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�e tomato is one of the most nutritious, economically important, and delicate vegetables grown in the world. It is highly
susceptible to insect pests andmicrobial pathogens.�e tomato leafminermoth, Tuta absolutaMeyrick, is the current impediment
to tomato production in the world. �e insect showed invasive and notorious behavior and was a�ecting tomato production. To
control this insect, the application of synthetic insecticides is seen as the primary solution. However, during the feeding stage,
larvae hide within mined leaf mesophyll and bored fruits from chemical spray, besides fast developing resistance to several
insecticides. Such characteristics of the insect reduced the e�ectiveness of the chemical control e�orts. Currently, the natural, or
ecofriendly pest control method is gaining the momentum to minimize the application of synthetic insecticide against this
devastating insect. Studies showed that botanical extracts (phytochemicals) and natural enemies such as parasitoids, predators,
entomopathogenic nematodes, entomopathogenic fungi, and entomopathogenic bacteria are e�ective for controlling T. absoluta.
As a result, the basic attributes of the above-mentioned natural agents and their potential to control T. absoluta have been brie�y
discussed in this review. However, due to disease (pests), the expected outcome for the subsectors is still low. �erefore, the
pinpointing of major diseases and pests and their control measures would help to signi�cantly improve the crop production
technology used by smallholder farmers and thereby sustainably improve tomato production in Ethiopia.

1. Introduction

�e tomato (Solanum lycopersicum L.) is the second most
important vegetable, next to potatoes, grown in the world
[1]. It is an herbaceous plant in the genus Solanum and
family Solanaceae with erect or prostrate growth habits [2].
It originated from the wild ancestor (wild cherry tomato,
S. lycopersicum var. cerasiforme), which is native to western
Latin America along the coast of Central Ecuador, Peru,
Northern Chile, and Galapagos Island [3]. Its distribution is
extended into Mexico, Colombia, Bolivia, and other Latin
and North American, European, and African countries [4].

Tomato is rich in vitamins, minerals, and antioxidant
components,and is highly commercialized in local and ex-
port markets. In 2019, it was estimated that tomato pro-
duction covered around 5.03 million hectares of farmlands
with 1.8 billion metric tons of annual production worldwide

[5]. Asia shares 54.1% of tomato production, followed by
America (17.7%), Europe (15.9%), and Africa, which con-
tributes 11.9% of global tomato production [5]. Melomey
et al. [6] indicated that China, India, Turkey, the USA, and
Egypt are the leading countries in tomato production in the
world.

In Africa, 51% of tomato was produced in mid-altitude
countries [7], of which, Egypt, Nigeria, Algeria, Morocco,
Tunisia, and Cameroon produced 6.8 (41.8%), 3.8 (23.4%),
1.5 (9.2%), 1.3 (8%), 1.3 (8%) and 1.2 (7.4%) million metric
tons of tomato per year; however, Ethiopia produced only
34, 947 (2.2%) metric tons, which is far below the average of
major tomato producing countries in Africa [5] even if the
agroecology of the country is suitable for tomato production
and productivity.

Although tomato production is increasing over time,
several biotic and abiotic factors are becoming the major
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constraints. 'e most important biotic constraints are insect
pests, microbial diseases, and nematode infections, which
cause a direct and indirect impact on tomato production.
Especially, the insect pest, T. absoluta has been highly af-
fecting tomato production in the world and causes 80–100%
of crop loses [8]. In Africa, the estimation taken from twelve
sub-Saharan countries showed 1.05 million metric tons of
tomatoes were damaged by T. absoluta from the total of 3.64
million metric tons of production annually [9]. 'is could
have resulted in estimated economic loses of US$ 791.5
million. In Kenya, which is the most proximate country to
Ethiopia, has lost 114,000 metric tons of tomato production
by T. absoluta with US$ 59.3 million in annual economic
damage [9]. 'ese days, the devastation of T. absoluta in
Ethiopia has been reaching throughout the country; how-
ever, there is a dearth of information on the status of
economic damage.

'us, to overcome this problem, producers are highly
reliant on the excessive use of synthetic pesticides to control
T. absoluta [10]. To that end, farmers are continuously using
large volumes of insecticides on their tomato farm [11], and
chemical residues are contaminating the crop (tomato),
affecting human health, the environment, and biodiversity
[12, 13]. 'e overriding problems associated with excessive
use of chemical pesticides necessitate prudent management
options to reduce chemicals and supplement integrated pest
management (IPM) with good horticultural practices [14].
'erefore, different attempts have been made to evaluate the
effectiveness of natural enemies to manage T. absoluta
[15–19]. 'is review is aimed at discussing the effectiveness
of chemical insecticides, botanicals, and natural enemies
such as parasitoids, predators, bacterial, fungal, and nem-
atode entomopathogens against T. absoluta.

