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Receptor-like kinases (RLKs) are plant proteins that form signaling circuits to transduce information through the plant cell
membrane to the nucleus and activate processes that direct growth, development, stress response, and disease resistance. Upon
sensing various environmental stress stimuli, RLKs interact with specific targets and recruit several other proteins to initiate the
defense mechanism. Among many RLK subfamilies, leucine-rich repeat RLKs (LRR-RLKs) are the largest. Xa21, a member of LRR-
RLK, is a vital receptor protein in rice plants that binds with bacterial RaxX21-sY, whereas OsSERK2 is a somatic embryogenic
receptor kinase (SERK) that acts as a coreceptor in this process. This study focuses on the effect of a substitution mutation of
aspartate128 with asparagine128 (D128N) in OsSERK2 on the interdependent binding pattern of the Xa21, RaxX21-sY, and
OsSERK2 D128N proteins. The in silico results showed that the D128N mutation in OsSERK2 can significantly change the
interaction pattern of the critical residues of the OsSERK2 and affects its receptor-ligand (Xa21-RaxX21-sY) interaction in the
complex. These findings are expected to significantly contribute to the study of the structural basis of Xa21-mediated immunity
and the first layer of plant defense mechanisms, thereby aiding further research on these structures and their phenotypic
implications.

1. Introduction

Asmulticellular sessile organisms thatmust respond to dynamic
environments, plants need to effectuate and react toward
numerous internal signals [1] to achieve their growth and
metamorphosis [2, 3], as well as to distinguish abundant input
signals from their surroundings [4]. Most of these signaling
cues are detected on the cell periphery [5, 6], and plants have
developed an idiosyncratic group of receptor-like kinases
(RLKs) that can transmit extracellular signals throughout
the membranes [7, 8].

These receptors are defined as a combination of a signal
peptide, an extracellular domain, a transmembrane domain,
and a cytoplasmic kinase domain together with the serine/
threonine consensus sequence [9]. In Arabidopsis thaliana,
the number of leucine-rich repeat RLKs (LRR-RLKs) is
numerous, originating from 13 subfamilies [10–14]. These
LRR-RLKs bind to somatic embryogenesis receptor kinases

(SERKs) and form dimers [15, 16]. The binding of SERKs
with their respective LRR-RLKs is either ligand-dependent or
independent. The best characterized SERK protein is BRI1-
associated kinase 1 (BAK1), which binds with LRR-RLK FLS2,
EFR, and BRI1. It forms a heterodimer, where ligand binding
induces this heterodimerization [16–18]. BAK1 may also bind
with RLK7 [19, 20], CORE [21, 22], and other similar receptors
and thus become a common SERK coreceptor protein for
many other LRR-RLKs and plays a key role as a regulator in
plants’ innate immunity [23].

Among the LRR-RLKs, Xa21 is an important receptor
protein of rice plants that binds with SERK OsSERK2 and
forms a heterodimer. The Xa21 ectodomain contains 23
LRRs, a single transmembrane domain with a kinase domain
followed by one juxtamembrane (JM) domain [24, 25].
RaxX21, a bacterial peptide secreted by Xanthomonas oryzae
(Xoo), acts as a ligand for Xa21, the ectodomain of which
binds with this pathogen-associated molecular pattern (PAMP)
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molecule. Xoo is the causative agent for bacterial leaf blight
disease in the rice plant [26, 27]. The gene XA21 confers
resistance to the multiple isolates of Xoo and shows
genetic and phenotypic diversity with the other rice plants
[28–31].

When RaxX21 is secreted, sulfation occurs in its tyrosine
region (RaxX21-sY) [32], which, as a result, gives more sta-
bility to the bacterial peptide [33]. After RaxX21-sY binds
with the ectodomain of Xa21, it recruits coreceptor SERK
protein OsSERK2 and activates the defense signal by forming
a heterodimer structure [34, 35]. Interestingly, the Xa21 also
can interact with its coreceptor OsSERK2 without the pres-
ence of RaxX21-sY [35]. Besides associating with Xa21,
OsSERK2 also binds with other rice proteins such as OsBRI1,
which is important for brassinosteroid-regulated develop-
ment, as well as OsFLS2; and Xa3, which are important for
initiating the defense mechanism in rice plants [35, 36].

