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In this paper, we use the fountain theorems to investigate a class of nonlinear Kirchhoff-Poisson type problem. When the
nonlinearity f satisfies the Ambrosetti-Rabinowitz’s 4-superlinearity condition, or under some weaker superlinearity condition,
we establish two theorems concerning with the existence of infinitely many solutions.

1. Introduction and Main Results

This paper is concerned with the existence and multiplicity
of solutions for the nonlinear Kirchhoff-Poisson type prob-
lem:

—<a—|—b/ |Vu|2dx>Au+¢u:f(x,u), x €4,
e

-Ap = u?,
u:¢:0’

x € Q,
X € 082,
(1)

where Q is a smooth bounded domain in RN (N =1, 2 or 3),
a,b>0 and f: 2 XR—R is a continuous function, satisfy-
ing some suitable conditions we will formulate later.

When a=1 and b=0, Equation (1) reduces to the
boundary value problem:

—Au+pu=f(x,u), x€£,
A =12, x €L, (2)
u=¢=0, X € 082.

Knowledge of the solutions of System (2) is related to the
study of stationary solutions y(x, f) = e "u(x) for the non-

linear parabolic Schrodinger—Poisson system:

Oy _
_IE: —All/+¢(x)ll/_ ‘l//|p zws XEQ,
—A¢ = |y, XE€EQ, G)
w=¢=0, x € 082.

The first equation in Problem (3) is called Schrodinger
equation, and modeling quantum nonrelativistic particles inter-
acting with the eletromagnetic field are caused by the motion. A
typical and important class of Schrodinger equations is reflected
in the potential ¢(x), which is depended on the charge of wave
function itself, that is to say, as the Poisson equation in
Equation (3) holds. For more applications of the physical rele-
vance of the Schrodinger—Poisson system, we refer to [1-4] and

references therein.
System (2) has been extensively studied after the seminal

work of Benci and Fortunato [4]. There are many results
about the existence and nonexistence of solutions, multiplic-
ity of solutions, least energy solutions, radial and nonradial
solutions, semiclassical limit, and concentrations of solution
which are covered in the literature (see for instance

[1-3, 5-11], and the references therein).
When the potential ¢ in Equation (1) vanishes, we get

the following problem:
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- a—l—b/QWulzdx)Au:f(xv“)» XEL iy

u=20, X € 0L2.

In the case b#0, Problem (4) is nonlocal due to the
emergence of b [ ,|Vu[*dxAu and is involved in the following
stationary analog of equation:

iy - <a+b/Q|Vu2>Au:g(x, W), (5)

which was proposed by Kirchhoff as a generalization of the
classical D’Alembert’s wave equation for the free vibration of
elastic strings:

Pu P0+E/L
Por = \n "L/,

where L is the length of the string, & denotes the area of
crosssection, E represents the Young modulus of the mate-
rial, and P, is recorded as the initial tension. The Kirchhoff’s
model deals with the change of string length caused by trans-
verse vibrations, we refer to [12—14] for early work. It is well-
known that only after Lions [15] put forward an abstract
analysis framework, Equation (6) attracted great attention,
see [16-18] for example. Recently, many nonlinear analytical
methods and techniques are employed to investigate the
existence of sign-changing solutions to Problem (4) or simi-
lar Kirchhoff-type equations, and consequently, some inter-
esting results were obtained. Let me cite a few examples,
Alves et al. [19] and Ma and Rivera [20] obtained the exis-
tence of positive solution to this kind of problem by means of
variational method. Perera and Zhang [21] utilized the
method of Yang index and critical group to obtain the non-
trivial solution of Equation (4). Also in [22], they revisited
Equation (4) by means of the invariant set of descending flow
and the existence of signed solutions and sign-changing solu-
tions is considered. Analogous results were established in
[23] by Mao and Zhang [23]. The authors in [24-27] studied
Problem (4) or more general Kirchhoff-type equations,
respectively, by using constraint variational methods and
quantitative deformation lemma. Later, under some more
weaken assumptions on f, with the aid of some new analyti-
cal skills and non-Nehari manifold method, Tang and Cheng
[28] extended some results obtained in [26]. It is well-known
that similar nonlocal problems can be used to model some
physical and biological systems, where u describes a process
depending on its own average value, such as population den-
sity, see [29-31] for example.

Inspired ed by the papers mentioned above, the main
goal of this paper is to show the existence and multiplicity
of nontrivial solutions to Problem (1). The main tool is based
on the classical fountain theorem in [32] and a variant ver-
sion of the fountain theorem from Zou’s [33] study. To the
best of our knowledge, among the existing literatures, there is

ou
ox

2 2
dx) Tu_,, (6)

o>
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no such kind of result concerned with infinitely many solu-
tions for Problem (1).

