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Te ecofriendly nature of materials used in synthesis and their low cost make biosynthesized nanoparticles excellent stuf for
a broad range of applications in bioscience. Green nanomaterials are progressively used in agriculture to deliver plant nutrients
efciently and efectively. Te present work aimed to biosynthesize zinc oxide nanoparticles (ZnO NPs) utilizing Catharanthus
roseus (L.) G. Don leaf extracts to use them as a nanopriming agent for improving seed germination and seedling growth in
Eleusine coracana (L.) Gaertn (fnger millet). UV-Vis spectroscopy, FTIR, FE-SEM, EDX, and TEM were used to characterize
biosynthesized nanoparticles (NPs). Te peaks at 362 nm characterized UV-Vis spectra of ZnO NPs. Te FTIR absorption
spectrum of ZnO NPs showed Zn-O bending at 547 cm−1. Te size (44.5 nm) and shape (nonspherical) of ZnO NPs were revealed
by TEM image analysis. XRD confrmed the hexagonal wurtzite phase of ZnO with an average particle size of 35.19. Te seed
germination results revealed that ZnO-nanoprimed seeds at 500mg/L substantially improved all the seed germination parameters,
viz., plumule length (23.4%), radicle length (55%), vigor index (41.94%), and dry matter production (54.6%) compared to
hydropriming (control).

1. Introduction

Nanotechnology has revolutionized various sectors, in-
cluding agriculture, pharmaceuticals, and biotechnology,
by enabling the manipulation of materials at the nanoscale
[1, 2]. Nanoparticles (NPs) are the key building elements in
the burgeoning feld of nanotechnology. NPs have high
light absorption and excellent catalytic properties due to
their large surface area to the volume ratio and the broad
gap between their conduction and valence bands [3].

Among various NPs, zinc oxide NPs have performed
a notable role in inhibiting harmful microbial activities
concerning plant disease management, improving feed
digestibility of animals and cytotoxicity towards human
cancer cells, etc. [4–7]. ZnO-coated commodity used in the
textile industries absorbs harmful UV radiation and
transforms it into harmless infrared light [8]. ZnO also
possesses a strong photochemical activity, a large binding
energy, a broad band gap, and good piezoelectric prop-
erties, etc [9].

Hindawi
Advances in Agriculture
Volume 2023, Article ID 7412714, 11 pages
https://doi.org/10.1155/2023/7412714

https://orcid.org/0000-0002-3464-7166
https://orcid.org/0000-0001-9977-2200
https://orcid.org/0000-0003-4495-4271
https://orcid.org/0000-0002-9790-1248
https://orcid.org/0000-0001-7082-2868
https://orcid.org/0000-0002-2408-3299
mailto:shivads594@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/7412714


NPs could be synthesized by biological, chemical, and
physical means, but biological means of NP generation using
microbes, plants, and macroalgae have been considered an
alternative and an ecofriendly strategy. Nonbiological syn-
thesis of NPs is toxic, exorbitantly expensive, and harms the
environment [10–12]. Fouda and Sofy [13], Hajian et al. [14],
Begum et al. [15], and Girilal et al. [16] observed that bi-
ologically synthesized NPs boosted plant growth and de-
velopment compared to chemically manufactured
(synthetic) NPs. Using phytoconstituents as reduction and
capping agents in the synthesis of NPs provides a cost-
efective alternative to conventional NP manufacturing.
Plant leaf extract contains a manifold of metabolites that act
as reducing agents during nanoparticle synthesis [17].

ZnONPs can also be synthesized by aqueous leaf extracts
of Azadirachta indica A. Juss., Arshi [18], which depicted
a 50 nm diameter in TEM imaging analysis. Leaf extracts
from Carissa carandas L. are also used as a reducing and
capping agent in NP synthesis [19], and the average crys-
tallite size of ZnO NPs has been observed at 35.2 nm at 25°C
and at 30.3 nm at 60°C.

