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Learning from demonstration (LfD) enables a robot to emulate natural human movement instead of merely executing
preprogrammed behaviors. This article presents a hierarchical LfD structure of task-parameterized models for object movement
tasks, which are ubiquitous in everyday life and could benefit from robotic support. Our approach uses the task-parameterized
Gaussian mixture model (TP-GMM) algorithm to encode sets of demonstrations in separate models that each correspond to a
different task situation. The robot then maximizes its expected performance in a new situation by either selecting a good
existing model or requesting new demonstrations. Compared to a standard implementation that encodes all demonstrations
together for all test situations, the proposed approach offers four advantages. First, a simply defined distance function can be
used to estimate test performance by calculating the similarity between a test situation and the existing models. Second, the
proposed approach can improve generalization, e.g., better satisfying the demonstrated task constraints and speeding up task
execution. Third, because the hierarchical structure encodes each demonstrated situation individually, a wider range of task
situations can be modeled in the same framework without deteriorating performance. Last, adding or removing demonstrations
incurs low computational load, and thus, the robot’s skill library can be built incrementally. We first instantiate the proposed
approach in a simulated task to validate these advantages. We then show that the advantages transfer to real hardware for a task
where naive participants collaborated with a Willow Garage PR2 robot to move a handheld object. For most tested scenarios,
our hierarchical method achieved significantly better task performance and subjective ratings than both a passive model with
only gravity compensation and a single TP-GMM encoding all demonstrations.

1. Introduction

Many modern humanoid robots are designed to operate in
human environments, like homes and hospitals. If designed
well, such robots could help humans accomplish tasks and
lower their physical and/or mental workload. One particu-
larly interesting task type is jointly manipulating an object
with a partner [1], as it requires human collaboration, shared
physical control, and adapting to new situations. The way in
which one creates new robot behaviors or updates known
behaviors should be intuitive and natural so that users who
are not familiar with robotics can easily customize the robot
to their specific environment and needs. This research is

aimed at designing an intelligent robot controller that
achieves these desired characteristics.

As opposed to having an operator devise control policies
and reprogram the robot for every new situation it encoun-
ters, learning from demonstration (LfD, also known as
programming by demonstration (PbD)) provides a direct
method for robots to learn and replicate human behaviors
[2, 3]. LfD control policies are learned from demonstrations
in which a human teacher controls the robot to accomplish
the task. Various learning algorithms are suitable for encod-
ing interactions recorded during demonstrations, such as
hidden Markov models (HMMs) [4] and hidden semi-
Markov models (HSMMs) [5]. By extending the HSMM
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framework, Rozo et al. enabled the robot to be proactive if the
partner does not follow the demonstrations, which were
encoded by the observed temporal patterns and sequential
information [6]. Dynamic motion primitives (DMPs) [7]
provide another framework for interaction encoding, for
example, learning an adaptive, sensor-driven interaction
between two coupled agents [8]. Instead of learning or plac-
ing basis functions for the forcing term, Pervez et al. pre-
sented a DMP-based method that accommodates spatial
and temporal variations in demonstrations, different initial
and final conditions, and partial executions by directly
encoding the phase variable and forcing term value in a
Gaussian mixture model (GMM) and synthesizing the forc-
ing term at test time using Gaussian mixture regression
(GMR) [9].

Another promising learning framework is using a GMM
and GMR directly on the demonstrated trajectories, where
multiple channels of information (e.g., position and velocity
of the robot gripper) are encoded jointly by a GMM. The
conditional probability density function of the outputs on
the inputs can be calculated and used in GMR for a wide
range of applications such as trajectory retrieval [10]. The
task-parameterized GMM (TP-GMM) framework utilizes
task parameters to annotate demonstrations, and it allows
generalization to undemonstrated situations bymanipulating
the demonstrated data with respect to the undemonstrated
task parameters [11]. Rozo et al. used the TP-GMM frame-
work for human-robot collaborative tasks, additionally
modeling the robot dynamics with an impedance model that
has unit mass and constant damping [12]. In a similar spirit,
Pervez and Lee developed task-parameterized DMP (TP-
DMP) to include such task parameters in a mixture of GMMs
[13], extending the GMM that previously encoded only the
phase variable and the forcing term value in [9].

