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In this paper, we propose an eco-epidemiological mathematical model in order to describe the effect of migration on the dynamics
of a prey–predator population. The functional response of the predator is governed by the Holling type II function. First, from the
perspective of mathematical results, we develop results concerning the existence, uniqueness, positivity, boundedness, and dis-
sipativity of solutions. Besides, many thresholds have been computed and used to investigate the local and global stability results by
using the Routh–Hurwitz criterion and Lyapunov principle, respectively. We have also established the appearance of limit cycles
resulting from the Hopf bifurcation. Numerical simulations are performed to explore the effect of migration on the dynamic of
prey and predator populations.

1. Introduction

Generally speaking, spatial or geographic heterogeneity plays
an important role in the transmission process of many infec-
tious diseases when species interact. This propagation of
infectious diseases has been known to be an important regu-
lating factor for human and animal population sizes. The
study of the effect of infectious disease propagation in species
in interaction has attracted some attention in ecology and
epidemiology due to its seriousness threats all over the world.
In most of the mathematical models, environment has been
considered as homogeneous. However, in reality, environ-
ment is heterogeneous, and it can be considered as a set of
different localities connected by migration [1, 2]. In particu-
lar, for prey–predator population, infectious diseases coupled
with prey–predator model produce a complex dynamic given
the multitude of species living in the environment and inter-
acting with each other. This complexity is increased in the
presence of migration in each species. We cannot ignore this
factor because it is common in the ecological system and
plays a major role in the natural regulation of populations.

After the pioneer work of Kermack and McKendricK [3],
epidemiological models have drawn consideration of many
biologists and ecologists. The infectious diseases in the com-
munity of prey–predator models has been studied extensively
in literature [1, 4–14]. In [14], Tewa et al. proposed and
investigated a prey–predator model with an SIS infectious
disease affecting preys or predators or both. They showed
that the disease can disappear from the community, persist
in one or two populations of the community. Savadogo et al.
[8] proposed and analyzed an eco-epidemiological model
describing the effect of predation in the dynamic of propaga-
tion of disease. Results concerning the local and global stabil-
ity have been analyzed according to Routh–Hurwitz criterion
and Lyapunov principle, respectively. They also established
the Hopf-bifurcation to highlight the periodic fluctuation
with extinction or persistence of the disease in the preys
and predators communities. In [5], Biswas et al. proposed
and investigated a cannibalistic eco-epidemiological model
with disease in the predator species. They conclude that can-
nibalism is process of regulation and govern the disease trans-
mission in the predators community. Many works have been
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investigated in literature on ecological models with disease in
prey only [15–18]. For instance, Greenhalgh et al. [17], stud-
ied an eco-epidemiological model with fatal disease in the
prey population. In [16], Chattopadhyay and Arino studied
a prey–predator model with disease in the prey population.
They showed persistence and extinction conditions of the
populations and also determined conditions for which the
system enters a Hopf-bifurcation.

Furthermore, it is well-known that migration can be
described as an important demographic process that occurs in
all living beings. It can be occurred for many reasons such as
education, employment, marriages, war for human beings. For
animal species, migration is usually due to the climate change,
for habitat, looking for food, predation, cannibalism, reproduc-
tion, urbanization, deforestation, etc. Many researches are
mainly focused on the effect of infectious diseases in the com-
munity of prey–predator models under the influence of migra-
tion [4, 11, 13, 19–21]. Indeed, Kant and Kumar [11] proposed
and studied a prey–predator model with disease in both species
by taking into account the process of migration in only prey
population. In their mathematical analysis, existence, positivity
and stability of equilibria has been investigated. Moreover, the
epidemiological thresholds are computed and used to determine
the conditions of the disease propagation. In [4], Arora and
Vivek proposed and investigated a prey–predator model when
disease spread among prey populations with migration in both
species.Holling type II functional response is used for interaction
between prey and predator species. Their mathematical analysis
has permitted to establish existence of equilibria and the local
and global stability. Chowdhury [13] investigated an eco-
epidemiological model describing the effect of fast migration
on prey–predator model between two different patches. Mathe-
matically, the author proved the asymptotic stability of the
unique fast equilibrium point and the aggregated model.

It is in this line of thought that, in this paper, we propose
and study an eco-epidemiological prey–predator model to
study the effect of migration on the dynamic of prey and
predator. Indeed, motivated by the works of Arora and
Kumar [4], Kant and Kumar [11], and Tewa et al. [14],
our main goal in this work, is to analyze the effect of migra-
tion on the dynamic of prey–predator model in the presence
of an SIS infectious diseases. We found inspiration in the
work of an eco-epidemiological model studied by Tewa
et al. [14], by taking into account the migration. Besides,
we established the conditions of existence when our model
admits at least coexistence equilibrium. Based upon thor-
ough of mathematical analysis of our model under consider-
ation, all the equilibria point of the system are adequately
characterized, and their stability analysis are investigated
following the Routh–Hurwitz criteria and Lyapunov princi-
ple. Also, we established the existence of the limit cycles of
the system studied arising from Hopf-bifurcation. Finally, in
the numerical simulation, bifurcation diagrams and phase
portraits are given, and some complex and rich dynamic

behaviors, such as limit cycle, periodic solutions are found.
The results show that variation of migration parameters may
affect prey and predator density, thereby controlling species
density can effectively maintain the ecological balance.

The remaining part of this paper is structured as follows
after the statement of the problem. Section 2 is devoted to the
formulation of the eco-epidemiological model. In Section 3, a
mathematical analysis of the model is established, including
well-posedness, stabilities analysis, and Hopf-bifurcation.
We perform some numerical simulations to support our
main results in Section 4. The paper ends with a conclusion
and discussion in Section 5.

2. Mathematical Formulation of the Eco-
Epidemiological Model

In this section, our goal is to establish an eco-epidemiological
model in order to study the effect of migration on the
dynamic of preys and predators population. Let’s denote
by X and Y as the susceptible and infectious prey density,
respectively, such that HðtÞ : ¼XðtÞ : þYðtÞ : is the total prey
population at any time t>0: It should be pointed out that the
density dependence affects the birth and the death of the
populations. Therefore, we need to separate the effects of
the density dependence. Denoting by b and μ the natural
birth and death rates parameters, respectively, the parameter
θ is such that b− rθH=K is the birth rate of susceptible prey
and μþð1− θÞ :rH=K is the mortality rate [22].

We list the following key assumptions useful in the math-
ematical formulation of our prey–predator system.

(H1): When there is no predator, the prey population
growth logistically rð1−H=KÞ:H; where, H repre-
sents the total population of preys, K denotes the
carrying capacity, and r¼ b− μ is the intrinsic
growth rate;

(H2): The Holling function response of type II is used to
represent the process of predation and is defined
by k1H=1þ k2H; where k1 and k2 denote, respec-
tively, predator search and satiety rates;

(H3): The disease is transmitted by contact between an
infected and susceptible prey by standard inci-
dence βXY=H;

(H4): The disease is not genetically inherited. The
infected population can recover or become suscep-
tible to diseases;

(H5): Only susceptible prey is capable of reproducing
and contributing to their carrying capacity.

