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Suspension two-layered blood flow through
a bell shaped stenosis in arteries

Amit Medhavi∗
Department of Mechanical Engineering, Kamla Nehru Institute of Technology, Sultanpur, India

Abstract. The present study concerns with the effects of the hematocrit and the peripheral layer on blood flow characteristics
due to the presence of a bell shaped stenosis in arteries. To account for the hematocrit and the peripheral layer, the flowing blood
has been represented by a two-layered macroscopic two-phase (i.e., a suspension of red cells in plasma) model. The expressions
for the flow characteristics, namely, the velocity profiles, the flow rate, the impedance, the wall shear stress in the stenotic region
and the shear stress at the stenosis throat have been derived. The quantitative effects of the hematocrit and the peripheral layer
on these flow characteristics have been displayed graphically and discussed briefly.
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1. Introduction

The frequently occurring cardiovascular disease,
stenosis or arteriosclerosis means narrowing of any
body passage, tube or orifice, is known to be respon-
sible for many of the serious consequences (cerebral
strokes, myocardial infarction, angina pectoris, cardiac
arrests). Although, the etiology of the initiation of dis-
ease is not well understood, however, it is believed that
the disease occurs due to the deposits of the cholesterol,
fatty substances, cellular waste products, calcium and
fibrin in the inner lining of an artery. It is also well
established that once the constriction has developed, it
brings about the significant changes in the flow field,
particularly, the pressure distribution, the wall shear
stress and the impedance (flow resistance). With the
knowledge that the cardiovascular disease, stenosis is
closely associated with the flow conditions and other
hemodynamic factors, a large number of researchers
including Young [41, 48], Young and Tsai [39], Caro
et al. [7], Shukla et al. [29], Ahmed and Giddens [1],
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Sarkar and Jayaraman [28], Pralhad and Schultz [27],
Jung et al. [11], Liu et al. [13], Srivastava and Raas-
togi [33, 34], Misra and Shit [21], Ponalagusamy [26],
Layek et al. [12], Joshi et al. [10], Mekheimer and El-
Kot [18], Tzirtzilakis [38], Mandal and coworkers [14,
15], Politis et al. [23, 24], Singh et al. [30], Biswas and
Chakraborty [4, 5], Medhavi [17], Mishra and Siddiqui
[20], Nadeem et al. [22], Mekheirmer et. al. [19], Pon-
alagusamy and Selvi [25], Bandyopadhyay and Layek
[2, 3], Srivastava et al. [36] and many others have
addressed the stenotic development problems under
various flow situations since the first investigation of
Mann et al. [16].

Being a suspension of corpuscles, at low shear
rates blood in general behaves like a non-Newtonian
fluid in small diameter tubes. The experimental obser-
vations of Cokelet [8] and theoretical investigation
of Haynes [9] indicate that blood can no longer be
treated as a single-phase homogeneous viscous fluid
while flowing through narrow arteries (of diameter
≤ 1000 �m). Skalak [31] concluded that an accu-
rate description of the blood in small vessels requires
the consideration of erythrocytes as discrete particles.
In addition, Bugliarello and Sevilla [6], Cokelet [8]
and Thurston [37] have shown experimentally that for
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Fig. 1. The geometry of an arterial bell shaped stenosis.

blood flowing through small vessels, there is a cell-
free plasma (Newtonian viscous fluid) layer and a core
region of suspension of all the erythrocytes. Haynes [9]
presented a two-fluid model for blood, consisting of a
core region of suspension of all the erythrocytes as a
homogeneous Newtonian viscous fluid and a cell-free
plasma layer as a Newtonian fluid of constant viscos-
ity (equal to the viscosity of water) and concluded that
the significance of the peripheral layer increases with
decreasing blood vessel diameter. A brief discussion
and survey on suspension modeling of blood flow has
been presented in Srivastava [32].

It is also known from the published literature that
stenoses may develop in series (multiple stenoses),
may be of irregular shapes, overlapping, bell shaped,
composite in nature, axially symmetric or non-
symmetric, etc. The majority of the studies conducted
have used axially symmetric and non-symmetric
stenoses. The present work is devoted to discuss the
flow through a bell shaped stenosis assuming that the
flowing blood is represented by a two-layered sus-
pension model [32]. The theoretical model used to
conduct the study enables one to observe simultane-
ous effects of the hematocrit and the peripheral layer
on flow characteristics of blood due to the presence of
a bell shaped stenosis in arteries. The artery length is
considered large enough as compared to its radius so
that the entrance, end and special wall effects can be
neglected.