In rice plants, OsSERK2 acts as a functional homolog
of BAK1, transphosphorylating the kinase domains of these
rice receptor proteins [35, 37]. Additionally, the structure of
OsSERK2 is highly similar to the BAK1 coreceptor. The
short-curved solenoid ectodomain of OsSERK2, composed
of an N-terminal LRRNT and five LRRs, has a 67% similarity
with the BAK1 [37, 38]. Moreover, the binding pattern of
OsSERK2 and BAK1 reveals that both of the SERK corecep-
tors bind with their respective pattern recognition receptor
proteins (PRRs) at the concave side of their ectodo-
mains [38–41].

The mutation in BAK1 of Asp122 to asparagine alters its
interaction with its respective PRRs [42]. A recently pro-
duced crystallographic structure of FLS2-BAK1 and BRI1-
BAK1 has revealed that, although mutation in Asp122 alters
the overall interaction, there is no direct contact of this par-
ticular residue with FLS2 or BRI1 [38, 40]. Moreover, this
residue was not predicted to be glycosylated in the D122N
mutant of BAK1 [37, 43], which suggests that mutation
in this particular residue indirectly influences binding by alter-
ing the position of residues near it. Asp128 residue of
OsSERK2 forms hydrogen bonds with Ser126 and a salt bridge
with Arg152. Mutation in Asp128 alters the binding of this
residue with Arg152; in this case, Arg152 interacts with the
residue Glu174 [37]. This aspartate is conserved among all the
rice SERKproteins andA. thaliana. Asp128 in riceOsSERK2 is
the corresponding residue of BAK1 and is located in the LRR3
region of OsSERK2 [37]. However, the impact of this mutation
in the Xa21 LRR-RaxX21-sY-OsSERK2 LRR complex is yet to
be elucidated. We hypothesize that the substitution mutation
of aspartate128 with asparagine128 (D128N) in OsSERK2
affects the interdependent binding pattern of the Xa21,
RaxX21-sY, and OsSERK2 proteins in rice plants.

Molecular dynamics (MD) simulation is a useful method
for studying the dynamic characteristics of proteins at the
atomic level [44]. With the help of modern computers, simu-
lations can now be performed for several nanoseconds,
allowing for the identification of the major factors contribut-
ing to atomic fluctuations [45]. This makes MD simulations
an appealing method for locating flexible areas in proteins

that could be targeted for stability improvement [45, 46].
Additionally, the flexibility of protein structures plays a key
role in determining their interactions with other proteins. By
using atomic-level MD simulations, it is possible to analyze
both the structure and dynamics of protein–protein com-
plexes [47]. Numerous studies have been performed to
date to see the effect of mutation on protein–protein inter-
action using the MD simulation [48–51].

In this study, we employed a detailed in silico approach,
includingMD simulation, to analyze the impact of the Asp128
mutation in OsSERK2 in the Xa21-mediated immune com-
plex. The objectives of this study were to investigate the effect
of this mutation in OsSERK2 on its interaction with Xa21 and
RaxX21-sY, determine the impact of the mutation on the
receptor–ligand interaction between Xa21 and RaxX21-sY in
the complex, and provide insight into the molecular mechan-
isms underlying the receptor–ligand interactions in plant
defense response pathways.