According to the above assumptions and the interaction
diagram of Figure 1, the dynamics of the global eco-
epidemiological model is given by the following set of differ-
ential equations:
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Ḣ ¼ rH 1 −
H
K

� �
− k1

X þ qY
1þ k2H

P − m1X þm2Yð Þ; H 0ð Þ>0;

Ẋ ¼ b −
rθH
K

� �
H − μþ 1 − θð ÞrH

K

� �
X − β

XY
H

þ λY −
k1XP

1þ k2H
−m1X; X 0ð Þ>0;

Ẏ ¼ β
XY
H

− λY − μþ 1 − θð ÞrH
K

� �
Y −

k1qYP
1þ k2H

−m2Y ; Y 0ð Þ ≥ 0;

Ṗ ¼ ω X þ qYð ÞP
1þ k2H

− γP −m3P; P 0ð Þ>0;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð1Þ

where

(1) γ denotes the natural mortality rate of predators;
(2) β is the contact rate between susceptible and infec-

tious preys;
(3) λ denotes the recovery rate for infectious preys;
(4) P denotes the predator population;
(5) e¼ω=k1 represents the conversion rate of prey bio-

mass into predatory biomass, with 0<e<1;

(6) q>1 represents the fact that the infected preys are
more easy to be caught than the healthy preys;

(7) m1,m2, andm3 denote the migration rates of suscep-
tible prey, infected prey, and predators, respectively,
where m1>m2.

By setting I¼Y=H and S¼X=H¼ 1− I the proportions
of infected and susceptible preys, respectively, in the prey
population [1, 14], for any time t>0; system (1) becomes:

Ḣ ¼ r 1 −
H
K

� �
−
k1P 1þ I q − 1ð Þð Þ

1þ k2H
− m1 þ m2 −m1ð ÞIð Þ

� �
H ¼ π1 H; I; Pð Þ; H 0ð Þ ¼ H0>0;

İ ¼ β 1 − Ið Þ − bþ λ −
θrH
K

� �
−
k1 1 − Ið Þ q − 1ð ÞP

1þ k2H
−m2

� �
I ¼ π2 H; I; Pð Þ; I 0ð Þ ¼ I0>0;

Ṗ ¼ ω 1þ I q − 1ð Þð ÞH
1þ k2H

− γ −m3

� �
P ¼ π3 H; I; Pð Þ; P 0ð Þ ¼ P0>0:

8>>>>>>>><
>>>>>>>>:

ð2Þ

3. Mathematical Investigation of Model

This section deals with mathematical analysis of system
(2) [1].

3.1. Existence, Positivity, and Boundedness Properties. For
system (2) to be ecologically and epidemiologically

X Y

PH

βY
Hb − rθH

K

m1+ μ + (1 − θ)rH
K m2 + μ + (1 − θ)rH

K

k
1 X1 + k

2 H k 1q
Y

1 +
 k 2H

ω(X + qY)
1 + k2H

γ + m3

λ

m1X + m2Y

r 1− H
K

FIGURE 1: Compartmental representation for prey–predator model with disease and migration.
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meaningful, it is important to prove that all its state variables
are nonnegative for all time. Then, we rewrite model (2) in
the following form:

Ż tð Þ ¼ G Z tð Þð Þ;  where Z tð Þ ¼ H tð Þ; I tð Þ; P tð Þð ÞT ; ð3Þ

and G :R3þ → R3 is defined by:

G Zð Þ ¼

G1 H; I; Pð Þ

G2 H; I; Pð Þ

G3 H; I; Pð Þ

0
BBBBBB@

1
CCCCCCA

¼

r 1 −
H
K

� �
−
k1P 1þ I q − 1ð Þð Þ

1þ k2H
− m1 þ m2 −m1ð ÞIð Þ

� �
H

β 1 − Ið Þð − bþ λ −
θrH
K

� �
−
k1 1 − Ið Þ q − 1ð ÞP

1þ k2H
−m2

� �
I

ω 1þ I q − 1ð Þð ÞH
1þ k2H

− γ −m3

� �
P

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: ð4Þ

The following results hold for model (2) [1, 8].

Theorem 1. The nonnegative orthant R3þ is positively invari-
ant by system (2).

Theorem 2. System (2) admits a unique global solution
ðHðtÞ; IðtÞ; PðtÞÞ : defined on interval ½0;Tmax� :. Moreover, the
set fH ≥ 0; I ≥ 0; P≥ 0g: is positively invariant for system (2).

Proof. Indeed,

(1) The theorem of Cauchy–Lipschitz assures the exis-
tence and uniqueness of local solution of system (2)
on ½0;Tmax� : given the regularity of the functions
involved in the model.

(2) Now let us show that fH ≥ 0; I ≥ 0; P≥ 0g: is posi-
tively invariant under the flow of system (2). Thus,
one has

π1 K; 0; Pð Þ ¼ −
k1P

1þ k2K
−m1K ≤ 0; for P ≥ 0;

π2 0; 1; Pð Þ ¼ − bþ λþm2ð Þ ≤ 0; for P ≥ 0;

π3 H; I; 0ð Þ ¼ 0; for H ≥ 0;  I ≥ 0:

8>>><
>>>:

ð5Þ

Consequently, the set fH ≥ 0; I ≥ 0; P≥ 0g: is positively
invariant for system (2). □

The boundedness of system (2) is given by the following
theorem.

Theorem 3. The closed set defined by:

D1¼ H; I; Pð Þ 2 R3þ=0 ≤ H ≤ K; 0 ≤ I ≤ 1; 0 ≤ eH tð Þ
�

þ I tð Þ þ P tð Þ ≤ e rK þ 4 ζ −m1ð Þð Þ
4ζ

�
;

ð6Þ

is a compact forward invariant set for system (2). Moreover,
this set is absorbing for r>0.

Proof. Indeed, adding the three equations of system (2), we
obtain:

W tð Þ ¼ eH tð Þ þ I tð Þ þ P tð Þ: ð7Þ

The time derivatives WðtÞ: along the trajectories of sys-
tem (2) is given by:

Ẇ¼ e r 1 −
H
K

� �
−
k1P 1þ I q − 1ð Þð Þ

1þ k2H
− m1 þ m2 −m1ð ÞIð Þ

� �
H

þ β 1 − Ið Þ − bþ λ −
θrH
K

� �
−
k1 1 − Ið Þ q − 1ð ÞP

1þ k2H
−m2

� �
I

þ ω 1þ I q − 1ð Þð ÞH
1þ k2H

− γ −m3

� �
P:

ð8Þ
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From Equation (8), we get:

Ẇ þ ζW ≤ er 1 −
H
K

� �
H þ eζ − em1; ð9Þ

where ζ¼minfm3 þ γ;m2 þ b1 þ λ− βg:>0: Let us con-
sider:

f Hð Þ ¼ er 1 −
H
K

� �
H þ eζ − em1; ð10Þ

then the maximum value of f ðHÞ : at H¼K=2 is eðrK þ
4ðζ −m1ÞÞ :=4ζ: Thus, from Equation (10) we get the follow-
ing differential inequality:

Ẇ þ ζW ≤
e rK þ 4 ζ −m1ð Þð Þ

4ζ
: ð11Þ

By integrating the differential inequality Equation (7)
and by using the theory of Birkoff and Rota [23] yields:

W tð Þ ≤ e rK þ 4 ζ −m1ð Þð Þ
4ζ

1 − e−ζtð Þ þW 0ð Þe−ζt: ð12Þ

Then,

lim
tÀ!þ1W tð Þ ≤ e rK þ 4 ζ −m1ð Þð Þ

4ζ
: ð13Þ

Thus, the system (2) are bounded. Particularly, WðtÞ : ≤
eðrK þ 4ðζ −m1ÞÞ :=4ζ if Wð0Þ : ≤ eðrK þ 4ðζ −m1ÞÞ :=4ζ: As
result, D1 is positively invariant. If WðtÞ :>eðrK þ
4ðζ −m1ÞÞ :=4ζ either the solution enters D1 in finite time
or WðtÞ : approaches eðrK þ 4ðζ −m1ÞÞ :=4ζ and IðtÞ:

approach zero. Therefore, D1 is an attractive set. Thus, sys-
tem (2) is ecologically and epidemiologically well-posed. □

3.2. Stability Analysis of Trivial Equilibria. In this subsection,
we discuss the existence and the local stability of each trivial
equilibrium point. Let’s consider the following epidemiologi-
cal and ecological thresholds, with clear and distinct biologi-
cal meaning [14, 24]:

(i) R0 ¼ β=bþ λþm2 is the threshold that determines
when disease die out or persist;

(ii) R1 ¼ β=bþ λ− θrþm2 is the threshold that deter-
mines the local stability of E0 ¼ðK; 0; 0Þ : and E2 ¼
ðH0; 0; P0Þ : when there is no disease;

(iii) Rec ¼ωK=γð1þ k2KÞ : represents the ecological
threshold of a prey–predator model without disease
and migration.