2. Formulation of the problem

Consider the axisymmetric flow of blood in an
artery of circular cross-section of radius R with an
axisymmetric bell shaped stenosis. Assuming that the

flowing blood is represented by a two-layered suspen-
sion model consisting of a central layer of suspension
of all the erythrocytes (i.e., a suspension of red cells in
plasma) of radius R1 and a peripheral layer of plasma (a
Newtonian viscous fluid) of thickness (R − R1). The
stenosis geometry [21] and the shape of the central
layer, assumed to be manifested in the arterial segment,
are respectively described in Figs. 1 and 2, as

(R(z), R1(z))

R0

= 1− (δ, δ1)

R0
exp

(
−m2ε2z2

R2
0

)
, −L0 ≤ z ≤ L0,

= (1, α), otherwise, (1)

where R0 is the radius of the arterial segment in the
non-stenotic region, R(z) is the radius of the stenosed
portion located at the axial distance z from the left end
of the segment, � is the depth of stenosis at the throat
and m is a parametric constant, � is the relative length
of the constriction defined as the ratio of the radius to
the half length of the stenosis, i.e., � = R0/L0.

The equations describing a two-layered suspension
blood flow [32] in the case of a mild stenosis (�/R0
<< 1), are given as
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(
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)
u0, R1 ≤ r ≤ R, (4)

where r is the radial coordinate measured normal to
the artery axis and p denotes the pressure, (uf, up)
are the axial velocity of (fluid, particle) phases in the
core region (0 ≤ r ≤ R1), (�0, u0) are (viscosity, axial
velocity) of fluid (plasma) in the peripheral region
(R1 ≤ r ≤ R), �S(C) ∼= �S is the suspension viscos-
ity (apparent or effective viscosity) in the core region,
C denotes the constant [35] volume fraction density of
the particles (called hematocrit), S is the drag coeffi-
cient of interaction exerted by one phase on the other,
and the subscripts f and p denote the quantities associ-
ated with the plasma (fluid) and erythrocyte (particle)
phases, respectively. The limitations and the usefulness
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of the present theoretical model are discussed briefly
in Srivastava [32]. The expression for the viscosity of
suspension, �s and the drag coefficient of interaction,
S for the present study are selected [35] as

�s
∼= �s (C) =

�o

1 − qC
,

q = 0.07 exp

[
2.49C +

(
1107

T

)
exp (−1.69C)

]
,

(5)

S = 4.5(�o /a2
o)

4 + 3[8C − 3C2] 1/2 + 3C

(2 − 3C)2 , (6)

where T is measured in absolute scale of the tempera-
ture (K), �o is the constant plasma viscosity and ao is
the radius of an erythrocyte.

The boundary conditions are the standard no slip
conditions of velocities and the shear stresses at the
tube wall and the interface, and are stated as

u0 = 0 at r = R, (7)

u0 = uf and �p = �f at r = R1, (8)

∂uf

∂r
= ∂up

∂r
= 0 at r = 0, (9)

where �p = �o∂u0/∂r and �f = (1 − C)�s∂uf/∂r are the
shear stresses of the peripheral and central layers,
respectively.

3. Analysis

The expressions for velocities, u0, uf and up obtained
as the solutions of Equations (2)–(4), subject to the
boundary conditions (7)–(9), are given as

u0 = − R2
0

4�0
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}
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(10)
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0 ≤ r ≤ R1, (12)

where � = �0/ �s.
The flow flux, Q is now calculated as

Q = 2 �

{∫ R

R1

ru0 dr

+
R1∫

0

r
[
(1 − C) uf + C up

]
dr

⎫⎬
⎭

= − �R4
o

8(1 − C)�0

dp

dz

{
(1 − C)

[
(R/R0)4 − (R1/R0)4

]

+ � (R1/R0)4 + � (R1/R0)2
}

, (13)

with � = 8C(1 − C)�0 /SR2
0, a non-dimensional sus-

pension parameter.
Using the fact that the total flux is equal to the sum

of the fluxes across the two regions (peripheral and
core), one determines the relations [32]: R1 = α R and
�1=��. In view of these relations, the pressure drop,
�p (= p at z = − L, − p at z = L) across the steno-
sis between the sections z = −L and z = L, using the
expression for (−dp/dz) obtained from Equation (13),
is derived as

�p =
L∫

- L

(
− dp
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)
dz = 8 (1 − C) �0 Q

� R4
o

�, (14)

where � =
−L0∫
−L

[ 	 (z)]R/Ro=1dz +
Lo∫
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	 (z) dz

+
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	 (z)

]
R/R0=1 dz,

	 (z) = 1


 (R/R0)4 + ��2 (R/R0)2 ,


 = (1 − C)(1 − �4) + ��4.