In this paper, we introduce the space W = H} (£2) endowed
with the norm ||u|* : = [,|Vu|*dx. Throughout this paper,
we denote by ||, the usual L7-norm with g > 1. Since Q is a
bounded domain, it is well-known that W L9(Q) continu-
ously for g € [1,2*], and compactly for g € [1,2*). Moreover,
there exists ¢, >0 such that:

luly < cgllull, Yuew. (7)

We set by 0<4, </, <..., the distinct eigenvalues of —A
in L*(22) with zero Dirichlet boundary conditions and
denote by ey, e,, €3, ... the eigenfunctions corresponding to
eigenvalues, respectively.

It is well-known that, by the Lax—Milgram theorem, for
every u € H} (), there exists a unique element ¢, € H} ()
such that:

L[ )P
h) =5 [ B2 ()

It is clear that the energy functional associated with Prob-
lem (1) can be expressed as follows:

a b 1
r= S 1P + g1l +5 [ s

(9)
—/ F(x,u)dx, u € H)(Q),
Q

where F(x, t) = [} f(x,s)ds. It is not difficult to check that I
is of class C:

(), v) = (a+ bHqu)/QVqudx

+/Q¢uuvdx - /Qf(x, u)vdx, Vu,v € H} (),
(10)

and the critical points of I" correspond to the weak solutions
of Equation (1). Now, we state our main results as follows.

Theorem 1. We assume the nonlinearity f satisfies the follow-
ing conditions:

(F)) fEC(QXR,R) and for some 4<q<2*=

2
a2 "Z% andsome constant C>0 such that:
00 n=1,2,

[f (e ) < CO+ [t]17). (11)
(F,) There exist constants >4 and R>0 such that:
[t| > R= 0<0F(x,t) <tf(x,t), Vx € Q. (12)

(F3) There holds f(x, —t) = —f(x,t), Vx€Q, VteR.
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Then Problem (1) admits a sequence of solutions {w,}
such that I'(w,)—00 as n—o0.

Theorem 2. Suppose that conditions (F,) and (Fs) are satis-
fied. Furthermore, the following conditions hold true:

(Hy) f(x,t)t>0,Yt>0; and liminf,_ % —00
uniformly in x € Q.
(Hy) f(x,t) =o(|t]) as |t|— 00 uniformly in x € £; Vx €
Q, the function ’t‘;t is increasing in t > 0.
(H;) F(x.,t): = 1f(x, t)t — F(x, t)—00 as |t| —00 uni-
formly in x € Q.

Then, Problem (1) admits infinitely many solutions {w, }
satisfying I'(w,,) — 00.

Remark 1. In order to prove Theorem 1, we shall use the
Ambrosetti-Rabinowitz type 4-superlinear condition (F,) to
obtain the boundedness of (PS) sequences of the functional
I'. But, there are many functions which are 4-superlinear
growth; however, it does not satisfy (F,) for any 6>4, hence,
when (F,) is not verified, it becomes more complicated to
deal with. In Theorem 2, we employ Theorem 4 without
(PS)-type assumption, to establish arbitrarily many solutions
of Equation (1) under some weaker conditions than (F,). We
present a concrete example at the end of the proofs to explain
the main results.

2. Proofs of Theorems 1 and 2

We first recall the following preliminary results, which are a
collection of results from D’Aprile and Mugnai’s [34] and
Ruiz and Siciliano’s [7] studies.

Lemma 1. The function ¢, € H}(Q2) given in Equation (8)
has the following properties:

(i) ¢, >0, and ¢, = >, V>0,
(il) there exists C>0 independent of u such that ||¢,|| <
Cl -

/ Puiidx < Cllull*, (13)
Q

(iii) if w,—u in H}(L2), then ¢, —=¢, in H)(2):

lim ¢wna)§,dx:/ P utdx. (14)
Q Q

n—00

Let W be a Banach space equipped with the norm |||
and W = @;cnX; with dim X; <oo for any i € N. Denote by

Yj = ®]1':()Xi’ Z] = Ga?i]Xl) and:

B = {ue Y, ul <p},
N;= {ue Zi|ul| :yj}forpj>yj>0.

(15)

Theorem 3 [32]. Let p € C'(W,R) be a even functional.
Assume that for each j €N, there exist p;>y;>0 such that:

(D1) aj=maXycy, |u||=y, (1) <0,
(D3) bj = infuez, ju)| =, #(u) —00. j—00, and
(D3) @ satisfies the (PS), condition for every ¢>0,

then ¢ has an unbounded sequence of critical values.