The trivial equilibria is obtained by setting the right-hand
sides of system (2) to zero. The explicit expressions of the
trivial equilibria are given by the following proposition:

Proposition 1.

(i) E0 ¼ð0; 0; 0Þ : is a trivial equilibrium point of system
(2) and is always admissible.

(ii) E1 ¼ðK; 0; 0Þ : is a prey free equilibrium point of sys-
tem (2) and exists unconditionally.

(iii) E2 ¼ðH0; 0; P0Þ : is a disease free equilibrium, where

H0 ¼ γ þm3

ω − k2 m3 þ γð Þ ;

P0 ¼ er 1þ k2Kð Þ γ Rec − 1ð Þ −m3ð Þ −m1 K ω − k2 m3 þ γð Þð Þð Þ
K ω − k2 m3 þ γð Þð Þ2 :

ð14Þ

This equilibrium is ecologically admissible if:

ω>k2 γ þm3ð Þ;Rec>1;m3<γ Rec − 1ð Þ and
m1<

rγ 1þ k2Kð Þ γ Rec − 1ð Þ −m3ð Þ
K ω − k2 γ þm3ð Þð Þ :

ð15Þ

Now, we are in position to investigate the local stability of
trivial equilibria.

Proposition 2.

(i) E0 is always unstable,
(ii) E1 ¼ðK; 0; 0Þ : is locally asymptotically stable if and

only if:

R1<1;
r γ þm3ð Þ 1þ k2Kð Þ2
r 1þ k2Kð Þ2 − k1

<Rec<1þ r þm3

γ
:

ð16Þ

(iii) E2 ¼ðH0; 0; P0Þ : is locally asymptotically stable if and
only if:

Rec>1þ ωm1K þm3

γ
þ γ þm3ð ÞK θr −m1k2 q − 1ð Þð Þ

γ q − 1ð Þ 1þ k2Kð Þ ;

ð17Þ

m1>
r γ þm3ð Þ

K 1 − k2 γ þm3ð Þð Þ : ð18Þ

Proof. Let us consider the variational matrix of system (2):

J H; I; Pð Þ ¼
B11 B12 B13

B21 B22 B23

B31 B32 B33

0
B@

1
CA; ð19Þ
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where

B11 ¼
∂F1
∂H

¼ r 1 −
2H
K

� �
−
k1P 1þ I q − 1ð Þð Þ

1þ k2Hð Þ2
− m1 þ m2 −m1ð ÞIð Þ;

ð20Þ

B12 ¼
∂F1
∂I

¼ −
k1 q − 1ð ÞHP
1þ k2H

− m2 −m1ð ÞH; ð21Þ

B13 ¼
∂F1
∂P

¼ −
k1H 1þ I q − 1ð Þð Þ

1þ k2H
; ð22Þ

B21 ¼
∂F2
∂H

¼ θrI
K

þ k1k2 q − 1ð ÞI 1 − Ið ÞP
1þ k2Hð Þ2 ; ð23Þ

B22¼
∂F2
∂I

¼ β 1 − 2Ið Þ − bþ λ −
θrH
K

� �

−
k1 q − 1ð Þ 1 − 2Ið ÞP

1þ k2H
−m2;

ð24Þ

B23 ¼
∂F2
∂P

¼ −
k1 q − 1ð Þ 1 − Ið ÞI

1þ k2Hð Þ ; ð25Þ

B31 ¼
∂F3
∂H

¼ −
ω 1þ q − 1ð ÞIð Þ

1þ k2Hð Þ2 ð26Þ

B32 ¼
∂F3
∂I

¼ ωqH
1þ k2H

; ð27Þ

B33 ¼
∂F3
∂P

¼ ω 1þ q − 1ð ÞIð ÞH
1þ k2H

− γ −m3: ð28Þ

(i) The Jacobian matrix of system (2) at E0 ¼ð0; 0; 0Þ: is
given by:

J E0ð Þ ¼

r 0 0

0 β 1 −
1
R0

� �
0

ω 0 −γ −m3

0
BBBBBBB@

1
CCCCCCCA
: ð29Þ

The eigenvalues are η1 ¼ r>0; η2 ¼ βð1− 1=R0Þ : and
η3 ¼ − ðγþm3Þ :. Thus, E0 is unstable.
(ii) The Jacobian matrix of system (2) at E1 ¼ðK; 0; 0Þ: is

given by:

J E1ð Þ ¼

−r − m2 −m1ð ÞK −
k1K

1þ k2K

0 β 1 −
1
R1

� �
0

ω

1þ k2Kð Þ2
ωqK

1þ k2K
γ Rec − 1 −

m3

γ

� �

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

ð30Þ

The characteristic polynomial is given by:

PE1 ηð Þ ¼ β 1 −
1
R1

� �
− η

� �
η2 þ r − γ Rec − 1 −

m3

γ

� �� �
η

� �

þ β 1 −
1
R1

� �
− η

� �
γk1Rec

1þ k2Kð Þ2 − rγ Rec − 1 −
m3

γ

� �� �
¼ 0:

ð31Þ

Thus, the eigenvalues of JðE1Þ : is η0 ¼ βð1− 1=R1Þ ::
According to Equation (16), we get η0<0: From
Equation (16), we find

r − γ Rec − 1 −
m3

γ

� �
>0;

γk1Rec

1þ k2Kð Þ2 − rγ Rec − 1 −
m3

γ

� �
>0:

ð32Þ

In the light of the Routh–Hurwitz criteria, E1 is locally
asymptotically stable.
(iii) The Jacobian matrix of system (2) at E2 ¼ðH0; 0;

P0Þ : is given by:

J E2ð Þ ¼

C11 C12 C13

0 C22 0

C31 C32 0

0
BBBBBB@

1
CCCCCCA
; ð33Þ

where

C11 ¼ −
m1K − γ þm3ð Þ m1Kk2 þ rð Þ

K ω − k2 m3 þ γð Þð Þ ;

C12 ¼ −
m1 m3 þ γð Þ

ω − k2 m3 þ γð Þð Þ ;C13 ¼
−k1 γ þm3ð Þ

ω
;C21 ¼ 0;

ð34Þ
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C22 ¼β 1 −
1
R1

� �
þ K γ þm3ð Þ θr −m1 q − 1ð Þk2ð Þ

K ω − k2 m3 þ γð Þð Þ

−
q − 1ð Þ 1þ k2Kð Þ γ Rec − 1ð Þ −m3ð Þ − ωm1Kð Þ

K ω − k2 m3 þ γð Þð Þ ;

ð35Þ

C23 ¼ 0;C31 ¼
ω − k2 m3 þ γð Þð Þ2

ω
;C32 ¼ γ þm3ð Þ;C33 ¼ 0:

ð36Þ

The characteristic polynomial associated is as follows:

PE2 ηð Þ ¼ C22 − ηð Þ η2 − C11η − C13C31ð Þ ¼ 0: ð37Þ

Then, the eigenvalue of JðE2Þ : is η0 ¼C22: From condi-
tions (16) and (17), we get η0<0:According to Equation (18),
we have C11<0: In the light of the Routh–Hurwitz criteria,
E2 is locally asymptotically stable. □

3.3. Existence of Coexistence Equilibria. To compute the equi-
librium solutions, we set the right-hand-side of system (2) to
zero. Thus, we get:

rH 1 −
H
K

� �
−
k1PH 1þ I q − 1ð Þð Þ

1þ k2H
− m1 þ m2 −m1ð ÞIð Þ H ¼ 0;

