]
study. For any 0< β< 1, we can choose some t0>0 such that
VJ0 tð Þk k: ≤ β for all 0≤ t ≤ t0.

We will use the frequently hypercyclic property of J0 tð Þ :

to proveU(t) is frequently hypercyclic and we write the result
as Theorem 2.

Theorem 2. When (H1)–(H6) are satisfied the solution semi-
group U tð Þf gt≥0 generated by A is frequently hypercyclic.

Proof. Without losing generality, we can suppose any non-
empty open set as a neighborhood Z0 with radius r and center
at origin. To prove the frequently hypercyclic property of U
(t0), we need to find a frequently hypercyclic vector x and a
set M¼ n2f N;Un t0ð Þx2Z0g: such that M has positive
lower density for some particular operator U(t0). □

Since J0 t0ð Þ : is frequently hypercyclic operator, there
exists a frequently hypercyclic vector x 2W such that for a

neighborhood Z with radius r0< 1−q
2 1−qð Þþβ r and center at ori-

gin, the set M ¼ n2f N;Jn
0 t0ð Þx 2Zg: has positive lower

density.
x is a good candidate for the frequently hypercyclic vec-

tor of U(t0). Then, we figure out the set which has frequently
hypercyclic property.

When m= n+ 1 for n2M and let y ¼Jn
0 t0ð Þ :x 2Z

we have Um t0ð Þ :x ¼U mt0ð Þ :x ¼∑1
k¼0V

kJ0 mt0ð Þ :x ¼∑1
k¼0

VkJ0 t0ð Þ :J0
n t0ð Þ :x ¼∑1

k¼0V
kJ0 t0ð Þ :y .

To estimate Um t0ð Þ :x , we need to estimate J0 t0ð Þ :y and
VkJ0 t0ð Þ :y for all k≥ 1.

From Equation (15), we have the following equation

=0 t0ð Þy ¼ S tð Þ 0

St T0 tð Þ

 !
α

h

 !

¼ S t0ð Þα
St0αþ T0 tð Þh

 !
;  for y ¼ α

h

 !
;

ð27Þ

We calculate the first component of J0 t0ð Þ :y;  S t0ð Þ :α, as
follows:

S t0ð Þα λð Þk kX ¼ α λe−t0ð Þk kX ¼ αk kX : ð28Þ

The second component of J0 t0ð Þ :y is St0αþT0 t0ð Þ :h.
We calculate their norms separately:

St0α
 

p ¼
Z

0

−1
St0α
À Á

τð ÞÀ Á
pdτ

� �1
p ¼

Z
0

−1
S t0 þ τð Þα λð Þð Þpdτ

� �1
p

¼
Z

0

−t0

S t0 þ τð Þα λð Þð Þpdτ
� �1

p ¼
Z

0

−t0

α λe− t0þτð ÞÀ ÁÀ Á
pdτ

� �1
p

≤
Z

0

−t0

αk kpXdτ
� �1

p

≤ αk kX
Z

0

−t0

1dτ

� �1
p

≤ αk kX ;

ð29Þ

and

T0 t0ð Þhk kp ¼
Z

0

−1
T0 t0ð Þh τð Þð Þpdτ

� �1
p ¼

Z
0

−1
h t0 þ τð Þð Þpdτ

� �1
p

¼
Z

−t0

−1
h t0 þ τð Þð Þpdτ

� �1
p ¼

Z
0

−1−t0

h λð Þð Þpdλ
� �1

p

≤
Z

0

−1
h λð Þð Þpdλ

� �1
p ¼ hk kp since h λð Þ 2 X for λ 2 −1; 0½ �:

ð30Þ

Abstract and Applied Analysis 5



Combine the above estimates, we get the following
equation:

=0 t0ð Þyk k ¼ S t0ð Þα
St0αþ T0 tð Þh

 !
¼ S t0ð Þαk kX þ St0αþ T0 tð Þh 

p

≤ S t0ð Þαk kX þ St0α
 

p þ T0 tð Þhk kp ≤ αk kX þ αk kX þ hk kp ≤ 2 αk kX þ hk kp
� �

¼ 2 xk k:
ð31Þ

Then, we consider VnJ0 t0ð Þ :y for all n≥ 1.
When n= 1, VJ0 t0ð Þyk k: ≤ β yk k :, we already know.
When n= 2, we get the following equation:

V2= t0ð Þyk k ¼ V V= t0ð Þð Þyk k ¼
Z

t

0
V=0 t − sð ÞC=0 sð Þyds

 
≤ β

Z
t

0
C=0 sð Þyk kds ≤ βq yk k:

ð32Þ

Moreover, V2J t1ð Þyk k: ≤ βq yk k: for 0≤ t1 ≤ t0.
From Equation (25) and by induction, we have the esti-

mate:

Vn= t0ð Þyk k ≤ βqn−1 yk k: ð33Þ

Consider m2M0 ¼ m2f N;m¼ nþ 1; for n2Mg:, we
have the following equation:

Um t0ð Þxk k ¼ U mt0ð Þxk k ¼ ∑
1

k¼0
Vk=0 mt0ð Þx

 
¼ ∑

1

k¼0
Vk=0 t0ð Þ=n t0ð Þx

 ¼ ∑
1

k¼0
Vk=0 t0ð Þy

  ≤ ∑
1

k¼0
Vk=0 t0ð Þy 

≤ =0 t0ð Þyk k þ ∑
1

k¼1
Vk=0 t0ð Þy  ≤ 2 yk k þ ∑

1

k¼1
βqk−1 yk k

¼ 2þ β

1 − q

� �
yk k ≤ 2þ β

1 − q

� �
r0<r:

ð34Þ

So Um t0ð Þ :x ⊂ Z0 for all m2M0. This implies x is a fre-
quently hypercyclic vector and M0 as we want. We finish the
proof.