Particle development and regulation of stabilization and
aggregation, morphology, size, and dispersion in generating
metal nanoparticles are a great challenge [20]. Plant extracts
provide an ecologically innocuous approach for the bi-
ological synthesis of various metallic NPs, allowing for
graded synthesis with well-defned size and form. Cathar-
anthus roseus (L.) G. Don, an important medicinal plant of
the Apocynaceae family, was used in this study to produce
ZnO NPs. C. roseus is a multipurpose medicinal herb that is
widely used because it contains vital anticancer drugs, viz.,
vincristine and vinblastine, as well as secretes 100 types of
alkaloid compounds [21].

Zinc (Zn) has played a pivotal role in upregulating vital
physiological and metabolic processes in enhancing seed
germination, pollen grain formation, and fertilization and
preserving the plant pigment system [22] and crop biomass
production [23]. In addition, it functions as a cofactor in
regulating enzymes such as oxidoreductases, transferases,
hydrolases, isomerases, lyases, and ligases [24]. A direct yield
loss of US $ 1.5 billion/year is estimated due to low crop
yields and massive loss due to disease concerns arising from
Zn malnutrition. Zn malnutrition has become a signifcant
health concern among resource-poor people [25]. In the
Indian situation, Zn-defcient soils are expected to increase
from 42 percent in 1970 to 63 percent by 2025 due to the
continuous depletion of soil fertility [26].

Eleusine coracana is an important millet crop in India,
which has a rich source of calcium and polyphenols as well as
a good nutritive value than major cereals [27]. Moreover, the
crop is climate-resilient and can be cultivated on marginal
lands. Long-term storage of seeds reduces seed germination
percentage. Successful establishment in the feld, however,
requires good germination potential. Rapid seed germina-
tion and seedling establishment are the essential elements
determining reproductive capacity [28] and productivity of
crops [29].

For this reason, the seed priming approach has been
established to promote seed germination and vigor [30] in

agricultural systems. In the present study, we developed low-
cost biosynthesized ZnO NPs, yet the application of ZnO
nanoparticles at a broader level has been unexplored. In our
research, we aimed to explore the positive interaction of the
ZnO NPs with plants. During the research study, green
synthesis of ZnO NPs has been achieved for their use as
a nanopriming agent to promote seed germination and
seedling growth parameters of fnger millet (aged seeds).

2. Materials and Methods

2.1. Reagents and Chemicals. Zinc sulfate heptahydrate
(99.5%) and sodium hydroxide (99%) were used as the
introductory material (Sigma-Aldrich chemicals).

2.2. Preparation of Leaf Extracts. Fresh green leaves of
C. roseus were collected from the G. B. Pant University of
Agriculture and Technology, Pantnagar campus. Te
plucked leaves were gently washed under running tap water.
Te leaves were dried in a hot air oven at 40°C, pulverized
through a home mixer blender, and kept at room temper-
ature until needed. After drying, the 5 g leaf powder was
transferred to a 250ml beaker containing 100ml distilled
water and heated for 15minutes at 80°C. Te mixture was
kept at room temperature for cooling and then fltered
through Whatman flter paper no. 1. Te fltrate was col-
lected in vials and stored at 4°C for further experimentation.
Te presence or absence of phytochemicals in the extract had
been studied earlier using standard procedures [31].

2.3. Preparation and Characterization of ZnO Nanoparticles.
A 10ml leaf extract of C. roseus was added dropwise to 90ml
of 1mM zinc sulfate heptahydrate (ZnSO4.7H2O).Temixer
was kept on a magnetic stirrer for 1 h. After 1 h, 2M NaOH
was appended, and the solution was placed at 65°C with
stirring for 2 h. Te yellow mixture (Figure 1) was washed
with alcohol and distilled water. A high concentration of
phytochemicals (alkaloids, phenols, and favonoids) in the
leaf extract functioned as efective stabilizing and capping
agents. Alkaloids, favonoids, and phenols are biological
antioxidants that contain anionic radicals that cause zinc
salts to be reduced to ZnO NPs. If the mixture’s alkalinity is
high, the amount of OH− is generally large, generating
signifcant attraction between positively charged Zn2+ and
OH−, resulting in increased crystallization and the pro-
duction of tiny ZnO NPs (Figure 2) [32].