2. Materials and Methods

2.1. Mutating Coreceptor OsSERK2. In our previous study,
OsSERK2 LRR was docked with the PRR Xa21 LRR and
PAMP RaxX21-sY [24]. Multiple in silicomodeling approaches
were used to predict the 3D model of a full plant PRR protein,
Xa21, and only the LRR part of Xa21 was examined for the
interaction [24]. OsSERK2 LRR (PDB ID: 4q3g) was obtained
from Protein Data Bank [37, 52]. In the current study, the
OsSERK2 LRR of that complex was point mutated using rota-
mer tools of UCSF Chimera [53], where the Dunbrack library
was used [54]. The point mutation was performed to mutate
128th positioned aspartate into asparagine. The most probable
form of asparagine (probability= 0.473) was selected for this
position, and then a new PDB file was created for MD simula-
tion. The mutated coreceptor was named OsSERK2 D128N,
and these three protein-containing complex was named Xa21
LRR-RaxX21-sY-OsSERK2 D128N LRR.

2.2. MD Simulation of Xa21 LRR, RaxX21-sY, and OsSERK2
D128N LRR Complex. The GROMACS software suite
(version 5.1) [55] was used to carry out the MD simulation
process of the complex Xa21 LRR-RaxX21-sY-OsSERK2
D128N LRR. GROMOS 54a7 [56] united force field was
applied for the simulation process. A cubic box with a distance
of 1Å between the surfaces and edges of the complex was set for
the solvation. The complex was then solvated using the SPC
water model [57] using the gmx solvate tool, and gmx genion
was used to neutralize the system, and then energyminimization
was performed using the gmx grompp tool. Then, the systemwas
equilibrated for 2ns NVT and 1ns NPT, respectively, setting the
temperature at 300K and pressure at 1 atm. Finally, a 100nsMD
simulation was run for the system using the gmx grompp tool.
To analyze the stability of the complex over the simulation
period, the GROMACS gmx rms tool was used, and the
GROMACS gmx rmsf tool was used to analyze individual
residual fluctuations. Moreover, to analyze the radius of
gyration (Rg) and hydrogen bonds, the GROMACS gmx
gyrate, and gmx hbond tool were used, respectively.
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2.3. Investigation of the Interaction of Xa21 LRR and
RaxX21-sY with OsSERK2 D128N LRR. The binding pattern
of OsSERK2 D128N LRR with its PRR Xa21 LRR and respec-
tive PAMP RaxX21-sY was examined using UCSF Chimera.
To analyze different types of interactions alongside salt-
bridge, the protein interaction calculator (PIC) [58] and eval-
uating the salt bridges in proteins (ESBRI) [59] web tools
were used. The PIC website uses the coordinates of a protein’s
or assembly’s 3D structure to calculate numerous interactions,
including disulfide bonds, contacts between hydrophobic
residues, ionic interactions, hydrogen bonds, aromatic–aromatic
interactions, aromatic–sulfur interactions, and cation-
interactions inside protein or between proteins in a complex.
Interactions are computed using standard and publicly
available criteria. The convenience of accessing inter-residue
interaction calculations in a single location is a benefit of
employing a PIC server. It also calculates the available surface
area and the distance between a residue and the protein’s
surface. In contrast, ESBRI is a web-based software tool used
for calculating salt bridge interactions of protein complexes [59].

2.4. Analysis of the Mutated Residue of OsSERK2 D128N
LRR. Using the UCSF Chimera clash and contact tool, the
interactions of Asp128 of OsSERK2 and Asn128 of OsSERK2
D128N with their neighboring residues were observed, where
atoms of the selected residues were designated. Also, by using
the UCSF Chimera distance measurement tool, the distances
between interactive atoms were visualized.