In addition to utilizing various learning frameworks, LfD
approaches create the opportunity for the robot to determine
when new demonstrations are needed, thus avoiding poor or
even dangerous actions. Uncertainty in generalized trajecto-
ries or cost functions has been used as a trigger for requesting
demonstrations, where uncertainty can be calculated from,
e.g., Query by Bagging [14] or a Gaussian Process (GP)
[15]. Chernova and Veloso used confidence in execution to
detect unfamiliar or ambiguous states that require new dem-
onstrations [16]. In another approach, a GMM gating model
that is based on observed human motions determines
whether the test task is likely to be contained in the Interac-
tion ProMPs that the robot has already learned or whether
new demonstrations are necessary [17]. In these approaches,
the new test is compared to what the robot has experienced,
and new demonstrations are requested when the robot deems
it necessary. On the other hand, Abi-Farraj et al. considered
generalized trajectories for refining the learned distribution
via an information gain threshold so that the robot does
not need to request additional demonstrations [18].

Many approaches are aimed at building skill libraries
from demonstrations. For example, Muelling et al. learn a
library of DMPs from demonstrations for table tennis, and
at test time, the output control policy is a weighted average
of the DMP skills generated from a kernel function on input

stimuli (hitting position and velocity) and weight parameters
that prioritize certain skills obtained using reinforcement
learning [19]. Since a weighted average was used as a means
for generalization, predicting task performance for tests was
difficult, i.e., the combination of a set of good demonstrations
may not necessarily result in good behavior, and thus, rein-
forcement learning was necessary to prune or prioritize cer-
tain skills in the DMP library [19]. As a result, when a new
motion primitive is added or an existing one is deleted, the
library may need to be retrained for it to converge again. In
contrast, online learning is achieved in [17] by incrementally
building the GMM gating model and the Interaction
ProMPs, while the gating model selects only one most likely
model for generalization. Other examples that incremen-
tally build skill libraries from new demonstrations include
[20–22]. Existing methods that incrementally train GMMs
have also been adapted for TP-GMMs [23].

In this paper, we propose a hierarchical framework that
considers the three aspects of LfD mentioned above. First,
we utilize the TP-GMM algorithm [11] as the basis for
demonstration encoding and generalization because of its
validated merits in many tasks. Second, our utility functions
operate on task parameters and allow the robot to determine
when to request new demonstrations. Third, we incremen-
tally build a library of TP-GMMs to continuously improve
test performance as new demonstrations become available.

Our approach is most similar in spirit to [13, 17]. Akin to
[13], we build a single skill (GMM) from one or more dem-
onstrations corresponding to the same task parameters. We
also aim to learn from a small number of available demon-
strations and overcome the sparsity of task parameters in
training data, although our approach uses a gating function
(as does [17]) to choose the most applicable skill for general-
ization with TP-GMM instead of mixing skills together [13].
Consequently, it is possible to determine when new demon-
strations are required in both our approach and [17] but
not in [13], and our approach can incrementally build the
skill library as new demonstrations become available, while
[13] learns from batch data. Another important difference
between our approach and [13] is that because task parame-
ters are encoded in GMMs and their numerical differences
determine the relative contributions of the mixture [13], it
is not straightforward to include orientation of relevant
objects/frames in the task parameters: for example, a Euler
angle of 0:9π rad is numerically closer to 0:5π rad than to −
0:9π rad, but one could expect the skill from −0:9π rad to
be more relevant when extrapolating to 0:9π rad.

As for [17], demonstrations are represented by linear
combinations of basis functions, and the weights are encoded
in the GMM. As a result, each demonstration contributes
only one data point to the GMM training procedure, and
the dimensionality of the weight space depends on the num-
ber of basis functions, which may need to be high to have
enough expressiveness in constructing the trajectories; these
two factors combined may make it necessary to acquire a
large number of demonstrations to avoid overfitting. In addi-
tion, task parameters are not considered in [17], and thus,
this approach is more suitable when distinguishing and per-
forming multiple types of tasks, e.g., if the robot needs to
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hand over objects and help humans stand up. In contrast, our
approach and [13] consider different instances of the same
task type and are aimed at improving generalization perfor-
mance when, e.g., the position of the human receiving the
object changes. Finally, our approach utilizes TP-GMM
directly on trajectories, so it is possible to include the posi-
tion, velocity, time, and/or force dimensions in the model
depending on the task, making our approach more versatile
than the trajectory retrieval functions in [13, 17].