The first and third integrals in the expression for
� obtained above are straight forward whereas the
evaluation of the second integral in closed form is a



14 A. Medhavi / Suspension two-layered blood flow

formidable task and thus will be evaluated numeri-
cally. Using now the definitions from Srivastava and
Rastogi [34], the expression for the impedance (flow
resistance), � the wall shear stress, �w and the shear
stress at the stenosis throat, �s are obtained in their
non-dimensional form as

� = (1 − C)

{
1 − L0/L


 + ��2

+ 1

L

L0∫
−L0

dz


 (R/R0)4 + ��2(R/R0)2

⎫⎪⎬
⎪⎭, (15)

�w = (1 − C)


 (R/R0)3 + ��2(R/R0)
, (16)

�s = (1 − C)


 (1− � /R0)3 + ��2(1− � /R0)
, (17)

where

� = �/ �0, (�w, �s) = (�w, �s) / �0,

� = �p/Q, �w = ( − R/2)dp/dz,

�s = [ − (R/2)(dp/dz)]R/R0=(1−�/R0),

�0 = 16�0 L/� R4
0, �0= 4�0Q/� R3

0,

�0 and �0 are the impedance and shear stress in a
normal (no stenosis) artery for a Newtonian fluid (i.e.,
C = 0), and (�, �w,�s) are (impedance, wall shear stress,
shear stress at the stenosis throat) in their dimensional
form.

When the core mixture behaves like a Newtonian
fluid of constant viscosity, �1 (different from �o), the
results obtained above reduce to the case of a two-fluid
model of Newtonian fluid as

�t = �

⎧⎪⎨
⎪⎩1 − L0/L + (1/L)

L0∫
−L0

dz

(R/R0)4
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⎪⎭, (18)

�wt = �

(R/R0)3 , (19)

�st = �

(1 − �/R0)3 , (20)

with � = 1/[1 − (1 − �′) �4], �′= �o/ �1. The sec-
ond subscript t denotes the quantities associated with
the two-fluid model of Newtonian fluids.

In the absence of the peripheral layer (i.e., � = 1),
the expressions for the flow characteristics obtained in
Equations (15)–(18), derive the corresponding results
for the case of a single-layered macroscopic two-phase
blood flow as

�m = (1 − C)

{
1 − L0/L

� + �

+ 1

L
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(R/R0)3+ � (R/R0), (22)

�sm = (1 − C)

� (1− � /R0)3+ � (1 − �/R0)
, (23)

The second subscript m stands for the quantities
associated with the flow of a single-layered macro-
scopic two-phase blood flow. Further, it is interesting
to note that in the absence of the particle phase in
the core region, the two-phase fluid in the core region
reduces to the same fluid as in the peripheral region
and consequently the role of the interface automati-
cally disappears and one obtains the expressions for the
blood flow characteristics for a single-layered Newto-
nian fluid as

�N= 1 − L0/L + 1

L

L0∫
−L0

dz

(R/R0)4 , (24)

�wN = 1

(R/R0)3 , (25)

�sN = 1

(1− �/R0)3 , (26)

where the second subscript N stands for single-layered
Newtonian fluid.

4. Numerical results and discussion

In order to discuss the results of the study quan-
titatively, computer codes are developed to evaluate
analytical results obtained in Equations (2.19)–(2.21)
at the temperature of 37◦C in an artery of radius
0.01 cm for various parameter values [34, 35, 40]
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Fig. 2. The shape of the central layer.

