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This article deals with a classes of singular integral–differential equations with convolution kernel and reflection. By means of the
theory of boundary value problems of analytic functions and the theory of Fourier analysis, such equations can be transformed into
Riemann boundary value problems (i.e., Riemann–Hilbert problems) with nodes and reflection. For such problems, we propose a
novel method different from classical one, by which the explicit solutions and the conditions of solvability are obtained.

1. Introduction

It is well-known that singular integral equations (SIEs) and
boundary value problems for analytic functions are the main
branches of complex analysis and have a lot of applications,
e.g., in physics, engineering, elasticity theory, fluid dynamics,
fracturemechanics, technology, and other fields.Muskhelishvilli,
Chuan, and other authors [1–5] studied some classes of SIEs of
convolution typewith Cauchy kernel and Riemann–Hilbert pro-
blems (R–HPs), especially the solvable Noether theory.
Litvinchuk, Li, and other authors [6–10], studied singular
integral–differential equations (SIDEs) in which the class of dif-
ferentiable functions was extended to the class of a Holder con-
tinuous functions and also studied the SIDEs in which the
coefficients contain a first-kind discontinuity point. In [11–18],
the authors proposed a general method for solving SIEs of Cau-
chy kernel and a convolution kernel with discontinuous prop-
erty. This method involves converting these types of integral
equations to R–HPs by using Fourier transform. In this paper,
we use a novel method for solving several kinds of SIDEs of
order m in class f0g :. This work is organized as follows: In
Section 2, we present some definitions, lemmas, and study the
properties of the Fourier transforms andCauchy transforms on a
functions of class f0g :. In Section 3, we adopt the Fourier trans-
forms to convert SIDE with reflection into a R–HPs and obtain
the solutions of the equation in class f0g:. In Section 4, we
solve singular integral–differential Wiener–Hopf equation with

reflection in class f0g:. This paper’s results improve some of the
results presented in [19–24], providing a theoretical framework
for resolving physics-related problems.

2. Preliminaries

In this section, we present some definitions and lemmas.

Definition 1 [25]. We say that F xð Þ: is an element of a space of
Holder continuous functions H on ½−N;N� :, if there exists
some positive real number r such that for any x1; x2 2 ½−N;
N�:, the condition jF x2ð Þ− F x1ð Þj: ≤ rjx2 − x1jα; 0<α≤ð 1Þ:

holds.

Definition 2 [2]. We say that the continuous function F xð Þ:

belongs to H̃ if F xð Þ: satisfies (i) F xð Þ : 2H on ½−N;N� : for any
sufficient large positive number N and (ii) jF x2ð Þ− F x1ð Þj : ≤
kj1x2 − 1

x1
j : for any jxij:>N ið ¼ 1; 2Þ :, k>0.

Definition 3 [10]. If the function F xð Þ : satisfies the following
conditions:

(i) F xð Þ : 2 H̃ ,
(ii) F xð Þ : 2 L1 Rð Þ :, where L1 Rð Þ : ¼fF xð ÞjRR jF xð Þjdx<1g :;
R¼ −ð 1;1Þ :, then we say that F xð Þ : 2 {{0}}. If F xð Þ :

satisfies Holder condition on a neighborhood N1 of 1, we
say that F xð Þ: 2H N1ð Þ :.
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Definition 4 [10]. The Fourier transform of a function φ xð Þ
: 2 L1 Rð Þ : is denoted by:

F φ xð Þ½ � ¼ 1ffiffiffiffiffi
2π

p
Z 1

−1
φ xð Þeisxdx ¼ Φ sð Þ; ð1Þ

and the inverse of Fourier transform ofΦ xð Þ : is defined by the
following equation:

F−1 Φ xð Þ½ � ¼ 1ffiffiffiffiffi
2π

p
Z 1

−1
Φ xð Þe−isxdx ¼ φ sð Þ: ð2Þ

It is easy to see that F−1½φ xð Þ� : ¼F½φ −xð Þ� : ¼Φ −ð xÞ :. If
Φ xð Þ : 2ff0gg:; then φ sð Þ : ¼F−1½Φ xð Þ� : 2f0g :.