β 1 − Ið ÞI − bþ λ −
θrH
K

� �
I −

k1 1 − Ið Þ q − 1ð ÞIP
1þ k2H

−m2 I ¼ 0;

ω 1þ I q − 1ð Þð ÞHP
1þ k2H

− γ þm3ð Þ P ¼ 0:

8>>>>>>><
>>>>>>>:

ð38Þ

Assume that 0<H∗<K; 0<I∗<1; and P∗>0: By using
the third equation of system (38) and dividing by P∗, we get:

H∗ ¼ γ þm3

B0
; ð39Þ

if  ω>k2 γ þm3ð Þ; ð40Þ

where B0 ¼ω− k2ðγþm3Þ : þωðq− 1Þ :I∗:
By plugging H∗ in the second equation of system (38) we

have:

P∗ ¼ βK 1 − I∗ð ÞB0 − B0K m2 þ λþ bð Þ − θr γ þm3ð Þð Þ
k1K 1 − I∗ð Þ q − 1ð ÞB0

;

ð41Þ

if  
βK 1 − I∗ð ÞB0

B0K m2 þ λþ bð Þ − θr γ þm3ð Þ >1: ð42Þ

By substituting P∗ and H∗ in the first equation of system
(38), we get the following cubic equation verify by I∗:

A3I∗
3 þ A2I∗

2
A1I∗ þ A0 ¼ 0;

A0 ¼
Γ4 − Γ5

ωk1 q − 1ð Þ2K β þm1 −m2ð Þ ;
ð43Þ

A1 ¼
Γ2 − Γ3

ωk1 q − 1ð Þ2K β þm1 −m2ð Þ ; ð44Þ

A2 ¼
Γ0 − Γ1

ωk1 q − 1ð Þ2K β þm1 −m2ð Þ ;
A3 ¼ 1;

ð45Þ

where

Γ0 ¼ k1K q − 1ð Þ 1þm1 −m2ð Þ ω − k2 γ þm3ð Þð Þ þ ω q − 1ð Þð Þ þ β þm1 q − 1ð Þ;
Γ1 ¼ ωk1K q − 1ð Þ2 β þ rð Þ;
Γ2 ¼ rk1 q − 1ð Þ q − 1ð ÞωK þ θ γ þm3ð Þð Þ þ k1K ω − k2 γ þm3ð Þð Þ q − 1ð Þ 2m1 −m2 þ βð Þð Þð Þ;
Γ3 ¼ k1 q − 1ð ÞK r ω − k2 γ þm3ð Þð Þ þm1ω q − 1ð Þ þ βωð Þ;
Γ4 ¼ rk1 q − 1ð ÞK ω − k2 γ þm3ð Þð Þ þ θ γ þm3ð Þð Þ;
Γ5 ¼ k1K ω − k2 γ þm3ð Þð Þ β þm1 q − 1ð Þð Þ:

ð46Þ
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Since A3>0, thus, the number of possible positive real
roots of Equation (43) depends on the signs of A2;A1;A0.
This can be analyzed using the Descartes Rules of Signs [25]
of the polynomial: LðXÞ : ¼A3X3 þA2X2 þA1XþA0 with
X¼ I∗. The different cases for the positive real roots of
LðXÞ : are presented in Table 1.

Then, the following result gives the existence of the coex-
istence equilibrium point [25].

Theorem 4. System (2):

(i) has no feasible coexistence equilibria points if case 1 is
satisfied;

(ii) has a unique feasible coexistence equilibrium points if
the conditions (40) and (42) and cases 2, 3, and 4 are
satisfied;

(iii) has two feasible coexistence equilibria or no feasible
coexistence equilibria points if the conditions (40)
and (42) and cases 5, 6, and 7 are satisfied;

(iv) has three feasible coexistence equilibria points or a
unique feasible coexistence equilibrium point if the
conditions (40) and (42) and case 8 are satisfied.

3.4. Local Stability Analysis of the Coexistence Equilibrium
Point. Let us define κ2 ¼Δ1=Δ2 and κ3 ¼Δ3=Δ4 where,

Δ1 ¼ 1þ k2H∗ð Þ2 ωrI∗H∗2 θ m1 −m2ð Þ þ β 1þ k2H∗ð Þð ÞÀ Á
þωk1k2KH∗2 m1 −m2ð Þ 1 − I∗ð Þ þ k1I∗ P∗ þ k1k2I∗ q − 1ð Þð Þð Þ:

Δ2 ¼ω1 q − 1ð ÞH∗2P∗ r 1þ θð ÞI∗ 1þ k2H∗ð Þ2 þ k1k2K q − 1ð ÞK 1 − I∗ð ÞP∗ð Þ
þωβk1k2KH∗2I∗ 1þ k2H∗ð Þ2:

Δ3 ¼ γ þm3ð Þ 1þ k2H∗ð Þ ωH∗K m1 −m2ð Þk1 q − 1ð Þ 1 − I∗ð Þ þ q γ þm3ð Þð Þ þ βI∗ 1þ k2H∗Þð Þ;
Δ4 ¼ωH∗ q − 1ð Þk1 ωr 1 − I∗ð ÞqH∗2 1þ k2H∗ð Þ þ k1 q − 1ð Þ γ þm3ð ÞKP∗

À Á
þ ωk1ð Þ2k2Kq q − 1ð Þ 1 − I∗ð Þ P∗ þ k1k2I∗ q − 1ð Þð ÞH∗3 þ k1 γ þm3ð Þ q − 1ð ÞI∗P∗ 1þ k2H∗ð Þ:

ð47Þ

Proposition 3. If the conditions (ii) of Theorem 4 and the
following conditions are satisfied:

k1K q − 1ð Þ 1þ k2H∗ð ÞI∗P∗

1þ k2H∗ð Þ2 βKI∗ þ rH∗ð Þ þ k1k2KH∗ P∗ þ k1k2I∗ q − 1ð Þð Þ <1;

ð48Þ

κ2<1; ð49Þ

κ3<1; ð50Þ

k1 q − 1ð ÞP∗ 1þ ωqI∗H∗ð Þ
1þ k2H∗ð Þ m1 −m2ð Þ γ þm3ð Þ þ βωqI∗H∗ð Þ <1; ð51Þ

then, the coexistence equilibrium E3 ¼ðH∗; I∗; P∗Þ : point is
locally asymptotically stable.

Proof. Indeed, by linearizing model (2) around the coexis-
tence equilibrium point E3 yields:

J E3ð Þ ¼

D11 D12 D13

D21 D22 D23

D31 D32 0

0
BBBBBB@

1
CCCCCCA
; ð52Þ

where

D11 ¼ −
k1k2H∗ P∗ þ k1k2I∗ q − 1ð Þð Þ

1þ k2H∗ð Þ2 −
rH∗

K
;

D12 ¼ −
k1 q − 1ð ÞH∗P∗

1þ k2H∗ − m2 −m1ð ÞH∗;
ð53Þ

D13 ¼ −
γ þm3

ω
; D21 ¼

θrI∗

K
þ k1k2 q − 1ð Þ 1 − I∗ð ÞP∗

1þ k2H∗ð Þ2 ;

ð54Þ

TABLE 1: Various possibilities for positive real roots of LðX∗Þ: ¼ 0.