Fig. 3. � vs δ/Ro for different, C.

selected as: L0(cm) = 1; L(cm) = 1, 2, 5; C = 0, 0.2,
0.4, 0.6; �/R0 = 0, 0.05, 0.10, 0.15, 0.20. Some of
the critical results obtained are displayed graphically
in Figs. 3–8. In view of the fact that the peripheral
layer thickness strongly depends on the core suspen-
sion viscosity (i.e., on erythrocyte concentration; [6,
32]), we choose 2a0 (diameter of a red cell) = 8 �m,
the peripheral layer thickness, � (�m) ∼= �(C) = 6.18,
4.67, 3.60, 3.12, 2.58, 2.18 corresponding to the hema-
tocrit, C = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, respectively [9].
The value of the parameter, � is then calculated from
the relation: � = 1 − �/R0.

The resistance to flow, � increases with the hema-
tocrit, C as well as with the stenosis height, �/R0
(Fig. 3). The impedance, � decreases with the

Fig. 4. � vs δ/Ro for different C and L.

increasing length of the tube which in terns implies that
the impedance, � increases with the stenosis length,
2L0 (Fig. 4). The blood flow characteristic, � increases
steeply with the hematocrit, C for any given set of other
parameters (Fig. 5). The flow characteristic, � assumes
lower magnitude in two-layered analysis than its cor-
responding value in single-layered model (Figs. 2–5).

At any axial distance the wall shear stress in the
stenotic region, τw increases with the hematocrit, C
and stenosis height, �/R0 (Fig. 6). The blood flow
characteristic, increases rapidly in the up stream of the
stenosis throat and attains its peak magnitude at the
throat located at z/L0 = 0, it then decreases rapidly in
the down stream of the throat and attains its approached
value (i.e., at z/L0 = −1) at the end point of the
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Fig. 5. � vs C for different δ/Ro.

Fig. 6. �w vs z/Lo in stenotic region for different δ/Ro.

constriction profile located at z/L0 = 1 (Fig. 6). It is
to note here that for small stenosis height, �/R0 (≤
0.1, 19% stenosis by area reduction), the magnitude of
the shear stress, τw in two-fluid analysis follow closely
the magnitude of the shear stress, τw in one-fluid anal-
ysis but considerable difference between the two is
clearly observed increasing stenosis size. In addition,
one notices that the peak point of the shear stress in
two-layered analysis occurs slightly right to the peak
point of the shear stress in one-layered analysis. The
shear stress at the stenosis in throat, �s also increases
with the hematocrit, C and the stenosis height, �/R0
(Fig. 7). An inspection of Figs. 2–4, 6 and 7 reveals

Fig. 7. �s vs δ/Ro for different C.

Fig. 8. � vs δ/Ro for different stenosis geometry.

that the shear stress at the stenosis throat, �s possesses
the characteristics similar to that of the flow resistance,
� with respect to any parameter.

To emphasize further on the significance of the
present work, a comparison of the results (impedance)
obtained in the case of the present bell shaped steno-
sis with those obtained in an axisymmetric stenosis
[34] and axially non-symmetric stenosis [33] has been
presented in Fig. 8 for the same values of the vari-
ous parameters. For any stenosis height, �/R0 the flow
resistance, � assumes considerably higher magnitude
in the present bell shaped stenosis as compared to other
geometries (symmetric or non-symmetric).
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The condition that �/R0 << 1 limits the usefulness
of the present study to very early stages of the vessel
constriction, which allows the use of fully developed
flow equations and closed form solutions; the use of
parameter �/R0 is restricted to the value up to 0.15
(i.e., 28% stenosis by area reduction) as beyond this
value a separation in the flow may occur [40].

5. Conclusions

To observe the effects of hematocrit on blood flow
characteristics due to the presence of a mild stenosis, a
macroscopic two-phase model of blood has been used
to discuss the flow through a bell shaped stenosis. The
blood flow characteristics (the flow resistance, the wall
shear stress in the stenotic region and the shear stress
at the stenosis throat) increase with the hematocrit as
well as with the stenosis size (length and height). The
shear stress at the stenosis throat possesses the charac-
teristics similar to that of the impedance with respect
to any parameter. The two-phase fluid (particle-fluid
suspension) seems to be more sensitive to the steno-
sis than a single-phase fluid. The flow characteristics
assume considerably higher magnitude in the present
bell shaped stenosis than its corresponding valve in
axisymmetric and non-symmetric stenoses. The flow
characteristics assume lower magnitude in two-fluid
analysis than its corresponding magnitude in one-fluid
study which concludes that the peripheral layer helps
in functioning of diseased arteries.
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