The convolution of the functions φ;ψ 2f0g: which is
defined by the following equation:

φ × ψð Þ xð Þ ¼ 1ffiffiffiffiffi
2π

p
Z 1

−1
φ x − tð Þψ tð Þdt;  t 2 R; ð3Þ

belongs to f0g:: From the convolution theorem [2], we have
the following equation:

F φ × ψð Þ xð Þ½ � ¼ Fφ xð Þ:Fψ xð Þ ¼ Φ xð ÞΨ xð Þ; ð4Þ

where Φ;Ψ are the Fourier transforms of φ;ψ , respectively.

Definition 5 [25]. We define the operator T of the Cauchy
principal value integral as follows:

Tφ xð Þ ¼ 1
πi

Z 1

−1

φ sð Þ
s − x

ds: ð5Þ

Lemma 1. If φ xð Þ : 2f0g :, then F½Tφ xð Þ� : ¼ − sgn sð Þ :Φ sð Þ ::

Proof. Since

F Tφ xð Þ½ � ¼ 1ffiffiffiffiffi
2π

p
Z 1

−1

1
πi

Z 1

−1

φ yð Þ
y − x

dy

� �
eisx

dx ¼ −
1ffiffiffiffiffi
2π

p
Z 1

−1

1
πi

Z 1

−1

eisx

x − y
dx

� �
φ yð Þdy:

ð6Þ

From Lu [2], we have the following equation:

1
πi

Z 1

−1

eisx

x − y
dx ¼

eisy; s>0

0; s¼ 0

−eisy; s<0

8><>: : ð7Þ

From Equations (6) and (7), we obtain the following
equation:

F Tφ xð Þ½ � ¼ −sgn sð Þ 1ffiffiffiffiffi
2π

p
Z 1

−1
φ yð Þeisydy;

F Tφ xð Þ½ � ¼ −sgn sð ÞΦ sð Þ:
ð8Þ

Similarly, we can also prove that:

F Tφ −xð Þ½ � ¼ −sgn sð ÞΦ −sð Þ: ð9Þ
□

Lemma 2. If φ xð Þ : and its derivative φ rð Þ xð Þ : r¼ð 1;…;mÞ :

belongs to f0g:, then:

F φ rð Þ xð ÞÀ Á¼ −isð ÞrΦ sð Þ: ð10Þ

Proof. By using mathematical induction on r. When r¼ 1, we
have the following equation:

F φ0 xð Þð Þ ¼ 1ffiffiffiffiffi
2π

p
Z 1

−1
φ0 xð Þeisx

dx ¼ 1ffiffiffiffiffi
2π

p
Z

0

−1
φ0 xð Þeisxdx þ 1ffiffiffiffiffi

2π
p

Z 1

0
φ0 xð Þeisxdx:

ð11Þ

By using integration by parts, we obtain the following
equation:

F φ0 xð Þð Þ ¼ 1ffiffiffiffiffi
2π

p φ 0ð Þ þ −isð Þ
Z

0

−1
φ xð Þeisxdx

� �
þ 1ffiffiffiffiffi

2π
p −φ 0ð Þ þ −isð Þ

Z 1

0
φ xð Þeisxdx

� �
¼ 1ffiffiffiffiffi

2π
p −isð Þ

Z 1

−1
φ xð Þeisxdx

� �
¼ −isð ÞΦ sð Þ:

ð12Þ

Let Equation (10) be true for r¼ n, i.e.:

F φ nð Þ xð ÞÀ Á¼ −isð ÞnΦ sð Þ: ð13Þ

For r¼ nþ 1, it is easy to obtain the following equation:

F φ nþ1ð Þ xð ÞÀ Á¼ −isð Þnþ1Φ sð Þ: ð14Þ

The Lemma is proved. □

Lemma 3. If φ −ð xÞ : and its derivative φ rð Þ
−ð xÞ : r¼ð 1;…;

mÞ : belongs to f0g :, then:

F φ rð Þ
−xð ÞÀ Á¼ isð ÞrΦ −sð Þ: ð15Þ

Proof. By using mathematical induction on r. When r¼ 1, we
have the following equation:
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F φ0
−xð Þð Þ ¼ 1ffiffiffiffiffi

2π
p

Z 1

−1
φ0

−xð Þeisx

dx ¼ 1ffiffiffiffiffi
2π

p
Z

0

−1
φ0

−xð Þeisxdx þ 1ffiffiffiffiffi
2π

p
Z 1

0
φ0

−xð Þeisxdx:

ð16Þ
Let x¼ − y and similar to Lemma 1, we obtain the fol-

lowing equation:

F φ rð Þ
−xð ÞÀ Á¼ isð ÞrΦ −sð Þ: ð17Þ

□

Lemma 4. If φ Æxð Þ : and its derivative φ rð Þ Æxð Þ: r¼ð 1;…;mÞ :

belongs to f0g:, then:

F Tφ rð Þ xð ÞÀ Á¼ − −isð Þrsgn sΦ sð Þ ð18Þ

F Tφ rð Þ
−xð ÞÀ Á¼ − isð Þrsgn sΦ −sð Þ: ð19Þ

Proof. From Lemmas 1–3, we obtain the following equation:

F Tφ rð Þ xð ÞÀ Á¼ −sgn s F φ rð Þ xð ÞÀ Á¼ − −isð Þr sgn sΦ sð Þ;
F Tφ rð Þ

−xð ÞÀ Á¼ − isð Þr sgn sΦ −sð Þ:
ð20Þ

□

3. Singular Integral–Differential Equation of
Convolution Type with Reflection

In this section, we solve the following SIDE with reflection:

∑
m

r¼0
arφ rð Þ xð Þ þ earφ rð Þ

−xð Þ þ br
πi

Z 1

−1

φ rð Þ yð Þ
y − x

dy −
ebr
πi

Z 1

−1

φ rð Þ
−yð Þ

y − x
dy

(

þ crffiffiffiffiffi
2π

p
Z 1

−1
kr x − yð Þφ rð Þ yð Þdy þ ecrffiffiffiffiffi

2π
p

Z 1

−1
hr x − yð Þφ rð Þ

−yð Þdy
�
¼ g xð Þ;

ð21Þ

where x2 −ð 1;1Þ : and the values ar; ãr; br; b̃r; cr; c̃r r¼ð 0;
1;…;mÞ : are real constants and the given functions g xð Þ :; kr xð Þ :;
hr xð Þ : r¼ð 0; 1;…;mÞ : belong to the class f0g:. By taking Fourier
transform to Equation (21) and using Lemmas 1–4, we obtain the
following equation:

e1 sð ÞΦ sð Þ þ e2 sð ÞΦ −sð Þ ¼ G sð Þ; ð22Þ
where

e1 sð Þ ¼ ∑
m

r¼0
ar − sgn s br þ crKr sð Þð Þ −isð Þr; ð23Þ

e2 sð Þ ¼ ∑
m

r¼0
ear þ sgn sebr þecrHr sð Þ
� �

isð Þr: ð24Þ

Φ sð Þ: ¼Fφ xð Þ :;G sð Þ : ¼Fg xð Þ :;Kr sð Þ : ¼Fkr xð Þ :;Hr sð Þ : ¼Fhr
xð Þ : r¼ð 0; 1;…;mÞ :. The functions Φ sð Þ :;G sð Þ :;Kr sð Þ :;Hr sð Þ