Now we define the C!-functional I'; : W——R defined by
the following equation:

[y(u): =A(u) — AB(u), 1€ [1,2]. (16)

We suppose that:

(E1) I'; maps bounded aggregate into bounded aggregate
uniformly for A € [1,2]. Moreover, I';(—u) =1I";(u)
for all (4,u) € [1,2]xW.

(E,) B(u) >0 for all u € W; A(u)— 00 or B(u)—00 as
||u||—> 00, or

(E3) B(u) <0 for all ue W; B(u)— — o0 as || u||—o0.

For j > 2, we set the following equations:

T; :{y € C(B.W) :yisodd. ylo, = id}, (17)
¢i(4) : =yig£ rp&)};ﬂ(?(u)), (18)
bi(4) : = udm:yj r(u). (19)

max [I;(u).
weY,.ul=p, (#)

We also need the following variant version of the foun-
tain theorem.

Theorem 4 [33]. Suppose that (E,) and (E,) or (E;) are
satisfied. If b;(4)>a;(2) for all A€ [1,2], then ¢;(1) > b;(4) for
all 2 € [1,2]. Moregver, for almost every (a.e.) A € [1,2], there
exists a sequence {)wi, (/1)}OC ) such that:

sup
n

wh(2) H <00, I (mj (A)) —0and I (wﬂ(l)) —¢j(4), asn—00.
(21)
Now, we are ready to prove our main results.

Proof of Theorem 1. It is obvious that I'(u) € C'(W, R).
We have from (F,) by integrating that:



c(|t|? = 1) < F(x,t), Vt €R. (22)

C+1+ ”a)nH Zr(wn) - ‘fr/(wn)a)n
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Take £€(071,47") and {w,} CW, a (PS) -sequence of
I'. Thus, for n large enough, by Lemma 1—(i), we infer that:

1 1 1
—a(5= &)l + b3 )lanli + (3=¢) [ _dufonas

+ [ (oo, - Fro,)ds
>a(5 =6 )llanl? + b5 &)l + =) [ P s (23)

zaG-é)mnz +b<i-é>nwnn4+c<59— Dlwf§ ¢

1 1
>a(5 =)+ D) + (3= €) QP + 4l + 66 - Dl =

where C, ¢>0 are constants, and w, =y, +z,, ¥, €Y,, and

z, € Z,. From the fact that dim Y,, is finite, and all norms in

Y are equivalent, we see that {w,} is bounded in W.
Therefore, there exists a subsequence of {w,}, still

the Rellich theorem, we have w,—® in LP(£); also we can
infer that f (x, w,) —f (x, ®) in L? (@) with p=_; as a con-
sequence of Theorem A.2 [32]. Next, we prove that {w,}
admits a convergent subsequence. Notice that:

denoted by itself, such that w,—® in H}(£2). Thus, by using
|

0,(1)

=({I"(w,) - I'(0), 0, - o)
_ a/ IV (@, — o) Pdx + b||a),,\|2/ Voo,V (@, - w)dx + b|\w||2/ VoV (o - o,)dx
Q Q Q

[ doontw, -0l [ puotw, o) [ (fx) - fix.0)(@, - o
o, =0l + [ (0,00~ u0)(@, - 0)ds + bl | T0,V(@, - a)dx
ool [ Vo= o,)ds+ blo,lP [ Vov(o- o,
~blonl? [ VoV(o-a)di- [ (fxw) - fx.0)o, - 0)d
(@t tlanl) [ (9@, = 0)Pds+ b = [0]) [ VoV (o, - w)dx

+ /Q(‘l)wnwn - ¢ww) (0, — w)dx - /Q(f(xv a)n) _f(x’ a)))(wn - w)dx’

\
from which, we get the following equation:

|

(a -+ bllay|?) / V(- )P

= (Il = onl) [ VT, -0l + [ (o0~ do0) @ - 0,)dx (25
+ [ (frw) - fx.)) @, - @) +0,(1).
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It is obvious that the first term of the right-hand side of
Equation (25) converge to zero as n—00, by virtue of
w,—~w in E and the boundedness of {w,} in W. For the

[ —

< |,
<Cle,,

where |¢,, — ¢,|;—0 due to Lemma 1. Again by Holder
inequality, we get the following equation:

/ ()~ (5.0 0, =)l <If (5.0,) =f (5:0) | 0 =], —0.

(27)

when #n——o00. Therefore, the right-hand side of

Equation (25) tends to zero, and so we infer to ||, — ||

—0, as n—o0. This implies condition (Ds) is satisfied.
Using Equation (22), we obtain the following equation:

b 1
F@) <5 lonl 41wl 5 [ du,00ds = oyl +c

<3 lloy|?

