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This article deals with a classes of singular integral—differential equations with convolution kernel and reflection. By means of the
theory of boundary value problems of analytic functions and the theory of Fourier analysis, such equations can be transformed into
Riemann boundary value problems (i.e., Riemann-Hilbert problems) with nodes and reflection. For such problems, we propose a
novel method different from classical one, by which the explicit solutions and the conditions of solvability are obtained.

1. Introduction

It is well-known that singular integral equations (SIEs) and
boundary value problems for analytic functions are the main
branches of complex analysis and have a lot of applications,
e.g., in physics, engineering, elasticity theory, fluid dynamics,
fracture mechanics, technology, and other fields. Muskhelishvilli,
Chuan, and other authors [1-5] studied some classes of SIEs of
convolution type with Cauchy kernel and Riemann—Hilbert pro-
blems (R—HPs), especially the solvable Noether theory.
Litvinchuk, Li, and other authors [6-10], studied singular
integral—differential equations (SIDEs) in which the class of dif-
ferentiable functions was extended to the class of a Holder con-
tinuous functions and also studied the SIDEs in which the
coefficients contain a first-kind discontinuity point. In [11-18],
the authors proposed a general method for solving SIEs of Cau-
chy kernel and a convolution kernel with discontinuous prop-
erty. This method involves converting these types of integral
equations to R—HPs by using Fourier transform. In this paper,
we use a novel method for solving several kinds of SIDEs of
order m in class {0}. This work is organized as follows: In
Section 2, we present some definitions, lemmas, and study the
properties of the Fourier transforms and Cauchy transforms on a
functions of class {0}. In Section 3, we adopt the Fourier trans-
forms to convert SIDE with reflection into a R—-HPs and obtain
the solutions of the equation in class {0}. In Section 4, we
solve singular integral-differential Wiener—Hopf equation with

reflection in class {0}. This paper’s results improve some of the
results presented in [19-24], providing a theoretical framework
for resolving physics-related problems.

2. Preliminaries

In this section, we present some definitions and lemmas.

Definition 1 [25]. We say that F(x) is an element of a space of
Holder continuous functions H on [— N, N}, if there exists
some positive real number 7 such that for any x;,x, €[— N,
N], the condition |F(x;) —F(x;)|<r]x, — x1]%, (0<a<1)
holds.

Definition 2 [2]. We say that the continuous function F(x)
belongs to H if F(x) satisfies (i) F(x) € H on [ - N, N] for any
sufficient large positive number N and (ii) |F(x,) — F(x;)| <

k&z _%| for any |x;|>N (i=1,2), k>0.

Definition 3 [10]. If the function F(x) satisfies the following
conditions:

(i) F(x) € H,

(ii) F(x) € L'(R), where L' (R) = {F(x)| } |F(x)|dx<oo},

R=(-00,00), then we say that F(x) € {{0}}. If F(x)
satisfies Holder condition on a neighborhood N, of co, we
say that F(x) € H(N,,).
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Definition 4 [10]. The Fourier transform of a function ¢(x)
€ L'(R) is denoted by:

Flo(x)] Jeidx = &(s), (1)

~ o

and the inverse of Fourier transform of @(x) is defined by the
following equation:

Fe(x)] = x)e M dx = g (s). 2)

1 0
vl

It is easy to see that F~ [ ( )] =Flp(-x)]|=d(-x). If
@(x) € {{0}}. then ¢(s) =F~'[@(x)] € {0}.

The convolution of the functions ¢.yw € {0} which is
defined by the following equation:

(pxw)(x Jw(t)dt, teR,  (3)

IR

belongs to {0}. From the convolution theorem [2], we have
the following equation:

Fl(o xy)(x)] = Fo(x) Fy(x) = &(x) ¥ (x), (4)

where @, ¥ are the Fourier transforms of ¢, y, respectively.

Definition 5 [25]. We define the operator T of the Cauchy
principal value integral as follows:

i/x@ds. (5)

i) oo S—X

To(x) =

Lemma 1. If ¢(x) € {0}, then F[Tp(x)] = —sgn(s)P(s).