Cases A3 A2 A1 A0 Number of sign changes Number of positive roots

1 + + + + 0 0
2 + + + — 1 1
3 + + — — 1 1
4 + — — — 1 1
5 + — + + 2 0,2
6 + + — + 2 0,2
7 + — — + 2 0,2
8 + — + — 3 1,3
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D22 ¼
k1 q − 1ð ÞI∗P∗

− βI∗ 1þ k2H∗ð Þ
1þ k2H∗ð Þ ;

D23 ¼ −
k1 q − 1ð Þ 1 − I∗ð Þ

1þ k2H∗ ;D31 ¼ −
γ þm3

H∗ 1þ k2H∗ð Þ ;

ð55Þ

D32 ¼
ωqH∗

1þ k2H∗ ;D33 ¼ 0: ð56Þ

Therefore, the characteristic polynomial is given by:

PE3 ηð Þ ¼ −η3 þ a1η2 þ a2ηþ a3 ¼ 0; ð57Þ

where

a1 ¼ D11 þ D22;  
a2 ¼ −D11D22 þ D23D32 þ D12D21 þ D13D31; and

ð58Þ

a3 ¼ D13D21D32 − D11D23D32 þ D12D23D31 − D13D22D31:

ð59Þ

From expressions (48) and (50), we get, respectively,
− a1>0 and − a3>0: Moreover, we have:

a1a2 þ a3 ¼ D11 þ D22ð Þ D13D31 þ D12D21 − D11D22ð Þ
þD23 D12D31 þ D22D32ð Þ:

ð60Þ

According to Equations (49) and (51), we get, respec-
tively, D13D31 þD12D21 −D11D22<0 and D12D31 þ
D22D32<0: Therefore, a1a2 þ a3>0: Then, referring to the
Routh–Hurwitz criterion, it then follows that E3 is locally
asymptotically stable. □

3.5. Bifurcation Analysis of the Coexistence Equilibrium E3.
Here, we establish the conditions when Hopf-bifurcation
occurs at E3. The parameter m1 play a major role in the
topological changing of coexistence equilibrium. A Hopf-
bifurcation occurs if there exist a certain parameter m1 ¼
mcr verifying:

F mcrð Þ ¼ a1 mcrð Þa2 mcrð Þ þ a3 mcrð Þ ¼ 0; ð61Þ

−a2 mcrð Þ>0; ð62Þ

Re
dη m1ð Þ
dm1

� �
m1¼mcr

≠ 0; ð63Þ

where η is the solution of Equation (57). Let us consider:

β0 ¼ k1 q − 1ð Þ 1 − I∗ð ÞωH∗ k1 q − 1ð ÞI∗P∗
− βI∗ 1þ k2H∗ð Þð ÞωK2 1þ k2H∗ð Þ3

β1 ¼ ω k1 q − 1ð ÞI∗P∗
− βI∗ 1þ k2H∗ð Þð Þ k1k2KH∗ P∗ þ k1k2I∗ q − 1ð Þð Þ þ rH∗ 1þ k2H∗ð Þ2ð Þ2

β2 ¼ k1 q − 1ð ÞI∗P∗
− βI∗ 1þ k2H∗ð Þð Þ2 ωKk1k2 1þ k2H∗ð Þ P∗ þ k1k2I∗ q − 1ð Þð Þ þ rH∗ 1þ k2H∗ð Þ2ð Þ

β3 ¼ ωK 1þ k2H∗ð Þ3Kk1k2 1þ k2H∗ð Þ P∗ þ k1k2I∗ q − 1ð Þð Þ þ rH∗ 1þ k2H∗ð Þ2Þ γ þm3ð Þ2:
ð64Þ

The following theorem gives the conditions that Hopf-
bifurcation occurs [15, 26–28].

Theorem 5. If the conditions (ii) of Theorem 4 and the fol-
lowing conditions are satisfied:

m2 1þ k2H∗ð Þ
k1 q − 1ð ÞP∗ >1; ð65Þ

ωK2q γ þm3ð Þ2 1þ k2H∗ð Þ3 − β0 − β1 þ β2
β3

>1; ð66Þ

β4β5H∗2

k1 γ þm3ð Þ q − 1ð Þ 1 − I∗ð ÞK2 1þ k2H∗ð Þ2 >1; ð67Þ

then a Hopf-bifurcation occurs for system (2) around the
coexistence point E3 ¼ðH∗; I∗; P∗Þ : when the prey migration
rate m1 crosses a critical value m1 ¼mcr; where

mcr¼ m2 −
k1 q − 1ð ÞP∗

1þ k2H∗ þ q γ þm3ð Þ2ω2 1þ k2H∗ð Þ3 − β0 − β1 þ β2 − β3ð ÞH∗2

ω 1þ k2H∗ð Þ β4β5H∗2
− k1K2 γ þm3ð Þ q − 1ð Þ 1 − I∗ð Þ 1þ k2H∗ð ÞÀ Á : ð68Þ

Proof. Indeed, assuming that H −H∗ ≃ eηt ; I − I∗ ≃ eηt and
P− P∗ ≃ eηt , the characteristic polynomial defined by
Equation (57) is given by:

PE3 η;m1ð Þ ¼ 0⇔ η3 − a1 m1ð Þη2 − a2 m1ð Þη − a3 m1ð Þ ¼ 0;

ð69Þ
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where

a1 m1ð Þ ¼ D11 þ D22

a2 m1ð Þ ¼ D23D32 þ D12D21 þ D13D31 − D11D22

a3 m1ð Þ ¼ D13D31D32 − D11D23D32 þ D12D23D31 − D13D22D31

8><
>: :

ð70Þ

According to expressions (49), (65), and (66), we get
− a2ðm1Þ :>0 and mcr>0:

At m1 ¼mcr , it is easy to see that:

F mcrð Þ ¼ 0: ð71Þ

According to − a3ðm1Þ : ¼ − a1ðm1Þ :a2ðm1Þ : and from
Equation (69), we get:

η2 − a2ð Þ η − a1ð Þ ¼ 0; ð72Þ

whose roots are

η0 ¼ i
ffiffiffiffiffiffiffiffi
−a2

p
;  η1 ¼ −i

ffiffiffiffiffiffiffiffi
−a2

p
;  η2 ¼ a1; ð73Þ

where a1ðmcrÞ :>0:
These roots are functions of m1; where m1 2 ðmcr − ϵ;

mcr þ ϵÞ :; for mcr>ϵ>0 and subsequently can be written
as follows:

η0 m1ð Þ ¼ x1 m1ð Þ þ ix2 m1ð Þ;  η1 m1ð Þ ¼ x1 m1ð Þ − ix2 m1ð Þ;  
η2 m1ð Þ ¼ a1 m1ð Þ:

ð74Þ

We have:

Re
dη
dm1

� �
m1¼mcr

≠ 0: ð75Þ

Differentiating Equation (69) with respect m1 yields:

dη
dm1

¼ a01 m1ð Þη2 þ a02 m1ð Þηþ a03 m1ð Þ
3η2 − 2a1 m1ð Þη − a2 m1ð Þ j

η¼i
ffiffiffiffiffiffiffiffiffiffiffiffi
−a2 m1ð Þ

p

¼ a01 m1ð Þa2 m1ð Þ þ a03 m1ð Þð Þ þ ia02 m1ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−a2 m1ð Þp

2a2 m1ð Þ − 2ia1 m1ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−a2 m1ð Þp

¼ a01 m1ð Þa22 m1ð Þ þ a03 m1ð Þa2 m1ð Þ þ a1 m1ð Þa2 m1ð Þa02 m1ð Þ
2 a22 m1ð Þ − a21 m1ð Þa2 m1ð Þð Þ

þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−a2 m1ð Þp

a1a01 m1ð Þa2 m1ð Þ þ a03 m1ð Þa1 m1ð Þ þ a02 m1ð Þa2 m1ð Þð Þ
2 a22 m1ð Þ − a21 m1ð Þa2 m1ð Þð Þ

¼ a2 a1a2 þ a3ð Þ0
2 a22 m1ð Þ − a21 m1ð Þa2 m1ð Þð Þ
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−a2 m1ð Þp a22ð Þ0 m1ð Þ