Te generated nanopowder was dispersed in sterile
distilled water, and spectrum scans were taken in the
wavelength range of 300–500 nm using a GENESYS 10S UV-
Vis spectrophotometer. Plotting tool Origin Pro 8 was used
to replot the absorption results. UV-Vis spectrophotometric
measurement confrmed NP production.TeTermo Fisher
Nicolet i6700 FTIR spectrometer was used to perform FTIR.
Te data were recorded in the 400–4000 cm−1 range. Te
Malvern Zetasizer instrument was used to perform zeta
potential studies (AIIMS, Delhi). Te stability of the pro-
duced ZnO NPs was validated using zeta potential mea-
surements. A feld-emission scanning electron microscope
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(FE-SEM) was used to characterize the external morphology
of nanoparticles (JEOL FE-SEM). Elemental analysis was
accomplished using energy dispersive X-ray (EDX) dif-
fraction in conjunction with SEM. Te shape and size of the
NPs were determined using transmission electron micros-
copy (TALOS HR-TEM) (AIIMS, Delhi). Furthermore, the
size and shape of NPs were determined using an X-ray
difractometer (Bruker). A Sonic VCX 750 ultrasonicator
(750 watt power and 20 kHz frequency) was used to prepare
a homogenous solution.

2.4. Seed Priming Experiment. Finger millet aged seeds were
tested with diferent concentrations of ZnO NPs before
being sown for the Petri dish germination experiment. First,
a small amount of deionized water (DW) was added to ZnO
NPs and ultrasonication (30min, 3 cycles each 10min) was
used for good dispersion of NPs before normalizing the fnal
volume with DW to achieve the necessary concentrations of
100, 500, and 1000mg/L for preparing nanopriming solu-
tion. Next, the seeds were soaked in various ZnO NP
(100mL) concentrations for 4 hours in the dark at 25°C with
continuous shaking on an incubator shaker, while the seeds
primed with deionized water served as the control. Finally,
the treated seeds were rinsed 3–4 times with distilled water
and dried using tissue paper.

Te most efective treatment levels were selected based
on germination percentage, radicle and plumule length,
fresh and dry weight, and seedling vigor of treated seeds.Te
emergence of seedlings was monitored daily until a consis-
tent count was attained [33]. Seedling emergence and seed
vigor were recorded using the following formula:

Seed vigor � plumule  length(cm)

+ radicle  length(cm)

× germination percentage.
(1)

Seedlings were retrieved 9 days after seeding, followed by
radicle and plumule length measurements. Furthermore, the
seedling sample was dried at 75°C for 48 hours until
a constant weight was observed.

3. Results

Flavonoids, alkaloids, phenols, and proteins were found in the
C. roseus extract [31].Tese phytochemical constituentsmay act
as reducing and stabilizing agents during ZnO NP synthesis.

3.1. Visual Identifcation of ZnO NPs. Te color of zinc salt
altered from white to yellow when adding the leaf extract.
Te production of ZnO NPs is mostly responsible for color
change (Figure 1).

3.2. Spectroscopy Analysis of ZnO NPs. A UV-Vis spectrum
verifed the reduction of zinc ions to ZnO NPs with a strong
peak at 362 nm (Figure 3(a)), but in the plant extract, there
was no peak observed (Figure 3(c)). Te FTIR technique is
useful for determining the composition of materials.
Figure 3(b) shows the typical FTIR spectra of ZnO NPs. Te
wide absorption peak at 3328 cm−1 may be related to the
stretching of –OH or phenolic groups, whereas the peak at
547 cm−1 represents the characteristic absorption of the
Zn–O bond; however, in the plant extract, no absorption
spectrum was observed (Figure 3(d)).