2. Insect Pests in Tomato Production

Insects are the most severe impediments to tomato pro-
duction due to direct physical damage and act as indirect
facilitators for the entry of other infectious pathogens like
viruses, bacteria, fungi, and nematodes. Hofmaster [20]
earlier identified nineteen arthropod pest species
attacking tomatoes from different agro-ecologies in
Eastern Virginia, of which lepidopteran insects, thrips,
and stink bugs are the most serious groups that under-
mine tomato production.

Lepidopteran insects are the most diversified taxa,
containing about 160,000 described species of butterflies and
moths in 47 superfamilies [21]. Both larval and adult stages
are associated with vascular plants, and most larvae feed on
plant materials using biting and chewing mouthparts [22].
Lepidopteran insects therefore easily injure tomatoes, reduce
fruit marketability, and cause low production [23].

Different species of lepidopteran insects challenge to-
mato production in Ethiopia. 'e most important ones are
tomato leafminer (Tuta absoluta), potato tuber moth
(Phthorimaea operculella), and African bollworm (Heli-
coverpa armigera) [24, 25]. Shiberu and Getu [25] reiterated
that the newly introduced insect, T. absoluta, is becoming a

serious threat for tomato production in Ethiopia and has
alarmingly increased in covering the large tomato-pro-
ducing areas of the country.

2.1. Occurrence and Distribution. 'e tomato leafminer,
T. absoluta Meyrick 1917 (Lepidoptera: Gelechiidae), was
discovered in Latin America, Peru, in 1917 [26] and rec-
ognized as a severe pest for 50 years on the continent [27]. At
present, it is spreading throughout Latin America, the
Mediterranean coastal area of Europe, Asia, India, China,
Australia, New Zealand, the Russian Federation, the United
States, and almost all countries in Africa [17].

Its distribution is extremely fast, and the insect spreads
together with vegetable and fruit trade, farm equipment, and
with the help of wind blow [28]. Ecological and environ-
mental conditions like temperature and humidity do not
limit the adaptation of T. absoluta in the new areas [29].
'erefore, the insect shows an invasive nature in its spread
and occupies areas where wild and cultivated solanaceous
plants are found worldwide.

'e tomato leafminer, T. absoluta Meyrick, is a fast-
reproducing lepidopteran moth that completes its life cycle
within 30 to 35 days [30] (Figure 1). A female moth lays a
maximum of 250 up to 300 eggs in dispersed forms at both
the underside and upper side of the plant leaves preferably at
apical shoots, stems, and sepals [31].

Egg hatching takes a short period, at least four to six days of
incubation, and develops into four consecutive stages of larval
instars [32]. 'e larvae feed on any stage of tomato plants,
mainly apical buds, leaves, stems, and fruits, and cause max-
imum (100%) yield loses (Figure 2).'ey then develop into the
dormant pupal stage, either in the soil, within mined leaves or
within the galleries of the plant by forming small silky cocoons
[33]. After pupation, the pupa develops into an adult, and the
adults can survive for 10 to 15 days for females and 6 to 7 days
for males. In general, T. absoluta can achieve, on average,
twelve generations per year.

2.2.HostRange of theTutaabsoluta. Tomato (S. lycopersicum
L.) is the primary host for T. absoluta while, the insect can
feed on other wild and cultivated solanaceous plants, in-
cluding eggplant (Solanum melongena L.), potato (Solanum
tuberosum L.), pepper (Capsicum annuum L.), tobacco
(Nicotiana tabacum L.), and black nightshade (Solanum
nigrum L) plants [34].