Proof. Since

o(y)
F T d isx
[ (p \/E/ |:7” /ooy X y:l (6)
1 o0 1 00 ezsx
dx— —\/—2_” . |:E /_xx dX:|(p0/)dy
From Lu [2], we have the following equation:
, ey, s>0
1 00 pisx
~ [T ax={0  s=o. 7)
o X =Y )
-, s<0

From Equations (6) and (7), we obtain the following
equation:
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F[To(x)] = ~sgn(s) \%2_” / “o0)edy

(8)
F[Tg(x)] = ~sgn(s) (s).
Similarly, we can also prove that:
F[To(=x)] = —sgn(s) &(=s). )
O

Lemma 2. If ¢(x) and its derivative o) (x) (r=1,...,m)
belongs to {0}, then:

F(p"(x)) = (—is) ®(s). (10)

Proof. By using mathematical induction on r. When r =1, we
have the following equation:

F(¢/(x)) = J% / * g (x)e

dx = \/_/ Je*dx + —/ )e*dx. "

By using integration by parts, we obtain the following
equation:

/() = 5= 000+ (-) [ gtmrear

+\/%; [—40(0) + (—is) / zofp(x)e"”‘dx]
1

—|(=is) / :(p(x)eis"dx} — (—is)®(s).

27

(12)
Let Equation (10) be true for r =n, i.e.

IF((p(”)(x)) = (—is)"P(s). (13)

For r =n+ 1, it is easy to obtain the following equation:

F(p"*) (x)) = (=is)"™10(s) (14)

The Lemma is proved. 0

Lemma 3. If ¢( - x) and its derivative p\")(—x) (r=1,...,
m) belongs to {0}, then:

F(p"(-x)) = (is) ®(-s). (15)

Proof. By using mathematical induction on r. When r =1, we
have the following equation:
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F ! —X zsx
(@/(=4) = o= /
x 1sxdx _"_ / lSde
Var |
(16)
Let x= — y and similar to Lemma 1, we obtain the fol-
lowing equation:
Fp\(=x)) = (is) ®(-s). (17)
O

Lemma 4. If p(+x) and its derivative o) (x) (r=1,...,m)
belongs to {0}, then:

F(Tg" (x)) = ~(~is)"sgn s (s) (18)

~ b
{cw(" (%) + ") (—x) + —

Mz

r=0

C o0
+— k. (x = y)p')
m/_m (x =)o

where x € ( — 00, 00) and the values a,, a,, b,, b,.c,.¢, (r=0,

1,...,m) are real constants and the given functions g(x), k,(x),
h.(x) (r=0,1,..., m) belong to the class {0}. By taking Fourier
transform to Equation (21) and using Lemmas 14, we obtain the
following equation:

1(5) D () + ex(5) D=s) = G(s), (22)
where
@)= 3 (a - sgnsb, + K@iy, (23)
er(s) = i (Zi, + sgn sb, +E,H,(s)>(is)’. (24)

a(5) = Fp(x), G(s) = Fy(x), K, (s) = Fk, (x), H,(5) = Fh,
(x) (r=0,1,...,m). The functions @(s), G(s),K,(s),Hr(s)
€ {{0}}. these functions are continuous. By taking the limit
of Equation (22) as s — 0, where lim,_,,,s==+1, we have
G(0) =0. By putting —s instead of s in Equation (22), we
obtain the following equation:

e, (=5)D(s) + e, (=s)D(-s) = G(-s). (25)

We solve the Equations (22)and (25) for the functions
D(s), D(—s).

From Equations (22) and (25), we obtain the matrix
equation:

A(s)X(s) = Y(s). (26)

0 (1) b 0 (") (=
") 4 _Q/ @ Ey)dy

F(T¢"(-x)) = —(is)"sgn s ®(s). (19)

Proof. From Lemmas 1-3, we obtain the following equation:

F(Tfﬂ“) (x))

B(To!" () = —(

—sgnsIE‘( ") (x )) =-(-
s)" sgn s @(—s).

is)" sgn s P(s),

(20)
O
3. Singular Integral-Differential Equation of
Convolution Type with Reflection

In this section, we solve the following SIDE with reflection:

:ooy—x w) s y—X (21)
T [Tt )y = g0,
\
where
el els) [P0
Als) = (ez —s) el(—s)>’X(S) B <<D(—S)>’ (27)

M(s):(q(s) () G
=) (=) Gl=9)

) JA(s) =det A(s),  (28)

where

4= <(—)> <(—)>
=3 {8 v - b+ Gk (9K
a,a(Ki(-S) + K(9) + brasgns (.9 = Ki(-5)
— (@81 = b,by + GG H,(5)Hy(=s) + 3,6 (H,(5)
+ Hi(=s)) + b, sgn s (Hi(=s) = H(5))) }.