3.3. Stability of ZnO NPs. Zeta potential (ZP) is an im-
portant measurement for studying the NP surface charge
and colloidal stability. ZnO NPs have a ZP of −18.8mV
(Figure 4), indicating that it forms stable ZnO NPs at basic
pH (8.1).
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Figure 1: Schematic representation for the formation of ZnO NPs.
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Figure 2: A proposed mechanism of synthesis of ZnO NPs utilizing the C. roseus leaf extract.
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Figure 3: UV-Vis (a, c) and FTIR spectra (b, d) of synthesized ZnO NPs and plant extracts, respectively.
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3.4. Purity, Surface Morphology, and Size of ZnO NPs.
Under the EDX spectrum analysis, EDX confrmed the
presence of elemental zinc and oxygen (Figure 5(b)). In ad-
dition, Zn and O have weight % values of 79.8 and 20.1, re-
spectively, compared with the other published research studies
[34, 35]. SEM examination to ascertain the morphology of
biologically produced ZnO NPs revealed nonspherical ag-
glomerates (Figure 5(a)). Te particle size and shape were
determined by TEM. In Figure 5(c), the TEM image of ZnO
NPs synthesized with the C. roseus extract shows nonspherical
particles with a mean size of 43.6 nm. Te XRD pattern of the
ZnO powder is shown in Figure 5(e). Te difraction peaks
located at 31.84°, 34.52°, 36.33°, 47.63°, 56.71°, and 62.96° have
been indexed as a hexagonal wurtzite phase of ZnO (JCPDS no.
36–1451). Difraction peaks corresponding to the impurity
were not found in the XRD patterns, confrming the high
purity of the synthesized ZnONPs.Te average crystallite sizes
of the samples were calculated by the Debye–Scherrer equation
(Equation (1)) using the full width at half maximum of 101 of
the X-ray difraction peaks.

d �
0.89λ

β  cos  θ
. (2)

Te average particle size of the sample was found to be
35.19 nm, which was derived from the FWHM of the more
intense peak corresponding to the 101 plane located at 36.33°
using Scherrer’s formula.

3.5. Efect of ZnO NPs on Seed Germination and Seedling
Vigor. Seed treatment with ZnO NPs at 100 and 500mg/L
showed a signifcant increase in germination percentage
compared to the control, while at 1000mg/L, seed germi-
nation was remarkably reduced (Figure 6(a)). In addition,
seedling vigor also signifcantly increased at 100 and 500mg/
L, which was 7523.917 (29.17%) and 9180.083 (41.94%),
respectively, compared to the control treatment (0mg/L)
(Figure 6(b)). Tese fndings suggest that lower concen-
trations of ZnO NPs (100 and 500mg/L) signifcantly in-
creased seed germination and seedling vigor, while higher
concentration (1000mg/L) negatively afected these
parameters.

Seed treatment with ZnO NPs signifcantly enhanced
seedling growth (Figure 6). At 100 and 500mg/L of ZnO NP

treatment, plumule length increased by 27.4 and 23.4 per-
cent (Figure 6(c)), while radicle length increased by 35.1 and
55 percent, respectively (Figure 6(d)). A similar trend was
followed in the fresh and dry weight of the seedling. Te
fresh weight increased by 24.8 and 34.8 percent (Figure 6(e)),
while the dry weight increased by 35.5 percent and 54.6
percent (Figure 6(f)). Te root-shoot ratio of the seedlings
also increased by 1.1 and 1.6, respectively (Figure 6(g)),
compared to the control (0mg/L). Te results indicated that
seed treatment with 500mg/L ZnO NPs signifcantly in-
creased seedling growth parameters followed by 100mg/L
ZnO NPs; however, higher concentration (1000mg/L) re-
duced seedling growth (Figure 7).

3.6. Heatmap Clustering. Heatmap clustering was used in
the fnger millet seed germination experiment with various
concentrations of ZnO NPs. Te 4 concentrations could be
separated into two clusters. Group A contains 2 concen-
trations of 0mg/L and 1000mg/L of ZnO NPs, and Group B
comprises the other two concentrations (100mg/L and
500mg/L) (Figure 8). Group B is characterized by the
highest vigor index, plumule length, radicle length, and fresh
and dry weight of seedlings. It was observed that the vigor
index is the most determinant factor of plant growth which
is signifcantly improved at a concentration of 500mg/L.
According to Figure 6, maximum seedling growth pro-
motion was observed at 500mg/L of ZnO NPs, followed by
100mg/L.

4. Discussion

Under changing climatic conditions, the monsoon regime
shift causes negative consequences for crops. It reduces seed
germination, vigor potential, and yield losses under severe
stress conditions. On the contrary, applying the nano-
priming agent to crops greatly enhances seed germination
and plant growth parameters under adverse climatic con-
ditions [36, 37].