'erefore, T. absoluta is an important threat for tomato
production with high yield loses (100%) if it is not controlled
[35]. It causes high quality and yield loses in the crop
worldwide due to direct feeding, and the wounds made by
this insect facilitate the entry of secondary plant pathogens
[36]. Mainly the tomato cultivars that produce a volatile
compound called “terpenoid” attract mated females of
T. absoluta for oviposition [37]. However, T. absoluta
cannot prefer the tomato cultivars rich in 2-tridecane or
zingiberene because the chemicals confer resistance against
beet armyworm. Plants with the absence or less content of
herbivore repellent compound are preferred by T. absoluta
to lay their eggs [38].
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3. Disease (Pest) Control

3.1. Use of Synthetic Insecticides. Insecticides are the most
important inputs used to control pests and boost crop
production both in large- and small-scale agricultural sys-
tems. However, the misuse and abuse of these pesticides
impose health hazards on humans and pollute the envi-
ronment. Improper and illegal use of insecticides on edible
crops exposes humans to consumption of residually accu-
mulated chemicals together with fruits, vegetables, and leafy
green crops and aggravates the bioaccumulation effect that
results in noncommunicable and systemic diseases [39].

'e continuous application of insecticides on farmland
brings about complicated problems for the biodiversity of
the terrestrial and aquatic environment. Organisms found in
the soil and aquatic environment are beneficially valued
components to balance and maintain the natural ecosystem
[40]. However, extensive use of insecticide has an influence
on the abundance and species richness of domestic and wild
organisms found in the soil and water bodies [41]. Excessive
use of insecticides rendered consistent negative effects on
biodiversity and reduces the biological control potential of
the natural enemies by influencing their survival [42].

Insecticides are the common tools to control T. absoluta
and other pests in modern and conventional agricultural
sectors around the world. Some of them, such as cartap,
methamidophos, permethrin, fi;ubendiamide, diamides,
abamectin, deltamethrin, organophosphates, and pyre-
throid, are frequently used to control T. absoluta [43]. 'e
effectiveness of these insecticides varies in terms of larval
mortality, ranging between 13.7 and 66% in laboratory and
18 to 25.7% in greenhouse conditions [44].

It was established that the use of certain insecticides
could control T. absoluta. However, repeated applications of
the insecticides over 30 times per cultivation period with
four and six weekly sprays [45] increased residual chemicals
and caused food contamination, environmental pollution,

and human health problems, as well as reducing the number
of natural enemies involved to control T. absoluta [46]. 'is
could be due to the fact at their most damaging stage, the
larvae of the insect hide itself inside the mesophyll tissues of
the plant, which cannot be easily exposed to chemical spray
[47].

Apart from that, continuous use of insecticides reduces
their effectiveness due to the resistance of the insect [48]. To
this end, insecticide-resistant populations of T. absoluta
were reported in Brazil [49], in Chile [50], in Argentina [51],
and in Italy [52]. 'e resistance level to insecticides defers
from population to population [53], weather conditions, and
the exposure rate of generations to the insecticides in
question [54].

'e resistance folds of T. absoluta against several in-
secticides are indicated in parenthesis: abamectin (5.2–9.4
folds), cartap (5.1–21.9), methamidophos (1.04–4.2), per-
methrin (1.5–6.6) in Brazil [43], chlorantraniliprole
(0.2–2.4), fi;ubendiamide (1.2–1.7) in Italy [52], delta-
methrin (1.2–2.34), Indoxacarb (13.6–27.3), spinosad
(1.14–8.9), bifenthrin (1.7–11.4), difi;ubenzuron (0.92–2.3),
trifi;umuron (1.22–3.19), and tefi;ubenzuron (1.3–1.88) in
Brazil [49].

3.2. Use of Botanicals. Botanicals are bioactive compounds
extracted from several potent plants and herbals used to
control pests in organic farming with less expense to human
health and the environment. Compounds extracted from
plants are more readily biodegradable and less likely toxic to
be nontarget organisms [55]. 'e herbicidal, insecticidal,
fungicidal, bactericidal, nematicidal, molluscidal, and
rodenticidal properties of botanicals are well described with
various modes of action [55].

Rajashekar et al. [56] reviewed a number of the most
important plant species and their parts used to extract active
compounds for different pest control methods. Bioactive
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Figure 1: Reproduction process and developmental stage of the Tuta absoluta.

Figure 2: Feeding style and damage status of the tomato leafminer, Tuta absoluta.
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compounds such as essential oils, flavonoids, alkaloids,
glycosides, esters, phenols, and fatty acids have repellent,
antifeedant, toxicant, growth retardant, chemosterilant,
oviposition inhibitant, ovicidal, and larvicidal properties
against several agricultural pests [57].