3. Results and Discussion

3.1. Changes in the Behavior of the Mutated Residue.We first
checked our designed OsSERK2-mutated structure with the
crystal OsSERK2 D128N (4q3i) structure and found both
structures similar (Figure S1). We then proceeded with our
designed structure to do the MD simulation. The previously
solved crystal structure of OsSERK2 showed that due to this
mutation, the salt bridge interaction of Arg152 with Asp128
was demolished [37]. Our study also found the same phe-
nomena (Figures 1(a) and 1(b)). We observed that Arg152 of
OsSERK2 D128N shifted its salt bridge interaction with
Glu174 (Figure 1(c)) (Table S1), which also supports the
previous structural study [37]. Again, we noticed Ser126
had a hydrogen bond with Asp128 in OsSERK2 (Figure 1(b)),
but in the case of Os-SERK2 D128N, that interaction was
discontinued (Figure 1(c)), which also justifies the previous
study [37]. These changes in intraprotein interaction might
lead to several changes in the interaction of the prominent
residues of the complex of OsSERK2 with its PRR Xa21 and
respective PAMP RaxX21. Previous studies have shown that
a similar mutation in BAK1 (BAK1 elg, which results in
aspartate 122 substitutions with asparagine) maintains its
interaction with its receptor BRI1 even if their concentration
is very low [42]. However, in a recent structural and bio-
chemical study, it was observed that this mutation can dis-
rupt BAK1’s ability to interact with the ectodomain of BRI1
receptor pseudo kinases [60] and can lead to the stabilization
of certain SERK3 residues [38, 60]. Moreover, this mutation

could also lead to the impairment of its (BAK1 elg) ligand-
induced association with FLS2 [42].

3.2. Changes in Interactions of Prominent Residues of the
Proteins. Our previous study showed that Arg185 and
Arg230 from Xa21, Val2, and Lys15 from RaxX21-sY,
and Lys164 from OsSERK2 act as prominent residues for the
wild Xa21 LRR-RaxX21-sY-OsSERK2 LRR complex (having
wild OsSERK2 LRR) [24]. For this wild complex, Arg185 of
Xa21 makes a hydrogen bond with Leu52 of OsSERK2, and
Arg230 makes a hydrogen bond with Asp6 of RaxX21-sY within
3.5Å (Figure 2(a)).Moreover, Val2 andLys15 of RaxX21-sY form
hydrogen bonds with Asn331, and Cys382 of Xa21, respectively
(Figure 2(b)). Lys164 of OsSERK2 interacts with Asp565 of
Xa21 by forming an ionic bond within 4Å (Figure 2(c)) [24].

On the contrary, due to the D128Nmutation in OsSERK2,
these prominent residues changed their interaction patterns.
The previous interaction of Arg185 and Arg230 of Xa21 got
discontinued; instead, Arg230 of Xa21 established a new
hydrogen bond with Asp56 of OsSERK2 D128N (Figure 2(d))
(Table S2). Val2 fromRaxX21-sY formed a hydrophobic inter-
action with Phe354 of Xa21, and Lys15 bondedwith Asn383 of
Xa21 by forming a hydrogen bond (Figure 2(e)) (Tables S2 and
S3). No bond formation of Lys164 from OsSERK2 D128N is
found within 4Å in this mutated complex (Figure 2(f)). These
changes in interactions of the prominent residues point to the
overall interaction pattern in the complex due to the mutation.
Our findings support the previous finding of the mutation
effect on the similar protein SERK3, where it was observed
that mutation in this protein hampers the interaction between
SERK3D122N and BRI1 receptor pseudo kinases. In the finding,
it was shown that SERK3D122 plays an important role in the
interaction between SERK3R146 and BRI1E749. This is due
to the fact that SERK3D122 stabilizes the conformation of
SERK3R146, which then makes polar contact with BRI1E749.
If the corresponding Asp128 is mutated to asparagine in rice
SERK2, it alters these interactions. SERK3D122 also positions
SERK3E98 for interaction with BRI1T750, which is replaced by
isoleucine in bri1-102 loss-of-function mutants. These find-
ings suggest that SERK3D122 is in contact with several critical
residues involved in the formation of the brassinosteroid sig-
naling complex [60]. Also, the corresponding D122N muta-
tion in BAK1 might lead to the impairment of its (BAK1 elg)
ligand-induced association with FLS2 [42].