Te biosynthesis of NPs is a convenient, inexpensive,
nontoxic, and ecologically sound process of NP synthesis.
Using biological resources in synthesizing NPs is extremely
important for the sustainability of NP production and usage.
In the present research study, biosynthesis of yellow color
ZnO NPs was achieved by using the leaf extract of C. roseus.
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Figure 4: Zeta potential analysis of biosynthesized ZnO NPs.
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According to a previous study, the formation of ZnO NPs
coincided with the transition of color to light yellow [38–40].
ZnO NPs can be synthesized from the plant leaf extract
containing numerous phytochemicals like alkaloids, favo-
noids, and phenols. Tese phytochemicals contain anionic

radicals that are amenable to reducing zinc salts to ZnONPs.
If the mixture’s alkalinity is high, the amount of OH− is
generally large, generating signifcant attraction between
positively charged Zn+ and OH−, resulting in increased
crystallization and the production of smaller ZnO NPs. Te
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generation of ZnO NPs was checked by the UV-Vis spec-
trum, where a strong peak at 362 nm confrmed the re-
duction of zinc ions to ZnO NPs. Other studies, such as the
studies by Khalaf et al. [41] and Muhammad et al. [42],
support the present fndings in the biosynthesis of ZnO NPs,
exhibiting strong peaks at 362 nm and 360 nm, respectively.
Te production of ZnO NPs was confrmed by the presence
of Zn and O elements in EDX spectrum analysis. FTIR
spectra analysis was used to determine the composition of
biosynthesized ZnO NPs. Te fndings of FTIR are con-
sistent with those of the studies by Yedurkar et al. [43] and
Ebadi et al. [44]. Te stability of biosynthesized ZnO NPs
was assured by zeta potential at −18.8mV. SEM analysis of
the powder sample identifed the nonspherical agglomerates
of ZnO NPs. Te size and morphology of the biosynthesized
ZnO NPs determined by TEM analysis revealed that non-
spherical NPs have an average size of 43.6 nm. Te particle
size and shape of the biosynthesized ZnO NPs agree with
several other studies [45–47]. Te average particle size of the
sample was found to be 35.19 nm under XRD analysis.

Nanoparticles have improved uptake and high nutrient
use efciency compared to bulk materials. Nanoscale ma-
terials could lead to more efective delivery of nutrients as
their small size may allow them access to various plant
surfaces and transport channels [48]. A study on the two
diferent sizes of particles (43 nm and 1.1 μm diameter) in
Vicia faba L. [49] indicated that nanosized particles could
transport efectively in the leaf interior through stomatal
pores [50, 51]. Te well-characterized ZnO NPs were tested
as nanopriming agents in promoting seed germination and
vigor of the fnger millet by the seed germination test. Te
results revealed that ZnO NPs signifcantly improved the
seed germination and vigor of the fnger millet at 100 and
500mg/L concentrations. Seed treatment with ZnO NPs at
500mg/L provided the highest vigor (1.7 fold), followed by
100mg/L (1.4 fold), compared to the control. Te seedling’s
fresh weight also signifcantly improved at 100 (1.3 fold) and
500 (1.5 fold) mg/L, whereas the dry weight of the seedling
was increased at 100 (1.5 fold) and 500 (2.2 fold) mg/L.
Herein, the concentration of ZnO NPs at 500mg/L was

Control 100 mg/L 500 mg/L
1000 mg/L

Figure 7: Efect of zinc oxide nanoparticles (ZnO NPs) on the growth of Eleusine coracana seedlings.
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Figure 8: Heatmap clusters on the efect of diferent concentrations of ZnONPs on seedling growth parameters. Mean values refer to colors
from minimum displayed in red to maximum represented with green.

8 Advances in Agriculture



found to be signifcant for enhancing plant growth-related
parameters, but a higher concentration of 1000mg/L caused
a negative efect on seed germination and plant growth.