'erefore, bioactive compounds in botanicals are serv-
ing to control T. absoluta in different developmental stages.
Ethanol-extracted Neem (Azadirachta indica) and petro-
leum ether-extracted Jatropha (Jatropha curcus) seeds
caused 24.5 and 18–25% egg and 86.7–100% and 87–100%
larval mortality, respectively [58]. Crud extracts of jojoba
(Simmondsia chinsis) seed, Garden thyme (2ymus vulgaris),
and Castor bean (Ricinus communis) oil caused 75, 95, and
58% of larval mortality, respectively [59]. Moreover, aqueous
extracts of Chinaberry (Melia azedarach), Geranium (Pel-
argonium zonale), Garlic (Allium sativum), Onion (Allium
cepa), and Basil (Ocimum basilicum), effected 91, 87, 85, 80,
and 74% of mortality against 2nd instar larvae of T. absoluta,
respectively [60]. Aqueous extracts of A. indica seed,
Cymbopogon citrates, and A. sativum evaluated in Ethiopia
scored 98, 97, and 95% of larval mortality against T. absoluta
[61]. However, the types of solvents used, concentrations of
extracts, application timing, and exposure time can deter-
mine the effectiveness of the phytochemicals.

3.3. Natural Enemies. Natural enemies are living organisms
that include parasitoids, predators, beneficial nematodes,
and entomopathogenic microbes used to reduce or suppress
the pest population below the economic threshold level [62].
Natural enemies are parts of biological control and have no
identified side effects on nontarget plants, animals, humans,
and the environment [63]. 'ey can be generalists (that
infect or attack hosts or prey from different genera or species
of pests indiscriminately) and specialists (that attack host or
prey from specific genera or species of pests selectively) [64].
'eir safeness to environment, biodiversity, ecosystem, and
cost-effectiveness asserts to promote natural enemies in
advances [65].

3.3.1. Use of Parasitoids. Parasitoids are parasitic insects
during their early developmental stage and later kill and
destroy their host to live as free adults [66]. Parasitoids
encompass insect species in five main orders such as
hymenopetera, diptera, coleoptera, lepidopetra, and neu-
ropetra [67]. Although parasitoids are abundant in every
ecosystem in terms of species and number of individuals,
78% of species are found under the order hymenopetera
[68]. Parasitoids are either endoparasitoid (species that feed
and develop within the host) or ectoparasitoid (species that
feed and develop on external parts of their host) and par-
asitize eggs, larvae, pupa, adults, and combinations of their
host developmental stages. Depending on the species, an
adult female parasitoid would search their host, lay eggs
inside or onside of the host, and hatched eggs develop into
larvae [69]. 'en, larvae start to feed on their host and kill
the host through parasitism, form cocoons to become shelled
pupae, and develop into adults. Adult parasitoids find their
host through smell, either the direct odor of the host or

associated odors of their host’s activities [70]. 'erefore,
parasitoids are the most important natural enemies utilized
to manage agricultural pests from several genera and species
worldwide [71].

Reports showed more than 50 species of parasitoids
effective against T. absoluta that infect eggs, larvae, and
pupae [72]. Out of these, Trichogrammatoidea bactrae,
Trichogramma pretiosum, and Encarsia porteri infect eggs
[73], and Pseudapanteles dingus, Dineulophus phtorimaeae,
Necremnus sp. nr artynes, and Bracon sp. infect the larvae of
T. absoluta [74]. Mainly, P. dingus reduced the population of
T. absoluta by 64%, whereas T. pretiosum and E. porteri were
reduced by 50% during tomato production [75].

3.3.2. Use of Predators. Predators are organisms that kill and
consume several preys during their lives, and can be pre-
dacious when immature [66]. Predators have a relatively
large body size (larger than their prey), enhanced sensory
perception (vision, hearing, olfactory, touch, etc.), enhanced
weaponry or predatory behavior (have enlarged jaws, beaks,
and teeth to kill their prey immediately), active prey
searching ability (active foraging), and need a stable eco-
logical system to maintain their abundance lower than their
prey [76]. Ants, certain bugs, beetles, spiders, mice, arma-
dillos, birds, and several large animals are common groups
of predators in the ecosystem [77]. Mostly, predatory insects,
birds, and relatives are used for pest management in agri-
culture through pest consumption to reduce pests below the
economic threshold level in organic farming systems [78].
'ere are some predators that prey on T. absoluta in dif-
ferent developmental stages. Nesidiocoris tenuis and Meso-
glossus pygmaeus efficiently prey eggs of the insect and
reduce fruit infestation by 56–100% and leaflet infestations
to 75–97%, respectively [79].