: 2ff0gg:; these functions are continuous. By taking the limit
of Equation (22) as s→ 0, where lims→Æ0 s¼Æ1, we have
G 0ð Þ : ¼ 0. By putting − s instead of s in Equation (22), we
obtain the following equation:

e2 −sð ÞΦ sð Þ þ e1 −sð ÞΦ −sð Þ ¼ G −sð Þ: ð25Þ

We solve the Equations (22)and (25) for the functions
Φ sð Þ :;Φ −ð sÞ::

From Equations (22) and (25), we obtain the matrix
equation:

A sð ÞX sð Þ ¼ Y sð Þ; ð26Þ

where

A sð Þ ¼ e1 sð Þ e2 sð Þ
e2 −sð Þ e1 −sð Þ

 !
;X sð Þ ¼ Φ sð Þ

Φ −sð Þ

 !
;

Y sð Þ ¼ G sð Þ
G −sð Þ

 !
:

ð27Þ

Denote:

M sð Þ ¼ e1 sð Þ e2 sð Þ
e2 −sð Þ e1 −sð Þ

G sð Þ
G −sð Þ

 !
;Δ sð Þ ¼ det A sð Þ; ð28Þ

where

Δ sð Þ ¼ e1 sð Þ e2 sð Þ
e2 −sð Þ e1 −sð Þ

���� ����
¼ ∑

m

l¼0
∑
m

r¼0
−1ð Þr isð Þrþl aral − brbl þ crclKr sð ÞKl −sð Þð

�
þ arcl Kl −sð Þ þ Kl sð Þð Þ þ brcl sgn s Kr sð Þ − Kl −sð Þð ÞÞ
− eareal − ebrebl þecreclHr sð ÞHl −sð Þ þ earecl Hr sð Þð
�

þHl −sð ÞÞ þ ebrecl sgn s Hl −sð Þ − Hr sð Þð Þ
�o

:

ð29Þ
Suppose there exists a>0 such that for jsj :>a, we have

Δ sð Þ : ≠ 0, hence the solution of the matrix Equation (26) is
unique and is given by the following form:
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Φ sð Þ ¼ 1
Δ sð Þ

G sð Þ e2 sð Þ
G −sð Þ e1 −sð Þ

���� ����
¼ Δ−1 sð Þ ∑

m

r¼0
isð Þr G sð Þ ar þ sgn s br þ crKr −sð Þð Þð

�
−G −sð Þ ear þ sgn sebr þecrHr sð Þ

� ��i
:

ð30Þ

By using the inverse Fourier transform F−1 to
Equation (30), the solution of Equation (21) is given by
φ¼F−1 Φð Þ : in class f0g:.

When jsj : ≤ a, we discuss the next three cases:

(1) If Δ sð Þ : ≠ 0, then Equation (26) has a unique solution:

X sð Þ ¼ A sð Þð Þ−1Y sð Þ: ð31Þ

(2) If for some points fs1; s2;…; sng: 2 ½− a; a� : such that
Δ sið Þ : ¼ 0; fi¼ 1;…; ng: and rank A sið Þ : ¼ rank M sið Þ :

then Equation (26) has infinite solution:

X sð Þ ¼ Φ sð Þ
Φ −sð Þ

 !
: ð32Þ

(3) If Δ s̃ ið Þ : ¼ 0; i2f1;…;mg:; rank A s̃ið Þ :≠ rank M s̃ið Þ :;
s̃i 2 ½− a; a� :, then by condition (33):

G esið Þ ¼ 1ffiffiffiffiffi
2π

p
Z 1

−1
g xð Þeis̃i x dx ¼ 0; ð33Þ

for each i2f1;…;mg: must be satisfied for the solution of
Equation (26) exists.

The homogeneous Equation (21) has a linear indepen-
dent solutions ½eis̃1x; eis̃2x;…; eis̃mx� :.

Theorem 1. Equation (21) with condition G 0ð Þ : ¼ 0 has the
following solutions:

(1) If Δ sð Þ : ≠ 0; −1<s<1, then from Equation (30),
Equation (21) has a unique solution φ xð Þ : ¼
F−1 Φ sð Þð Þ: in class f0g :.