3.3. Root Mean Square Deviation (RMSD), RMS Fluctuation
(RMSF), Rg, and Hydrogen Bonds of the Xa21 LRR-RaxX21-
sY-OsSERK2 D128N LRR Complex. The stability of the com-
plex was measured in terms of deviations by analyzing the
RMSD after performing a 100 ns MD simulation. The back-
bone of the complex showed the least variable RMSD in the
simulated system. It deviated from 0.0004 to 0.75 nm during
the entire simulation period (Figure 3(a)). The complex’s
standard deviation was 0.05 nm. The average deviation of
the complex is 0.49 nm, which indicates that the Xa21 LRR-
RaxX21-sY-OsSERK2 D128N LRR complex is stable and
favorable. Moreover, we utilized Rosetta [61] to relax and
measure the energy of the after-simulated complexes, and it
also aligns with the results we got. It showed a lower total
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score (1,685.627 kJ/mol) for the mutated complex where
fa_atr (Lennard–Jones attractive between atoms in different
residues) contributed the most (−4,728.319 kJ/mol) to mini-
mize the energy (Table S4).

From the 100 ns MD trajectories, the RMSFs of the resi-
dues of Xa21 LRR, RaxX21-sY, and OsSERK2 D128N LRR
were calculated. Analyses of the overall results revealed that
most residues fluctuated by less than 0.21 nm for Xa21 LRR
and 0.13 nm for OsSERK2 D128N LRR (Figures 3(b) and
3(c)). Moreover, the residues stated as prominent with low

RMSFs, in our previous study [19], showed slightly higher in
the mutated complex. For Xa21, Arg185, and Arg230, which
showed a different binding pattern, exhibited high RMSF
than the average RMSF of Xa21 LRR (Figure 3(b)). Also,
for RaxX21-sY, Val2, and Pro14, which were considered
important residues for binding with Xa21, showed similar
phenomena. Furthermore, Lys164 of OsSERK2 D128N had
a low RMSF with a value of 0.14 nm (Figure 3(c)). On the
other hand, the mutated residue Asn128 of OsSERK2 D128N
showed a very low RMSF value (0.08 nm) alongside Arg152

ðaÞ

ðbÞ ðcÞ
FIGURE 1: Changes in the interaction of themutated residue with the neighboring residues. (a) The superimposed cartoon structure of OsSERK2
and OsSERK2 D128N focused on the mutated area. (b) Cartoon structure of OsSERK2, where Asp128 formed an s hydrogen bond with Ser126
and a salt bridge interaction with Arg152 of itself. (c) Cartoon structure of OsSERK2D128N, where mutated residue Asn128 has no interaction
with Ser126 and Arg152. Rather, Arg152 formed a salt bridge interaction with Glu174 (Table S1). Cartoon: OsSERK2 LRR (green), OsSERK2
D128N LRR (orange); stick: Asp128/Asn128, Arg152, Ser126, Glu174; both structures were evaluated after 100 ns MD simulation.
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and Ser126. The overall RMSD and RMS fluctuation of Xa21
LRR, RaxX21-sY, and OsSERK2 D128N LRR seem less fluc-
tuating and more stable than the wild complex.

The compactness of the complex, which can be determined
by analyzing the radius of gyration, did not change noticeably
over time, suggesting that the protein was not going through
significant conformational changes. The mean of Rg of the
complex was 3.22 nm, where 3.20–3.25nm compactness was
observed after 25ns of simulation (Figure 3(d)).

For Xa21 LRR and RaxX21-sY, the total number of
hydrogen bonds remained largely constant during the simu-
lation. However, the number of hydrogen bonds between
Xa21 LRR and OsSERK2 D128N LRR is getting higher, indi-
cating more stronger interaction. For Xa21-LRR and RaxX21-
sY, around five hydrogen bonds, were observed after 25 ns

period till the end of the MD simulation (Figure 3(e)).
On the other hand, between Xa21 LRR and OsSERK2
D128N LRR, the number of hydrogen bonds got increased
after 25 ns, and more than 15 hydrogen bonds were
observed at the end of the simulation (Figure 3(f )). These
findings indicate that due to mutation in OsSERK2, Xa21
LRR interacts more prominently with OsSERK2. These
results also support the previous work, where it was
observed that mutation in the coreceptor could lead to
the stabilization of certain SERK3 residues. However, it
also was observed that mutation in this protein hampers
the interaction between SERK3D122N and BRI1 receptor
pseudo kinases [38, 60]. The corresponding D122N muta-
tion in BAK1 also led to the impairment of its (BAK1 elg)
ligand-induced association with FLS2 [42].