3.3.3. Use of Entomopathogenic Nematodes.
Entomopathogenic nematodes (EPN) are cosmopolitan,
nonsegmented, cylindrical, and elongated organisms that
have a great role in biological control [80]. Nematode
species under 23 families are described as parasitic as-
sociation-forming organisms with insects; out of these,
seven families: Mermithidae and Tetradonematidae (Or-
der: Stichosomida); Allantonematidae, Phaenop-
sitylenchidae, and Sphaerulariidae (Order: Tylenchida);
and Heterorhabditidae and Steinernematidae (Order:
Rhabditida) encompass the most potential species for
insect pest control [81].

'us, EPNs are important to control T. absoluta mostly
at the larval stage (79 to 100%mortality) and are less effective
in the pupal stage (10% mortality) [82]. Leaflet bioassay
showed 77–92% larval infection of nematodes inside the
galleries, as well as pot experiment showed 87–95% re-
duction of tomato infestation [82]. Two effective species of
nematodes, Heterorhabditis bacteriophora and Steineme-
matidae carpocasae, caused 92–96% and 89–91% of larval
mortality in the laboratory, and both species showed 48–51%
of T. control of absoluta in greenhouse conditions [83].
H. bacteriophora, S. carpocapsae, and S. feltiae performed
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better in terms of mortality (77–97.4%) against T. absoluta at
the 4th instar larvae than at the 1st instar larvae (36.8–60%)
mortality [84].

3.3.4. Use of Entomopathogenic Fungi. Entomopathogenic
fungi (EPF) are phylogenetically diversified, heterotrophic,
and eukaryotic filamentous microorganisms that reproduce
by sexual or asexual spores or both [85].'emajority of EPF,
such as Beauveria bassiana, Metarhizium anisopliae, Met-
arhizium acridum, Metarhizium brunneum, Isaria fumo-
sorosea, Hirsutella thompsonii, and Lecanicillium lecanii, are
grouped under the phylum Ascomyceta [14]. 'ey are
pathogenic to different genera of insects and cause mus-
cardine disease with broad host ranges with minimal en-
vironmental effect, human health problem, and insect
resistance [86]. Although their effectiveness depends on
ecological conditions, B. bassiana and M. anisopliae are the
most widely studied and commercialized fungal species.
'ese EPF showed high larval mortality against several
agriculturally important insect pests.

EPF infection begins with spore attachment, followed by
spore germination, and then blastospore cuticle penetration.
'e mechanical pressure and enzymatic degradation allow
the assistance for cuticle penetration of mycelia and entry
into the insect body. After successful penetration of the
cuticle, the fungus produces hyphal bodies that slowly
spread into the hemocel and result in the death of the host
insect through toxification and food competition [85].
B. bassiana andM. anisopliae have highly effective modes of
action to kill their insect hosts. 'eir success will be due to
large amounts of exoskeleton-degrading enzyme production
and degradation of different structural components of the
insect exoskeleton [87].

Lipase first breaks the fatty acid components of the insect
cuticle, followed by a protease that degrades the protein
components and plays an important role in providing nu-
trients for fungus before and after the cuticle is penetrated
[88]. Chitinase usually acts after the proteases have signif-
icantly digested the cuticle protein and chitin component is
exposed [89]. 'is shows that the virulence of EPF species
depends upon the types of enzymes produced.

It is interesting to note that EPF grows over the cadaver
of the host insect after death if the condition is relatively
humid and they produce new, external, and infective conidia
to cause infection on another healthy host. 'us, quick
sporulation of EPF over insect cadavers can mediate in-
fection of other individuals from the same species or rela-
tives and favor horizontal dissemination under favorable
conditions [90]. However, under very dry conditions, the
fungus may persist in the hyphal stage inside the cadaver and
not achieve successful horizontal dissemination.

Studies showed that B. bassiana can result in more than
95% of larval mortality against T. absoluta compared to 88%
of death with chemical insecticide [86], and M. anisopliae
significantly reduced the mean number of infestations to 9.8
as compared to 21.7 of untreated control [91]. It is also
established that the effectiveness of the strains against dif-
ferent insect pests differs from locality to locality [92]. For

instance, Youssef and Hassan [93] reported fungi species
obtained from the local environment, and their formulated
products were more effective than commercial ones against
T. absoluta. Both B. bassiana and M. anisopliae showed
95–100% mortality for larvae of T. absoluta [94–96]. Besides
their effective biocontrol potential, entomopathogenic fungi
are cosmopolitan in different habitats and geographic
conditions that make it easy to screen potent strains for
mycoinsecticide production.