(29)

Suppose there exists a>0 such that for |s|>a, we have

A(s) # 0, hence the solution of the matrix Equation (26) is

unique and is given by the following form:



G(s)
G(-s)

e(s)
() e (=s)

“1(s) %( S (G(s)(a, + sgn s b, + ¢,K,(~s))

- G(-s) (a, + sgn sb, +?,H,(s)))} .

D(s) =

(30)

By using the inverse Fourier transform F~' to
Equation (30), the solution of Equation (21) is given by
@=F"1(®) in class {0}.

When |s| < a, we discuss the next three cases:

(1) IfA(s) # 0, then Equation (26) has a unique solution:

X(s) = (A(s) 7Y (s). (31)

(2) If for some points {sy,s,,...,s,} €[ - a, a] such that
A(s;))=0,{i=1,...,n} and rank A(s;) = rank M(s;)
then Equation (26) has infinite solution:

(32)

(3) If A(S;)
gi 6 [_

1 o0 -
GG) == [ gt dx—o

for each i€ {1,...,m} must be satisfied for the solution of
Equation (26) exists.

The homogeneous Equation (21) has a linear indepen-
dent solutions [e1x, e®2x, ..., €5 x].

=0,i€{1,...,m}, rank A(3;)# rank M(3;),
a, al, then by condition (33):

(33)

Theorem 1. Equation (21) with condition G(0) =0 has the

following solutions:

(1) If A(s) #£0, —oco<s<oo, then from Equation (30),
Equation (21) has a unique solution ¢(x)=
F~Y(®(s)) in class {0}.

(2) If A(s) =0 and rank A(s) = rank M(s), s=s;,53,...,
s, then Equation (21) has infinite solutions.

(3) If A(s) =0 and rank A(s)# rank M(s), s=5,5,,...,
S,,» then by Condition (33), Equation (21) has the
following solution:

r=0 Tl

f/’”‘y

0o y—X

y)dy + —

m 0 (1)
Z{&¢W@+ﬂ/)ﬂlﬂw—
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9(x) = F1(d(s)) + éc,eﬁzx , (34)

in class {0}, where C/(1 <1< m) are arbitrary constants.

3.1. Example. We give an example of the method used in this
paper. In Equation (21), we assume that:

m=1,a,=1,a,=1,b,=1,b,=1,¢,=1,¢,=0,r=0,1.

V2r

k. (x)=g(x) = Te"“g“" r=0,1.

(35)

Obviously k,(x) continuous and even functions, by Four-
ier transformation, we have the following equation:

1

1 00 .
— 2 -1 2 iSX=XSNX Jy- ,
o /_ Oc( ) e =1

(36)

K (s) =G(s)
r=0,1,

which belong to {{0}}, thus k. (x),g(x)€{0}. From
Equations (29) and (30), we obtain the following equation:

1 i
A(s) = <2—i—1+ 2>,(p(5)_2(52+%)(5+")'

By using the inverse Fourier transform F~! to &, we get

the following equation:
—isx _ z -1
e~ ds = \[2 (3 + \/3)

el

(37)

p(x)=F"

o)

which is the solution of Equation (21).

(38)

4. Wiener-Hopf Equation with Reflection

In this section, we solve the following singular integral-
differential Wiener—Hopf equation with reflection:

B. [0 o0 (=
4/ w(yuy
7)o y—X

/'th/ —ﬁ@} g(x).
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where A,,B,,C,,B,,C, (r=0,1,...,m) are real constants
and k. (x),h,(x) (r=0,1,...,m), g(x) €{0}. By Fourier
transforms, we define K,(s)=F(k,(x)), H,(s) =F(h,(x)),

G(s) =F(g(x)). The functions K,(s), H,(s),G(s) € {{0}}.
By extending x € R* to x € R™ in Equation (39), we obtain
the following form:

S g, B [ooq,D(=

Z{Arm(’)(xHB—’./ 0-"0) —B—r,/ %_(y)dy

r=0 Tl ) _o y—x i) oo y—x
C, [ & e

+—= [ kx=-ye.Y()dy +—= / hy(x = ). 7 (=y)d (40)
= [0 00+ = [ ey

=g(x)+ X (x).t €R
r=0

where

(" 9"(x). x20
P\ (x) = ,

0, x<0

(41)

(r)( ) 0, x>0
_(x)= .