NSRS SN N

b
+ 7 leonll* + Cllo[* - clar,lf + c.

(28)

As all norms are equivalent on the finite dimensional
space Yy, (D) is satisfied for every sufficiently large p;>0.

We next verify condition (D,). By (F;), we have the
following equation:

F(x, 0)] <c(1 + [w]?). (29)
Define
ﬁj: sup |l
weZ; |of|=1 1 (30)

such that on Z;, we have the following equation:

b 1
(@) > 2 o] + 2l + / Bowdx — clall - ¢
4 4/,

ab
Z\/;Hw\P - pllolf -c.

a
2ol

second term of the right-hand side of Equation (25), we have
by using Holder inequality that:

|
— [ polwr-oracs [ (p, - d)olw, - )i
< / (B0, = bo) (@, — w)dx

(26)

- ¢w|3|w|3|wn - CU|3

_¢m 3

l@lllw, = wl|—0,

Sety; : 71 Asin [32], we can infer to f;—0,
j—00, for an}y g) % with [|@|[ =7;, and so, we have the

following equation:
cqﬁ]‘? E=
——] -c—00,
(ab)/2

o 303

as j—o00. Thus, condition (D,) is satisfied. Now, we have
checked that all the conditions of Theorem 3 hold; hence,
Problem (1) admits a sequence of solutions {;} such that
I'(wj)—00 and j—o0.

Proof of Theorem 2. We introduce the auxiliary func-

tional:

(32)

_ay by l/ 2
ro) =2l + Dol + [ oot
) / Flx, 0)dx : = A(w) - 1B(w),
Q
for /16[1 2], where Alw) =

and B(w) = [, F(
as Ha)||—>oo and I')(-

Sl +2llol* +1 [ob,0’dx
x, w)dx. Therefore, B(w) >0, A(w)—00
w)=T)(w) forall A€[1,2],ucW.

Claim 1. There exists 1,—1 as n— o0, ¢ >b*>0 and
{z,}52, CW such that:

I, (z) =0, I (z) € [57.6] (34)

In fact, by conditions (H, ), for any #>0, we can choose a
constant C, such that F(x, w) > #|w|* — C, for all w € R.

Take ¢;, such that |w|, > ¢;,[|o||, Vo € Y;. Then, for ® €
Y;, we have the following equation:



ryw) <5 ol + —||w||4 3 duoras—ic [ ot a] con

<4 24 4
<5 lloll* + ||60||

for p;>0 large enough, provided #(c;4)*> * Hence, we
obtain the following equation:

a;(A)= max

() <0,
i) = max, Tae) < (36)

uniformly for 4 € [1,2] if p;>0 large enough.
|

b 4 _
+ 2ol
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(35)
?(cja)*|o||* + c— - oo,

\
On the other hand, by conditions (F,), (H,), we have, for
any &> 0, there exists D, >0, such that:

|f(x. )] < D[]

(37)

Let f3; be defined as Equation (30). Then, for each @ € Z;
and £>0 small enough, we get the following equation:

b 1
n<w>:f||wu2+—||w||4+— / Bowidx - 1 / F(x, w)dx

> Slolf + ol + [ pards =5 [ JoPar=2 [ jolaax

a
=Sl ot +5 [ dawrde-S 0B -

[1
Z lool|* + IIwII4 — clog

2 ol - Cﬁfl\wll‘f~

§1 5t
Denote by y; = (4“;/])2 ', then for o € Z; with [|o|| =y,

one has the following equation:

4Cqﬂjq ﬁ a a .
ry(w) 2 (T) (2—4—‘) 1 =1by, (39)

which implies that b;(1)
j—00. Therefore, by Theorem 4, for a.e. 1€ [1,2], there

=infuez, ul|=y, Ij(w) 2 bf —o0 as

exists a sequence {oo,]1 (l)}oo such that:
n=1

H <co, @, (w{;(z)) 0. (40)

and
r, (wz;(z)) () 2 b(4) 2 b (41)

as n—oc. Furthermore, using the fact that ¢(4)<
sup,,ecp, I’ 2(@): =c¢f, and Hy(€2) is imbedded compactly
into L"(Q) for 2 <r<2* by a standard argument, we infer

that {a)f,(/l)}:il

has a convergent subsequence. Conse-

quently, there exist /(1) such that I)(/(1))=0 and
Iy(7(2)) € [, ¢f]. As a result, we can find 4,—1 such that

{z,} being exactly what kind of want to happen.