3.3.5. Use of Entomopathogenic Bacteria.
Entomopathogenic bacteria are prokaryotic microorganism
that has pathogenic properties against insects. 'ey are
spore-forming bacteria that include the genera Bacillus,
Paenibacillus, and Clostridium, and nonspore-forming ones
that belong to the genera of Pseudomonas, Serratia, Yersinia,
Photorhabdus, and Xenorhabdus [97].

Bacillus thuringiensis (Bt) is a Gram-positive and spore-
forming bacterium that produces parasporal crystal proteins
called δ-endotoxin, hemotoxin, and vegetative proteins and
has been used as a biological insecticide starting from 1950s
to control certain insect pests among the order lepidoptera,
coleoptera and diptera [98]. 'e plasmid genes of Bt that
encode parasporal crystal proteins are a key source for
transgenic expression to provide pest resistance in plants
[99]. 'is feature makes Bt the most important biopesticide
in the world market besides direct control of the pest.

'e insecticidal activity of the Bt toxin is host specific for
each type of cry gene encodes structurally specific crystal
δ-endotoxins that affix with specific binding sites of the
particular membrane receptors [100]. 'is characteristic is
important to minimize the side effects of Bt toxins for many
nontarget beneficial insects, plants, and animals, including
humans [101]. Crickmor et al. [102] estimated the presence
of more than 700 crystal protein-coding genes located on
large molecular weight plasmids that were sequenced,
identified, and classified into 74 groups according to amino
acid sequence similarity. 'ese genes were cloned, se-
quenced, and named as cry and cyt genes, and more than 100
cry gene sequences were organized into 32 groups and
different sub-groups based on their nucleotide similarities
and range of specificity [103].

'e cry genes that encode protein toxins for lepidopteran
insects are cry1, cry2, and cry9 groups and cause up to 98% of
larval mortality against T. absoluta [104,105] whereas cry3,
cry7, cry8, and cry1Ia1 are responsible for the production of
protein toxins used against Coleopteran insects [106].
Furthermore, cry5, cry12, cry13, and cry14 are genes that
encode nematocidal proteins [103], and cry4, cry10, cry11,
cry16, cry17, cry19, and cyt proteins are toxic to dipteran
insects [107]. A given Bt strain can carry one or more crystal
toxin genes, and therefore, these strains may synthesize one
or more crystal proteins. 'is could be result from a
mechanism of horizontal plasmid gene transfer among Bt
strains to diversify toxin genes [108].

Bt can cause the infection when susceptible insect hosts
ingest parasporal crystal proteins that are alkaline-soluble
and can produce active insecticidal components in the insect
gut of pH 8 to 12 [109]. An activated toxin is then attached to
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specific receptors found in the midgut epithelial cell
membrane and creates ion channels or pores through
membrane lyses. 'ese membrane pores or clefts disrupt the
osmotic and metabolic processes and the larvae stop feeding
and go to death due to starvation.

'erefore, chewing insects in different orders are suscep-
tible to Bt insecticidal parasporal crystal toxins [110]. Although
δ-endotoxins are playing a vital role in the pathogenicity of the
insect pest, certain strains of Bt produce extracellular com-
pounds such as phospholipases, ß-exotoxins, proteases, and
chitinases to kill the host [111]. 'ere are also several strains
that produce vegetative insecticidal proteins encoded by Vip
genes and contribute for virulence increment.

4. Conclusion and Recommendation

'is review deduced that the application of synthetic in-
secticides is less effective in the management of T. absoluta
due to high pest resistance, health risk, and environmental
pollution. However, natural enemies and botanicals are
relatively effective alternatives with less expense to human
and environmental health. Plant phytochemicals, parasit-
oids, predators, entomopathogenic nematodes, entomopa-
thogenic fungi, and entomopathogenic bacteria showed high
effectiveness in T. absoluta management. It is important to
note that ecofriendly pest control methods are applicable to
manage devastating pest, T. absoluta, for healthy tomato
production within a safe environment. Adaptation and
popularization of the use of bioagents in pest (T. absoluta)
control have paramount importance in safe food produc-
tion, environmental protection, and chemical resistant pest
reduction. 'erefore, inspiring policies in ecofriendly pest
management, large-scale production of bioagents and dis-
tribution, extensive awareness creation to users, actual
practices, and upgrading of the use of natural enemies in the
management of T. absoluta has been highly suggested.
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