4. Examples

Example 1. We consider the following delay equation:

∂
∂t
u tð Þ ¼ −x

∂
∂x

u tð Þ þ
Z

0

−1
u t þ τð Þdτ ; t ≥ 0

u 0ð Þ ¼ w       

u0 ¼ f ;        

8>>><>>>: ð35Þ

where w2X; f 2 Lp −1;½ð 0�;XÞ:; 1≤ p<1.
Let Φ :C −1;½ð 0�;XÞ: → X be the bound linear operator

given by Riemann–Stieltjes integral:

Φ gð Þ ¼
Z

0

−1
gdσ;  for all g 2 C −1; 0½ �;Xð Þ→ X: ð36Þ

SinceW1;p
−1;½ð 0�;XÞ: is continuously embedded inC −1;½ð

0�;XÞ:;Φ defines a bounded operator fromW1;p
−1;½ð 0�;XÞ : to

X. So, we can translate Equation (35) to DEð Þp form.
To ensure the existence of the solution semigroup U(t) of

(DE)p, we need to check (H6) is satisfied.
For 0< t< 1, we obtain the following equation:

Z
t

0
C=0 rð Þ x

f

 !
dr ¼

Z
t

0

0 Φ

0 0

 !
S rð Þ 0

Sr T0 rð Þ

 !
x

f

 !
dr ¼

Z
t

0
Φ Srx þ T0 rð Þfð Þk kdr

¼
Z

t

0

Z
−r

−1
f r þ σð Þdσ þ

Z
0

−r
S r þ σð Þxdσ

 dr
≤
Z

t

0

Z
−r

−1
f r þ σð Þk kdσdr þ

Z
t

0

Z
0

−r
S r þ σð Þxk kdσdr

≤
Z

0

−t

Z
0

σ
f sð Þk kdsdσ þ

Z
−t

−1

Z
tþσ

σ
f sð Þk kdsdσ þ

Z
t

0
xk kXdr

≤
Z

0

−t
−σð Þ 1

p0 fk kpdσ þ
Z

−t

−1
tð Þ 1

p0 fk kpdσ þ t xk kX

≤
Z

0

−1
tð Þ 1

p0 fk kpdσ þ t xk kX ¼ tð Þ 1
p0 fk kp þ t xk kX ≤ tð Þ 1

p0 fk kp þ xk kX
� �

;

ð37Þ
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where 1
p þ 1

p0 ¼ 1. Finally, we conclude thatR
t
0 CJ0 rð Þ x

f

� � :dr≤ tð Þ 1
p0 fk kp þ
�

xk kX
�

:.

Now choose t0 small enough such that t0
1
p0 <  1, then con-

dition (H6) is satisfied with q ≡ t0
1
p0 . Apply Theorem 2, we

have U tð Þf gt≥0 is frequently hypercyclic.

Example 2. The important special case of Example 1 is the
following form:

∂
∂t
u tð Þ ¼ −x

∂
∂x

u tð Þ þ ∑
n

k¼0
Bku t þ hkð Þ ; t ≥ 0

u 0ð Þ ¼ w       

u0 ¼ f ;        

8>>><>>>: ð38Þ

where f 2W1;p
−1;½ð 0�;XÞ:;Bk 2 L Xð Þ : and hk 2 −½ 1; 0�: for

k¼ 0; 1;…; n.
The operator Φ is defined by the following equation:

Φ fð Þ : ∑
n

k¼0
Bkf hkð Þ: ð39Þ

The result of Example 1 is coming from we can choose q
small enough when Φ is defined as Equation (36). Similar
results for Example 2 were proved by Kunisch and Schappa-
cher [16].

Remark 2. B¼ − x ∂
∂x can extend to B¼ − c xð Þ :

∂
∂x, where c xð Þ :

is a continuous function and satisfied the following equation:

c 0ð Þ ¼ 0; c xð Þ>0;  for x 2 0; 1ð � and 
Z

1

0

dx
c xð Þ ¼1:

ð40Þ

The solution semigroup  S tð Þ f gt≥0 generated by B¼
− c xð Þ:

∂
∂x is also frequently hypercyclic, for details see Hung

and Chang’s [15] study.

5. Conclusion

By finding a frequently hypercyclic vector and the set has
frequently hypercyclic characteristic with positive lower den-
sity, we have the results in Theorems 1 and 2. Finally, we give
two examples satisfying Theorem 2, then they have the fre-
quently hypercyclic solution semigroup.
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