\
Claim 2. {z,,}°°, must be bounded in W. Suppose by contra-
diction that, ||zn||—>oo as n—o0. Denote by u,, :

= Tall
Then up to a subsequence, we have the following equation:

U,—u in H}(Q),
u,—u in L'(Q) for 2 < t<2*, (42)
U,—u a.e.x €.

There are two possible cases: (i) u#0inW; (ii)

u=0inW.
In Case (i), it follows from I (z,) =0 and Lemma 1
that:
f(x,z,)z, /
dx = ¢, Z2dx < C.
/ (Ml ||ZnH2 ||Zn||4 -

(43)

On the other hand, by Fatou’s lemma and condition (H, ),
(Hj3), we infer to the following equation:
f x Z?’l Z?’l :/ | n|4f(x Z”)Z?’l —)OO, (44)
#0}

al® |z

which yields a contradiction.
In Case (ii), we may define the following functional as in
[35]:
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Fin (tnzn> = ggul(] FA,, (th). (45)
|
at? bt
F/l,, (tnzn) = 7

>2al,

which implies that lim,_.. I'; (t,z,) = 0o, since £>0 can
be large arbitrarily. Here, we have used the fact that u,—0 in
W and u,—0 in LP(£2),p€[1,6), and so:

[ ([ s (] o)

Ss_lquun “nﬁz/s < C”unHzlunHz/S—}O’

(47)

together with:

D,
/F(x,u,,)dxs—é/ |un|qu+f/ |u,|?dx—0.
Q q.) a 2) e
(48)

Note that £, € (0, 1] and (") (£,2,), t,2,) =0, it follows
from:

1
rﬂ,,(tnzn) :rln(tnzn) - Z <rf1n(tnzn)v tnzn>

/1_”/9 [f (. ty2n) tnz, — 4F (x, 1,2,,)].

at}
= Tn 12> + 1
(49)

and I'; (0) =0, that |t,z,| must tend to co when n—o0.
Therefore, by (H;) and 1, € [1,2], we have the following
equation:

/ Utz - 4FG ) —oe. (0

On the other hand, we use the fact that h(t) = t*f(x, s)
s—4F(x,ts) is increasing in t € (0, 1], which implies that,
f(x,s)s—4F(x,s) is increasing in s>0 by virtue of the fol-
lowing equation:

d 4 d [(flxs)
pa [f(x,s)s —4F(x,s)] =s i ( s ) (51)
and 1 <f3’s) is increasing for s€(0,00). By virtue of the

oddness of f, we have the following equation:

Set uf : = (4¢)7u, with £>0, then we obtain when # is
large enough, that:

t4
el + el 5 [ s [ Bt
Q Q

>I'; () = 2af + 4bt* + 4f2/g¢un|un|2dx - ln/QF(x, Vatu,)dx

(46)

\
/ Lf(x’ Zn)zn —4F(X, ZVI)} Z/ U(x’ tnzn)tnzn _4F(X’ tﬂzﬂ)] o0,
Q Q
(52)

which leads to a contradiction in view of:

1

[ Fluzm) = 1) = () )

a
-2zl <1 () € b7

(53)

So far, we have proved that the solution 2/ satisfies I'(2/)
€ [b;'. ¢j]. Since by — 00 as j—00, we see that there exist a
sequence of solutions {2/}, of Problem (1) such that I', (/)
—00, j—00.

Finally, we present an example to explain that there is a
nonlinear f which satisfies all the conditions of Theorem 2,
but does not satisty the conditions of Theorem 1, especially

condition (F,).
Example 1. Let f(x,u) =u> In(1 + |u|). Integrating by parts,

a simple computation yields that for u>0, we have the
following equation:

F(x, u) :/”f(x, )dt /“[9(4 +In(1+ 1))dt

4 1 4 3 2
:”Zln(1+u)——(”——u—+%—u+ln(1+u)>,

4\4 3
(54)
and
~ 1
F(x,u): :Zf(x, u)u — F(x, u)
L/ut |u W?
=1 (Z—T‘f‘?— |u +In(1 + |“|)) —00,

(55)

as |u|—o00, which means that condition (H;) is satisfy.
Moreover, it is easy to see that f satisfies conditions (H,),

(Hy).



However, f does not satisfy condition (F,). Indeed, sup-
pose that there exists some p>4 fulfilling OF (x, u) < f(x, u)u
for |u| large. Consequently, we have the following equation:

W In(1 + |u|)<9 L)

4 16In(1 + |u))
0 |uf u?

=== <y
4< 3 +2 |u+ln(1—|—|u|)>_uln(1—|—|u),

(56)

for |u| large, which contradicts to the fact 6> 4.
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