(2) If Δ sð Þ : ¼ 0 and rank A sð Þ : ¼ rank M sð Þ :, s¼ s1; s2;…;
sn then Equation (21) has infinite solutions.

(3) If Δ sð Þ : ¼ 0 and rank A sð Þ :≠ rank M sð Þ :, s¼ s̃1; s̃2;…;
s̃m, then by Condition (33), Equation (21) has the
following solution:

φ xð Þ ¼ F−1 Φ sð Þð Þ þ ∑
m

l¼1
Cleis̃ l x ; ð34Þ

in class f0g :; where Cl 1≤ð l≤mÞ : are arbitrary constants.

3.1. Example.We give an example of the method used in this
paper. In Equation (21), we assume that:

m¼ 1; ar ¼ 1;ear ¼ 1; br ¼ 1;ebr ¼ 1; cr ¼ 1;ecr ¼ 0; r ¼ 0; 1:

kr xð Þ ¼ g xð Þ ¼
ffiffiffiffiffi
2π

p

2
e−xsgnx; r ¼ 0; 1:

ð35Þ

Obviously kr xð Þ : continuous and even functions, by Four-
ier transformation, we have the following equation:

Kr sð Þ ¼ G sð Þ ¼ 1ffiffiffiffiffi
2π

p
Z 1

−1
2ð Þ−1 ffiffiffiffiffi

2π
p

eisx−xsgnx dx ¼ 1
1þ s2

;

r ¼ 0; 1;

ð36Þ

which belong to ff0gg:, thus kr xð Þ :;g xð Þ : 2f0g:. From
Equations (29) and (30), we obtain the following equation:

Δ sð Þ ¼ 2þ 1
1þ s2

� �
;Φ sð Þ ¼ i

2 s2 þ 3
2

À Á
  sþ ið Þ : ð37Þ

By using the inverse Fourier transform F−1 to Φ, we get
the following equation:

φ xð Þ ¼ F−1 Φ sð Þð Þ ¼ 1ffiffiffiffiffi
2π

p
Z 1

−1
Φ sð Þe−isx ds¼

ffiffiffi
π

2

r
3þ ffiffiffi

6
p� �

−1

exp −

ffiffiffi
3
2

r
xj j

� �
;

ð38Þ

which is the solution of Equation (21).

4. Wiener–Hopf Equation with Reflection

In this section, we solve the following singular integral–
differential Wiener–Hopf equation with reflection:

∑
m

r¼0
Arφ

rð Þ xð Þ þ Br

πi

Z 1

0

φ rð Þ yð Þ
y − x

dy −
eBr

πi

Z
0

−1

φ rð Þ
−yð Þ

y − x
dy

(

þ Crffiffiffiffiffi
2π

p
Z 1

0
kr x − yð Þφ rð Þ yð Þdy þ

eCrffiffiffiffiffi
2π

p
Z

0

−1
hr x − yð Þφ rð Þ

−yð Þdy
)

¼ g xð Þ;
ð39Þ
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where Ar;Br;Cr; B̃r; C̃r r¼ð 0; 1;…;mÞ : are real constants
and kr xð Þ :; hr xð Þ : r¼ð 0; 1;…;mÞ:;g xð Þ : 2f0g :. By Fourier
transforms, we define Kr sð Þ : ¼F kr xð Þð Þ :;Hr sð Þ : ¼F hr xð Þð Þ :;

G sð Þ : ¼F g xð Þð Þ :. The functions Kr sð Þ :;Hr sð Þ :;G sð Þ : 2ff0gg :.
By extending x2Rþ to x2R− in Equation (39), we obtain
the following form:

∑
m

r¼0
Arφþ rð Þ xð Þ þ Br

πi

Z 1

−1

φþ rð Þ yð Þ
y − x

dy −
eBr

πi

Z 1

−1

φþ rð Þ
−yð Þ

y − x
dy

(

þ Crffiffiffiffiffi
2π

p
Z 1

−1
kr x − yð Þφþ rð Þ yð Þdy þ

eCrffiffiffiffiffi
2π

p
Z 1

−1
hr x − yð Þφþ rð Þ

−yð Þdy
)

¼ g xð Þ þ ∑
m

r¼0
φ−

rð Þ xð Þ; t 2 R;

ð40Þ

where

φþ rð Þ xð Þ ¼ φ rð Þ xð Þ; x ≥ 0

0; x < 0

(
;  

φ−
rð Þ xð Þ ¼ 0; x ≥ 0

φ rð Þ xð Þ; x < 0

(
:

ð41Þ

By taking Fourier transform to Equation (40), we obtain
the following equation:

ee1 sð ÞΦþ sð Þ þ ee2 sð ÞΦ− sð Þ þ ee3 sð ÞΦþ
−sð Þ ¼ G sð Þ; ð42Þ

where

ee1 sð Þ ¼ ∑
m

r¼0
Ar − Br sgn sð Þ þ CrKr sð Þð Þ −isð Þr; ð43Þ

ee2 sð Þ ¼ ∑
m

r¼0
−isð Þr; ð44Þ

ee3 sð Þ ¼ ∑
m

r¼0

eBr sgn sð Þ þ eCrHr sð Þ
� �

isð Þr: ð45Þ

Substituting by −s instead of s in Equation (42), we
obtain the following equation:

ee3 −sð ÞΦþ sð Þ þ ee2 −sð ÞΦ−
−sð Þ þ ee1 −sð ÞΦþ

−sð Þ ¼ G −sð Þ:
ð46Þ

Since Φ Æ1ð Þ : ¼ 0;Φ sð Þ : 2ff0gg : and

1
πi

Z 1

−1

Φ yð Þ
y − s

dy ¼ Φþ sð Þ þΦ−
−sð Þ: ð47Þ

Equations (42) and (46) can be reduced to the following
system of SIEs of dimension 2 in class ff0gg ::

R sð ÞE sð Þ þW sð Þ
πi

Z 1

−1

E yð Þ
y − s

dy ¼ V sð Þ; ð48Þ

where

R sð Þ ¼ ee1 sð Þ − ee3 sð Þ ee3 sð Þee3 −sð Þ ee1 −sð Þ − ee2 sð Þ

 !
;

E sð Þ ¼ Φ sð Þ
Φ −sð Þ

 !
;

ð49Þ

W sð Þ ¼ ee1 sð Þ þ ee2 sð Þ −ee3 sð Þee3 −sð Þ −ee1 −sð Þ − ee2 sð Þ

 !
;

V sð Þ ¼ 2G sð Þ
2G −sð Þ

 !
:

ð50Þ

To solve Equation (48), we define a Hilbert transform
U sð Þ : with the density function E yð Þ :, that is:

U sð Þ ¼ 1
πi

Z 1

−1

E yð Þ
y − s

dy: ð51Þ

From Gakhov [25], we have the following equation:

Uþ sð Þ þ U− sð Þ ¼ 1
πi

Z 1

−1

E yð Þ
y − s

dy

Uþ sð Þ − U− sð Þ ¼ E sð Þ

8<: : ð52Þ

Putting Equation (52) in Equation (48), we obtain the
two-dimensional equation:

ϑ sð ÞUþ sð Þ þ γ sð ÞU− sð Þ ¼ V sð Þ; ð53Þ

where

ϑ sð Þ ¼ R sð Þ þW sð Þ; γ sð Þ ¼ R sð Þ −W sð Þ: ð54Þ
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Suppose:

det γ sð Þ ≠ 0; det ϑ sð Þ ≠ 0; s 2 R: ð55Þ

By using the inverse of matrices γ sð Þ : and ϑ sð Þ :, we obtain
the boundary value problem:

Uþ sð Þ ¼ Y sð ÞU− sð Þ þ X sð Þ; ð56Þ

where

Y sð Þ ¼ − ϑ sð Þð Þ−1γ sð Þ;X sð Þ ¼ ϑ sð Þð Þ−1 V sð Þ ð57Þ

The functions Y sð Þ :;X sð Þ: 2 H̃ , and det Y sð Þ : ≠ 0.
Let μ¼ indY sð Þ :; from Muskhelishvilli [5] and Gakhov

[25], we have p zð Þ : ¼ p11 p21
p12 p22

� �
: is the canonical solution

matrix of the homogenous of Equation (56), and the general
solution of Equation (56) is given by the following equation:

U zð Þ ¼ p zð Þ 1
2πi

Z 1

−1

pþ yð Þ½ �−1X yð Þ
y − zð Þ dy þ Q zð Þ

� �
; ð58Þ

where Q zð Þ : is a polynomial vector in two dimensions and:

p zð Þ ¼ exp
1
2πi

Z 1

−1

lnY yð Þ
y − zð Þ dy

� �
; z ∉ R: ð59Þ

Let p1 ¼ p11 p
2
1ð Þ : and p2 ¼ p12 p

2
2ð Þ : be the canonical solu-

tion system of the matrix p zð Þ :. Let ind pj ¼ μj; μ¼ μ1 þ μ2

and assume
ω1 yð Þ
ω2 yð Þ

� �
: ¼ ½pþ yð Þ�−1X yð Þ :. Hence from Musk-

helishvilli [5] and Gakhov [25], Equation (58) has the follow-
ing form:

U zð Þ ¼ ∑
2

j¼1
pj zð Þ 1

2πi

Z 1

−1

ωj yð Þ
y − zð Þ dy þ

Qμj−1 zð Þ
z þ ið Þμj

 !
; z ∉ R;

ð60Þ

where Qμj−1 zð Þ : is a polynomial of degree μj−1 when μj ≥ 0;
Qμj−1 zð Þ : ¼ 0, if μj<0.

We assume that μ1 ≥ μ2, hence we obtain the following
results:

(i) If μ1 ≥ μ2 ≥ 0;U 1ð Þ: ¼ 0; then the solution U zð Þ : in
Equation (60) has μ1 þ μ2 arbitrary constants.

(ii) If μ1 ≥ 0>μ2;U 1ð Þ : ¼ 0; then the solution U zð Þ : in
Equation (60) has μ1 arbitrary constants, Qμ2−1 zð Þ : ≡
0 and to get a solution of Equation (56), the
conditions,R1

−1 y þ ið Þrω2 yð Þdy ¼ 0; r ¼ 0; 1; …; −μ2 − 1; must
be satisfied [5, 25].

(iii) If 0>μ1 ≥ μ2;U 1ð Þ : ¼ 0; then the solution U zð Þ : in
Equation (60) has the following solvability
conditionsR1
−1 y þ ið Þrωj yð Þdy ¼ 0; r ¼ 0; 1; …; −μj − 1;
j¼ 1; 2 and Qμj−1 zð Þ : ≡ 0 j¼ð 1; 2Þ :.

From Equation (60), we obtain Uþ tð Þ : and U− tð Þ :, and by
substituting them in Equation (52), we get E sð Þ : the solution
of Equation (48). Hence, we obtain the solution Φ sð Þ : of
Equations (42) and (46). Therefore, φ xð Þ : ¼F−1 Φ sð Þð Þ : 2
f0g : is a solution of Equation (39).

5. Conclusions

Two classes of SIDEs of the convolution type with reflection
are studied in this research. We used the theory of Fourier
analysis to find the solutions for Equations (21) and (39).
The exact solution is obtained in class f0g:: In this case, our
method for solving these equations is novel as opposed to the
classic Riemann–Hilbert methods.
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