ZnO NPs might have afected plant growth by regulating
the hormone biosynthesis of plants [52], particularly auxins
and gibberellins (GAs) (increasing the expression of GA-
related genes BnGA20ox, BnGA3ox, and BnCPS during
germination) [53]. Tese hormones increase reserve food
breakdown in the seed, which can help augment seed ger-
mination and vigor [54]. Te ZnO NP treatment reduced
seed dormancy by downregulating abscisic acid (decreasing
the expression of abscisic acid-related genes BnCYP707A1,
3, and 4) [53]. Another possible reason for faster seed
germination could be the generation of reactive oxygen
species (ROS) that result from the entry of ZnO NPs in the
area between the cell membrane and the intracellular space
of the seed coat parenchyma. Elevated levels of ROS in seeds
increased ion penetration as well as water and oxygen ab-
sorption, both of which are required for faster seed ger-
mination [30]. Rawashdeh et al. [55] found that lettuce seeds
(Lactuca sativa L.) treated with ZnO NPs had to have
a higher Zn content than the control. In Allium cepa L., seed
treatment with ZnO NPs at 800mg L−1 signifcantly en-
hanced seed vigor by 56% compared to the control, while at
higher concentration (3200mg L−1), seed germination re-
duced to 11% [56]. ZnO NPs (25mg/100ml) considerably
increased the germination percentage in Vigna mungo L. by
111.3 compared to the control [57]. Pennisetum glaucum (L.)
R. Br. seeds treated with ZnO NPs showed 60% more seed
germination than the control [58]. ZnO NPs at 100mg L−1

were also efective in rice [59] and maize [60] seed germi-
nation and dry matter accumulation. At 500mg L−1, ZnO
NPs improved seed germination, seedling growth, and an-
tioxidant enzymes in Capsicum chinense Jacq. [61] and
Portulaca oleracea L. [62]. ZnO NPs priming reduced ROS
and MDA accumulation in maize and wheat under cobalt
stress [63] and drought stress [64], respectively. Improved
seed germination and vigor of the fnger millet in the present
experiment were due to the stimulating efect of ZnONPs by
modulating hormone biosynthesis either directly or through
the production of ROS.

5. Conclusion

Te present study gives a successful and reproducible
protocol of ecofriendly green synthesis of ZnO NPs and
highlights its application in improving seedling growth
parameters of fnger millet under in vitro conditions. It
quickly entered the plant cell and supported the develop-
ment of the plant’s biomass. ZnO NP cell wall deposition
alters the metabolic activities of plants and activates their
defense mechanisms.Terefore, crop improvement has been
greatly infuenced by its application to plants with the best
consideration. According to the study mentioned above,
seed treatment with lower doses of ZnO NPs (100mg/L and
500mg/L) is a successful strategy for promoting seedling
development in E. coracana. In the future, applying green
synthesized ZnOs may improve seed germination and plant
growth promotion of other crops. Besides, these NPs could

also be used as a readily absorbable form of micronutrient,
boosting the successful establishment of crops under stress
conditions and improving crop productivity in farmers’
felds.
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et al., “Efects of zinc oxide nanoparticles on growth and
antioxidant enzymes of Capsicum chinense,” Toxicological
and Environmental Chemistry, vol. 100, no. 5-7, pp. 560–572,
2018.

[62] E. Iziy, A. Majd, M. R. Vaezi-Kakhki, T. Nejadsattari, and
S. Kazemi Noureini, “Efects of zinc oxide nanoparticles on
enzymatic and nonenzymatic antioxidant content, germina-
tion, and biochemical and ultrastructural cell characteristics
of Portulaca oleracea L,” Acta Societatis Botanicorum Polo-
niae, vol. 88, no. 4, pp. 1–14, 2019.

[63] A. Salam, A. R. Khan, L. Liu et al., “Seed priming with zinc
oxide nanoparticles downplayed ultrastructural damage and
improved photosynthetic apparatus in maize under cobalt
stress,” Journal of Hazardous Materials, vol. 423,
pp. 127021–127117, 2022.

[64] A. Azmat, Y. Tanveer, H. Yasmin et al., “Coactive role of zinc
oxide nanoparticles and plant growth promoting rhizobac-
teria for mitigation of Synchronized efects of heat and
drought stress in wheat plants,” Chemosphere, vol. 297,
pp. 133982–134024, 2022.

Advances in Agriculture 11