’ P (x), x<0

By taking Fourier transform to Equation (40), we obtain
the following equation:

er(s) @7(s) +ex(s) P7(s) + &3 (s) D7 (=) = G(s),  (42)

where
(5)= 5 (A~ B sgn(s) + GK() (i) (43
&)= (i), (44)
&)= 3 (Brsgn(s) + CHO) . (49)

Substituting by —s instead of s in Equation (42), we
obtain the following equation:

e3(=s) @7 (s) + e2(=s) P~ (=s) + &1 (=s) D7 (=s5) = G(-s).

(46)
Since @(+00) =0, P(s) € {{0}} and
%Cf%@:@@+wmy (47)

Equations (42) and (46) can be reduced to the following
system of SIEs of dimension 2 in class {{0}}:

R(s)E(s) + Wﬂ—(ls) /_ z f—(_y)sdy =V(s), (48)
where

Mg:<5@‘%@ &(9) )

& (~s) er(=s) — e (s) (49)
E(s) = ®(s)

P(-s) )
W®_<a@+a@>—a@ )

e (—s) —ei(=s)=&(s) ) (50)

To solve Equation (48), we define a Hilbert transform
U(s) with the density function E(y), that is:

U@—i/mﬂﬁw. (51)

b NS R

From Gakhov [25], we have the following equation:

{W@+w@:%f@@@

wi) oy =5 . (52)
U™ (s) = U (s) = E(s)

Putting Equation (52) in Equation (48), we obtain the
two-dimensional equation:

S(s)UT(s) +7()U(s) = V(s), (53)



Suppose:

dety(s) #0,det9(s) #0,s €R. (55)

By using the inverse of matrices y(s) and 9(s), we obtain
the boundary value problem:

Ut(s)=Y(s)U (s) + X(s), (56)

Y(s) = =(8(s))7'r(s). X(s) = 8((s)) ™" V(s) (57)

The functions Y (s), X(s) € H, and det Y(s) # 0.
Let u=indY (s), from Muskhelishvilli [5] and Gakhov

2
2 2

matrix of the homogenous of Equation (56), and the general
solution of Equation (56) is given by the following equation:

0@ =p(a) (5 [~ T g4 0). )

1 2
[25], we have p(z) = < | P 1) is the canonical solution

where Q(z) is a polynomial vector in two dimensions and:

p(z) = exp( ! /OO In¥(y) dy) ,Z&R. (59)

2_7l'i —oo()’_z)

Let p' = (pi p? ) and p*> = (p} p3 ) be the canonical solu-
tion system of the matrix p(z). Let ind p/ = pj. =y + i,

@1(y) > =[p™(y)]"'X(y). Hence from Musk-

wy(y)
helishvilli [5] and Gakhov [25], Equation (58) has the follow-

ing form:
Qﬂ]—l (Z)
+(z+i)”J‘ EER

and assume (

1 [ oy)
2mi o (yj—z)d

W@=§y@<

(60)

where Q,  (z) is a polynomial of degree y;_, when y; >0,
Q. (2) =0, if 4;<0.

We assume that u; >y, hence we obtain the following
results:

(i) If uy 2 pp >0, U(00) =0, then the solution U(z) in
Equation (60) has y; + u, arbitrary constants.

(i) If py > 0>p,, U(oo) =0, then the solution U(z) in
Equation (60) has y, arbitrary constants, Q,, (z) =
0 and to get a solution of Equation (56), the
conditions,

[ (v + i), () dy=0,r=0, 1, ..., =, — 1,
be satisfied [5, 25].

must
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(iii) If 0>y >y, U(oc) =0, then the solution U(z) in

Equation (60) has the following solvability
conditions
I+ (y)dy=0,r=0,1,.., - -1,

j=12andQ, (2)=0(j=1.2).

From Equation (60), we obtain U (¢) and U~ (t), and by
substituting them in Equation (52), we get E(s) the solution
of Equation (48). Hence, we obtain the solution @(s) of
Equations (42) and (46). Therefore, ¢@(x)=F"1(d(s)) e
{0} is a solution of Equation (39).

5. Conclusions

Two classes of SIDEs of the convolution type with reflection
are studied in this research. We used the theory of Fourier
analysis to find the solutions for Equations (21) and (39).
The exact solution is obtained in class {0}. In this case, our
method for solving these equations is novel as opposed to the
classic Riemann—Hilbert methods.
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