4 a22 m1ð Þ − a21 m1ð Þa2 m1ð Þð Þ þ
a1 m1ð Þ a01 m1ð Þa2 m1ð Þ þ a03 m1ð Þð Þ

2 a22 m1ð Þ − a21 m1ð Þa2 m1ð Þð Þ
� �

¼
a2

dF m1ð Þ
dm1

2 a22 m1ð Þ − a21 m1ð Þa2 m1ð Þð Þ
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−a2 m1ð Þp a22ð Þ0 m1ð Þ

4 a22 m1ð Þ − a21 m1ð Þa2 m1ð Þð Þ þ
a1 m1ð Þ a01 m1ð Þa2 m1ð Þ þ a03 m1ð Þð Þ

2 a22ð m1ð Þ − a21 m1ð Þa2 m1ð Þ
� �

:

ð76Þ

By separating real and imaginary parts, one has:

Re
dη
dm1

� �
¼

dF m1ð Þ
dm1

2 a2 m1ð Þ − a21 m1ð Þð Þ :
ð77Þ

Verifying that Re½dη=dm1�m1¼mcr
≠ 0; we have:
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dF m1ð Þ
dm1

¼ a01 m1ð Þa2 m1ð Þ þ a03 m1ð Þ þ a1 m1ð Þa02 m1ð Þ
¼ a03 m1ð Þ þ a1 m1ð Þa02 m1ð Þ;  because a01 m1ð Þ ¼ 0

¼ D23D31 þ D21 D11 þ D22ð Þð ÞD0
12 m1ð Þ

¼ k1 q − 1ð Þ 1 − I∗ð Þ γ þm3ð ÞH∗

1þ k2H∗ð Þ2H∗

þ θrI∗ 1þ k2H∗ð Þ2 þ Kk1k2 q − 1ð Þ 1 − I∗ð ÞP∗ð Þ k1 q − 1ð ÞI∗P∗
− βI∗ 1þ k2H∗ð Þð ÞH∗

K 1þ k2H∗ð Þ3

−
k1k2H∗ P∗ þ k1k2I∗ q − 1ð Þð Þ θrI∗ 1þ k2H∗ð Þ2 þ Kk1k2 q − 1ð Þ 1 − I∗ð ÞP∗ð ÞH∗

K 1þ k2H∗ð Þ3 :

ð78Þ

At m1 ¼mcr; it is straightforward to see that dFðm1Þ :=
dm1 ≠ 0; as a result:

Re
dη
dm1

� �
m1¼mcr

¼
dF m1ð Þ
dm1

2 a2 m1ð Þ − a21 m1ð Þð Þ j m1¼mcr
≠ 0:

ð79Þ

Therefore, the transversality condition hold. Thus, Hopf-
bifurcation occurs at m1 ¼mcr for system (2) around the
coexistence equilibrium E3: □

Now, let us investigate the global stability of the coexis-
tence equilibrium point [12, 26, 29–32].

3.6. Global Stability Analysis of the Coexistence Equilibrium
Point. Let us define:

M ¼ D1n 0; 0; 0ð Þ; K; 1; 0ð Þf g: ð80Þ

Setting

Δ5 ¼ 2k1k2K P∗ þ q − 1ð ÞI∗ð Þ þ ωK 1þ q − 1ð ÞI∗ð Þ þ k1k2K q − 1ð ÞP∗ 1 − I∗ð Þ
þ m1 −m2ð ÞK 1þ k2Kð Þ 1þ k2H∗ð Þ þ θrK 1þ k2Kð Þ 1þ k2H∗ð Þ;

Δ6 ¼ 1þ k2H∗ð Þ 2r þ k1Kqð Þ;
Δ7 ¼ k1K q − 1ð Þ 1þ k2H∗ þ 2þ k2ð ÞP∗ 1 − I∗ð Þð Þ

þ 1þ k2Kð Þ 1þ k2H∗ð Þ θr þ m1 −m2ð ÞKð Þ þ ω q − 1ð ÞK 1þ k2H∗ð Þ;
Δ8 ¼ 2βK þ k1K q − 1ð Þð Þ 1þ k2H∗ð Þ þ k1K q − 1ð ÞP∗ 1 − I∗ð Þ;
Δ9 ¼ω q − 1ð Þ I∗ þ 1þ k2H∗ð Þ 1þ H∗ð Þð Þ;  and
Δ10 ¼ k1 q − 1ð ÞP∗ 1 − I∗ð Þ þ 1þ k2H∗ð Þð Þ:

ð81Þ

The following theorem give the global stability of coexis-
tence equilibrium.

Theorem 6. Setting κ4 ¼Δ5=Δ6; κ5 ¼Δ7=Δ8 and κ6 ¼
Δ9=Δ10: If the conditions (ii) of Theorem 4 and the following
conditions are satisfied:

κ4<1;  κ5<1;  and κ5<1; ð82Þ

then the coexistence equilibrium E3 ¼ðH∗; I∗; P∗Þ : is globally
asymptotically stable in the region M:

Proof. Indeed, let us consider the function L defined by:

L H; I; Pð Þ ¼ H − H∗
− H∗ ln

H∗

H

� �
þ I − I∗ − I∗ ln

I∗

I

� �

þ P − P∗
− P∗ ln

P∗

P

� �
:

ð83Þ
It is straightforward to see that LðH∗; I∗; P∗Þ : ¼ 0 and for

all ðH; I; PÞ : 2M such that ðH; I; PÞ: ≠ ðH∗; I∗; P∗Þ :, LðH; I; PÞ
:>0: Hence, L is well-defined on M.

The time derivative of L along the solutions of system (2)
is given by:
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L̇ H; I; Pð Þ ¼ H − H∗

H

� �
Ḣ þ I − I∗

I

� �
İ þ P − P∗

P

� �
Ṗ

¼ H − H∗ð Þ r 1 −
H
K

� �
−
k1P 1þ I q1 − 1ð Þð Þ

1þ k2H
− m1 þ m2 −m1ð ÞIð Þ

� �

þ I − I∗ð Þ β 1 − Ið Þ − bþ λ −
θrH
K

� �
−
k1 1 − Ið Þ q − 1ð ÞP

1þ k2H
−m2

� �

þ P − P∗ð Þ ω 1þ I q − 1ð Þð ÞH
1þ k2H

− γ −m3

� �
:

ð84Þ

Using the fact that E3 is an equilibrium point of system
(2), we have:

r ¼ r
H∗

K
þ k1P∗ 1þ I∗ q − 1ð Þð Þ

1þ k2H
þm1 þ m2 −m1ð ÞI∗;

β ¼ βI∗ þ bþ λ −
θrH∗

K
þ k1 1 − I∗ð Þ q − 1ð ÞP∗

1þ k2H∗ þm2;

γ ¼ ω 1þ I∗ q − 1ð Þð ÞH∗

1þ k2H∗ þm3:

8>>>>>>><
>>>>>>>:

ð85Þ

By substituting r; β, and γ into Equation (84) yields:

L̇ H; I; Pð Þ ¼ L1 H; I; Pð Þ þ L2 H; I; Pð Þ þ L3 H; I; Pð Þ;
ð86Þ

where

L1 H; I; Pð Þ ¼ H −H∗ð Þ k1 1þ I∗ q − 1ð Þð ÞP∗

1þ k2H∗ −
k1 1þ I q − 1ð Þð ÞP

1þ k2H
−

r
K

H − H∗ð Þ
� �

þ m1 −m2ð Þ H − H∗ð Þ I − I∗ð Þ;
ð87Þ

L2 H; I; Pð Þ ¼ I − I∗ð Þ θr
K

H − H∗ð Þ þ k1 q − 1ð Þ 1 − I∗ð ÞP∗

1þ k2H∗ −
k1 q − 1ð Þ 1 − Ið ÞP

1þ k2H
− β I − I∗ð Þ

� �
;