(a)

(e) (f)(d)

(b) (c)

FIGURE 2: Changes in interactions of prominent residues of the complex. (a) Arg185 and Arg 230 of Xa21 form hydrogen bonds with Leu52 of
OsSERK2 and Asp6 of RaxX21-sY in the wild complex. (b) Val2 and Lys15 of RaxX21-sY form hydrogen bonds with Asn331 and Cys382 of
Xa21 in the wild complex. (c) Lys164 of OsSERK2 forms an ionic bond with Asp565 of Xa21 in the wild complex. (d) Arg185 of Xa21
discontinues the previous interaction, and Arg230 of Xa21 forms a new hydrogen bond with Asp56 of OsSERK2 D128N in the mutated
complex (Table S2). (e) Val2 and Lys15 of RaxX21-sY form a new hydrophobic interaction with Phe354 and hydrogen bond Asn383 of Xa21
in the mutated complex (Tables S2 and S3). (f ) Lys164 of OsSERK2 D128N shows no interaction within 4.0Å in the mutated complex.
Cartoon: Xa21-RaxX21-sY-OsSERK2 complex where Xa21 (magenta), RaxX21-sY (blue), and OsSERK2 (green), and Xa21-RaxX21-sY-
OsSERK2 D128N complex where Xa21 (light blue), RaxX21-sY (yellow), and OsSERK2 D128N (orange); stick: prominent and interacting
residues of both complex; all the complexes were investigated after 100 ns MD simulation.
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FIGURE 3: RMS deviation (RMSD), RMS fluctuation (RMSF), radius of gyration (Rg), and hydrogen bonds. (a) RMSD of the complex Xa21
LRR-RaxX21-sY-OsSERK2 D128N LRR from the 100 ns trajectory. (b) RMS fluctuations of the residues of Xa21 LRR from the 100 ns
trajectory. (c) RMS fluctuations of the residues of OsSERK2 D128N LRR from the 100 ns trajectory. (d) Radius of gyration (Rg) of the
complex Xa21 LRR-RaxX21-sY-OsSERK2 D128N LRR from the 100 ns trajectory. (e) Hydrogen bond between Xa21 LRR and RaxX21-sY
from the 100 ns trajectory. (f ) Hydrogen bond between Xa21 LRR and OsSERK2 D128N LRR from the 100 ns trajectory.
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4. Conclusions

In this study, we have extensively investigated the effects
of a D128N mutation in OsSERK2 in the Xa21-mediated
immune complex. One of the key findings was the behavioral
changes in the amino acid residues of the Xa21, RaxX21-sY,
and OsSERK2 proteins due to the mutation. Though with
this in silico study, we successfully showed the effect of
D128N mutation in OsSERK2 itself and in the Xa21-medi-
ated defense complex, a wet-lab structure-based approach
(X-ray crystallography or cryogenic electron microscopy) is
crucial to verify these data further. Also, an investigation of
the changes in the phenotypic expression of the rice plant
due to this mutation is pivotal. The exploration of this sub-
stitution mutation in OsSERK2 that affects its interaction
with Xa21 and RaxX21-sY highlights the complexity of these
signaling networks and suggests potential targets for engi-
neering plant resistance to bacterial pathogens. We firmly
believe these findings will significantly contribute to those
structures and phenotypic study and, therefore, can aid the
scientific community in studying further the structural basis
of Xa21-mediated immunity and, in general, the first layer of
the plant defense mechanism.
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