L3 H; I; Pð Þ ¼ P − P∗ð Þ ω 1þ I q − 1ð Þð ÞH
1þ k2H

−
ω 1þ I∗ q − 1ð Þð ÞH∗

1þ k2H∗

� �
:

ð88Þ

It is obvious to see that:

k1
1þ I∗ q − 1ð Þð ÞP∗

1þ k2H∗ −
1þ I q − 1ð Þð ÞP

1þ k2H

� �
¼ k1

k2P∗ H − H∗ð Þ − P − P∗ð Þ 1þ k2H∗ð Þ
1þ k2H∗ð Þ 1þ k2Hð Þ

� �

þ k1 q − 1ð Þ k2I∗ H − H∗ð Þ − I − I∗ð Þ 1þ k2H∗ð Þ
1þ k2H∗ð Þ 1þ k2Hð Þ

� �
;

ð89Þ

12 Abstract and Applied Analysis



k1 q − 1ð Þ 1 − I∗ð ÞP∗

1þ k2H∗ −
k1 q − 1ð Þ 1 − Ið ÞP

1þ k2H
¼ k1k2 q − 1ð ÞP∗ 1 − I∗ð Þ H − H∗ð Þ

1þ k2H∗ð Þ 1þ k2Hð Þ
−
k1 q − 1ð ÞP∗ 1 − I∗ð Þ P − P∗ð Þ

1þ k2H∗ð Þ 1þ k2Hð Þ
þ k1 q − 1ð ÞP∗ 1 − I∗ð Þ I − I∗ð Þ

1þ k2H∗ð Þ 1þ k2Hð Þ
þ k1 q − 1ð Þ 1þ k2H∗ð Þ P − P∗ð Þ I − I∗ð Þ

1þ k2H∗ð Þ 1þ k2Hð Þ ;

ω
1þ I q − 1ð Þð ÞH

1þ k2H
−

1þ I∗ q − 1ð Þð ÞH∗

1þ k2H∗

� �
¼ ω 1þ q − 1ð ÞI∗ð Þ H − H∗ð Þ

1þ k2H∗ð Þ 1þ k2Hð Þ
þω q − 1ð ÞH∗ 1þ k2H∗ð Þ I − I∗ð Þ

1þ k2H∗ð Þ 1þ k2Hð Þ
þω q − 1ð Þ 1þ k2H∗ð Þ I − I∗ð Þ H − H∗ð Þ

1þ k2H
∗ð Þ 1þ k2Hð Þ :

ð90Þ

Plugging the above expressions into Equation (86) and
rearranging gives:

L̇ H; I; Pð Þ ¼ k1k2 P∗ þ q − 1ð ÞI∗ð Þ
1þ k2H∗ð Þ 1þ k2Hð Þ −

r
K

� �
H − H∗ð Þ2 þ k1P∗ q − 1ð Þ 1 − I∗ð Þ

1þ k2H∗ð Þ 1þ k2Hð Þ − β

� �
I − I∗ð Þ2

þ k1 q − 1ð Þ 1þ k2H∗ð Þ
1þ k2H∗ð Þ 1þ k2Hð Þ

� �
P − P∗ð Þ I − I∗ð Þ2

þ ω 1þ q − 1ð ÞI∗ð Þ − k1 1þ k2H∗ð Þ
1þ k2H∗ð Þ 1þ k2Hð Þ

� �
H − H∗ð Þ P − P∗ð Þ

þ k1 q − 1ð Þ k2P∗ 1 − I∗ð Þ − 1þ k2H∗ð Þð Þ
1þ k2H∗ð Þ 1þ k2Hð Þ þ m1 −m2ð Þ þ θr

K

� �
H − H∗ð Þ I − I∗ð Þ

þ ω q − 1ð Þ 1þ k2H∗ð ÞH∗
− k1 q − 1ð ÞP∗ 1 − I∗ð Þ

1þ k2H∗ð Þ 1þ k2Hð Þ
� �

P − P∗ð Þ I − I∗ð Þ

þ ω q − 1ð Þ 1þ k2H∗ð Þ
1þ k2H∗ð Þ 1þ k2Hð Þ

� �
H − H∗ð Þ I − I∗ð Þ P − P∗ð Þ:

ð91Þ

Noticing that,

e 1þ q − 1ð ÞI∗ð Þ
1þ k2H∗ >1;

k2P∗ 1 − I∗ð Þ
1þ k2H∗ >1;

eH∗ 1þ k2H∗ð Þ
P∗ 1 − I∗ð Þ >1;

and 1<1þ k2H<1þ k2K; 8H2�0;K :½
ð92Þ

Applying the following classical relation:

xy ≤
x2

2
þ y2

2
; 8 x; y 2 R; ð93Þ

on

P − P∗ð Þ × 1; H − H∗ð Þ P − P∗ð Þ; H − H∗ð Þ I − I∗ð Þ;
H − H∗ð Þ I − I∗ð Þ P − P∗ð Þ;

ð94Þ
we get:

k1 q − 1ð Þ 1þ k2H∗ð Þ
1þ k2H∗ð Þ 1þ k2Hð Þ

� �
P − P∗ð Þ I − I∗ð Þ2

<
k1 q − 1ð Þ 1þ k2H∗ð Þ
1þ k2H∗ð Þ 1þ k2Hð Þ I − I∗ð Þ2 P − P∗ð Þ2

2
þ 1
2

� �
;

ð95Þ
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ω 1þ q − 1ð ÞI∗ð Þ − k1 1þ k2H∗ð Þ
1þ k2H∗ð Þ 1þ k2Hð Þ

� �
H −H∗ð Þ P − P∗ð Þ < ω 1þ q − 1ð ÞI∗ð Þ − k1 1þ k2H∗ð Þ

1þ k2H∗ð Þ 1þ k2Hð Þ
×

H − H∗ð Þ2
2

þ P − P∗ð Þ2
2

� �
;

ð96Þ

k1 q − 1ð Þ k2P∗ 1 − I∗ð Þ − 1þ k2H∗ð Þð Þ
1þ k2H∗ð Þ 1þ k2Hð Þ þ m1 −m2ð Þ þ θr

K

� �

H −H∗ð Þ I − I∗ð Þ<C1 H; Ið Þ;
ð97Þ

ω q − 1ð Þ 1þ k2H∗ð ÞH∗
− k1 q − 1ð ÞP∗ 1 − I∗ð Þ

1þ k2H∗ð Þ 1þ k2Hð Þ
� �

P − P∗ð Þ I − I∗ð Þ<C2 H; I; Pð Þ
ω q − 1ð Þ 1þ k2H∗ð Þ
1þ k2H∗ð Þ 1þ k2Hð Þ

� �
H − H∗ð Þ I − I∗ð Þ P − P∗ð Þ< ω q − 1ð Þ 1þ k2H∗ð Þ

1þ k2H∗ð Þ 1þ k2Hð Þ
                         ×

H − H∗ð Þ2
2

þ I − I∗ð Þ2 P − P∗ð Þ2
2

� �
;

ð98Þ

where

C1 H; Ið Þ ¼ k1 q − 1ð Þ k2P∗ 1 − I∗ð Þ − 1þ k2H∗ð Þð Þ
1þ k2H∗ð Þ 1þ k2Hð Þ þ m1 −m2ð Þ þ θr

K

� �
H − H∗ð Þ2

2
þ I − I∗ð Þ2

2

� �
:

C2 H; I; Pð Þ ¼ ω q − 1ð Þ 1þ k2H∗ð ÞH∗
− k1 q − 1ð ÞP∗ 1 − I∗ð Þ

1þ k2H∗ð Þ 1þ k2Hð Þ
P − P∗ð Þ2

2
þ I − I∗ð Þ2

2

� �
:

ð99Þ

By using the above relations, one has

L̇ H; I; Pð Þ < 2k1k2K P∗ þ q − 1ð ÞI∗ð Þ þ ωK 1þ q − 1ð ÞI∗ð Þ þ k1k2K q − 1ð ÞP∗ 1 − I∗ð Þ
2K 1þ k2H∗ð Þ

� �
H − H∗ð Þ2

þ m1 −m2ð ÞK 1þ k2Kð Þ 1þ k2H∗ð Þ þ θrK 1þ k2Kð Þ 1þ k2H∗ð Þ
2K 1þ k2H∗ð Þ

� �
H − H∗ð Þ2

−
1þ k2H∗ð Þ 2r þ k1Kqð Þ

2K 1þ k2H∗ð Þ H −H∗ð Þ2 þ k1K q − 1ð Þ 1þ k2H∗ þ 2þ k2ð ÞP∗ 1 − I∗ð Þð Þ
2K 1þ k2H∗ð Þ I − I∗ð Þ2

þ 1þ k2Kð Þ 1þ k2H∗ð Þ θr þ m1 −m2ð ÞKð Þ þ ω q − 1ð ÞK 1þ k2H∗ð Þ
2K 1þ k2H∗ð Þ I − I∗ð Þ2

−
2βK þ k1K q − 1ð Þð Þ 1þ k2H∗ð Þ þ k1K q − 1ð ÞP∗ 1 − I∗ð Þ

2K 1þ k2H∗ð Þ I − I∗ð Þ2

þ ω q − 1ð Þ I∗ þ 1þ k2H∗ð Þ 1þ H∗ð Þð Þ − k1 q − 1ð ÞP∗ 1 − I∗ð Þ þ 1þ k2H∗ð Þð Þ
2K 1þ k2H∗ð Þ P − P∗ð Þ2:

ð100Þ
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However, by grouping term by term, we obtain:

L̇ H; I; Pð Þ< Δ5 − Δ6ð Þ
2K 1þ k2H∗ð Þ H − H∗ð Þ2

þ Δ7 − Δ8ð Þ
2K 1þ k2H∗ð Þ I − I∗ð Þ2 þ Δ9 − Δ10ð Þ

2K 1þ k2H∗ð Þ P − P∗ð Þ2:

ð101Þ

Consequently, L̇ðH; I; PÞ:<0 whenever κ4<1; κ5<1 and
κ6<1: In addition, L̇ðH; I; PÞ : ¼ 0 if and only if ðH; I; PÞ: ¼
ðH∗; I∗; P∗Þ :: Therefore, thanks to LaSalle’s invariance prin-
ciple, the coexistence equilibria E3 is globally asymptomati-
cally stable in the region M: □

4. Numerical Simulation

In this section, numerical simulation has been performed to
illustrate our theoretical findings by using the parameters
given in Table 2 [1, 14]. Our goal here is to illustrate numer-
ically the effect of migration on the dynamics of system (2).
Through Figures 2–4 we present the evolution of the popu-
lation of the prey and predators. Figure 2 shows the conver-
gence of the solution of system (2) toward the coexistence
equilibrium E3 with decreasing of the infectious prey. By
increasing the parameter m1 ¼ 0:25 and maintaining the
other values fixed in Table 2, from Figure 3, we get oscilla-
tions of the preys and predators trajectories of system (2).
Now, if we consider m1 ¼ 0:3; a limit cycle occurs arising
from Hopf-bifurcation with always a decreasing of the infec-
tious prey, see Figure 4.

We continue our numerical analysis in order to study the
effect of migration in the community of prey and predators.
From Figure 5(e), we observe that the trajectories of system
(2) approach asymptotically toward E3 with the persistence
of the disease in the prey population, see Figure 5(b) for
m1 ¼ 0:56. Thus, Theorem 6 holds. By increasing the

migration rate to m1 ¼ 0:63, from Figure 6, an instability
take place around the equilibrium point E3. This result con-
firms Proposition 3. Now, for the critical value mcr ¼ 0:73;
Figure 7(a)–7(d) show an oscillations of the prey and preda-
tor trajectories around E3 with always persistence of infec-
tious disease. We also observe that system (2) undergoes a
limit cycle arising from the Hopf-bifurcation (Figure 7(e)).
Thus, Theorem 5 holds.

Remark 7. The dynamics of system (2) present variations when
the migration parameters are varied while keeping the other
parameters fixed. Thus, when the migration rate of the suscep-
tible prey populationm1 2 ð0:2; 0:3Þ :, we observe the extinction
of the infectious prey illustrated by Figures 2–4(b)). When
m1 2 ð0:56; 0:7Þ:, it is straightforward to see that infectious prey
population increases over time (Figure 5(b)), with decreasing of
the density of predator population (Figure 5(c)) which will
ultimately lead to an unstable system (Figures 6 and 7). With
the regard to this observation, we can conclude that the migra-
tion rate m1 is a key parameter that govern our model.

5. Conclusion

The process of migration in the dynamics of a prey–predator
model in the presence of infectious disease play a major role
in the natural mechanisms of regulation of species. It is in
this line of thought that we are interested in this paper, to the
study of the dynamics of prey–predator populations with
infectious disease to describe the effects of migration in the
dynamics of species. The formulation of the model derives
from an ODE system by considering Holling function
response of type II to represent the strategy of predation
between the prey and the predator. The mathematical analy-
sis allowed us first to establish that the model is ecologically
and epidemiologically well-posedness. Thus, the existence,
the positivity and the boundedness of the solutions are
proved. Moreover, we established the conditions of existence
of the coexistence equilibria. Under certain thresholds
R0;R1, Rec, and migration parameter, we were able to
investigate the local stability of equilibria by using
Routh–Hurwitz criterion. In order to show the long-term
coexistence in the prey and predator communities, we estab-
lished the global stability of the coexistence equilibrium with
an appropriate Lyapunov function. In addition, we have
described the conditions of existence of Hopf bifurcation
around coexistence equilibrium in order to highlight peri-
odic variations of the number of prey and predators due to
the effect of migration.

We used different scenarios in the model numerical sim-
ulation in order to show the effect of migration on the
dynamics of the prey and predator populations. Thus, for
m1 2 ½0:2; 0:3� :, we observe a coexistence of the prey and
predator species and extinction of disease in the infected prey
population illustrated by Figure 2(b)–2(e). But if m1 2 ½0:56;
0:7� :, we observe that the trajectories approach asymptoti-
cally to E3; with the persistence of disease in the prey popu-
lation, see Figure 5(b)-5(e). Also, we remark a decrease in the

TABLE 2: Numerical values of the parameters of system (2) used in
the simulation.

Parameters Values References

r 1.5 [8, 14]
K 366 Estimated
m1 0.2 Estimated
m2 0.03 Estimated
m3 0.02 Estimated
k1 0.1 Estimated
k2 0.001 Estimated
ω 0.015 [8, 14]
β 0.5 Estimated
q 2.5 Estimated
γ 1 [14]
b 0.15 [14]
θ 0.02 Estimated
λ 0.5 Estimated
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FIGURE 2: Dynamics of the system (2) with decreasing of infectious prey population corresponding to m1 ¼ 0:2 and R1 ¼ 0:753<1: (a) Prey
trajectories. (b) Infected prey trajectories. (c) Predator trajectories. (d) Model trajectories. (e) Phase portrait.
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density of prey and predator populations see, respectively,
Figures 5(a) and 5(c). These results are in perfect adequacy
with the mathematical results established in Section 3. In
light of these observations, we are led to conclude that the
migration rate is a key parameter that governs the dynamics
of our model and is useful for understanding the dynamics of
species of prey and predators.

In last, in this present work, the model is formulated by
using the ordinary differential equations. However, it has
been proven that the use of fractional derivatives gives a
more realistic description of most biological issues. Therefore,
for our future study, it will be interesting to consider fractional
derivatives while formulating an eco-epidemiological model
with migration that would give a better description of the
ecological process [33, 34].
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