The main contributions of this work are a hierarchical
LfD structure of task-parameterized models for object
movement tasks, as well as analysis of the generalization per-
formance of TP-GMM and the proposed hierarchical frame-
work both in simulation and on real hardware. The simulated
movement task shows that our hierarchical structure can
predict test performance via a utility function that measures
task situation similarity, improve generalization perfor-
mance, and reduce computational load during training. The
real movement task shows that a robot controlled by the pro-
posed hierarchical structure collaborates with human sub-
jects more effectively than TP-GMM or a passive robot. We
focus on an object movement task, such as the scenario
shown in Figure 1, because it is ubiquitous in everyday life
and could benefit from robot assistance.

2. Materials and Methods

In this section, we first briefly introduce the TP-GMM algo-
rithm [11] and use a simplistic task to illustrate potential
issues with its typical implementation. Then, we introduce
the proposed hierarchical structure that utilizes TP-GMM,
which we instantiate and compare against typical TP-GMM
in a simulated movement task. Finally, we detail the
human-subject study where naive users collaboratively
manipulated an object with a Willow Garage PR2 and evalu-
ated its performance with the typical TP-GMM algorithm,
the proposed hierarchical structure, and passive gravity
compensation.

2.1. Overview of the Task-Parameterized Gaussian Mixture
Model Algorithm. We use TP-GMM [11] to encode demon-
strations and generate controller commands during test time.
TP-GMM has been used to enable a robot to learn collabora-
tive beam lifting [24] as well as object transportation and
chair assembly [12]; its typical implementation, which we call
vanilla TP-GMM (VT), has shown good generalization capa-
bilities in these applications.

In the following sections, we use task situations to denote
particular instances of a task: for example, in the object-
moving task, moving from point A to point B and moving
from point A to point C are two different task situations. In
the context of TP-GMM, the task parameters fully define a
task situation.

2.1.1. The TP-GMM Algorithm. The nth demonstration
(n = 1, 2,⋯,N) contains Ln data points (fξn,lgLnl=1), and each
data point may have dimensions of time, position, velocity,
etc., at a given time step. The task parameters (p) are defined
as P affine transformations (fAp, bpgPp=1) that include infor-
mation about the task situation (e.g., poses of the start and
goal frames). In addition, task parameters need to be compat-
ible with the data; for example, if each data point contains the
instantaneous 3D Cartesian position and velocity of the robot
gripper, i.e., ξ = ½x⊤ v⊤�⊤, one can define

Ap =
Rp 0

0 Rp

" #
ð1Þ

and bp = r⊤p 0
� �⊤, where Rp and rp represent the orien-

tation and position of the pth relevant reference frame so
that matrix operations such as A−1

p ðξ − bpÞ are valid and
physically meaningful.

Algorithm 1 includes a brief overview of the TP-GMM
algorithm. The training step contains only the ENCODE
function, which transforms data points into each task frame

Partner

Object

Slave

Obstacle

Robot

Master

Teacher

(a) (b)

Figure 1: Training and testing scenarios for collaborative manipulation with a Willow Garage PR2. (a) The teacher teleoperates the robot to
manipulate an object with the partner. (b) The robot collaborates with the partner during evaluation.
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and then fits a TP-GMM Π = fπm, fμðpÞm , Σp
mg

P

p=1 g
M

m=1
, where

M is the number of Gaussian clusters, πm is the mixture coef-

ficient, and fμðpÞm , Σp
mg are the Gaussian mean and covariance

matrices of the mth cluster in the pth task frame. The
FITGMM function is close to the standard procedure in fit-
ting a GMMwith expectation maximization. The testing step
includes two functions: DECODE transforms each Gaussian
cluster in Π according to the test task parameters and gener-
ates a regular GMM π in the global frame, and GMR com-
putes a trajectory for the test situation, which can be used
as controller commands. For example, the output ξℴ could

be the velocity and the input ξi the position of a robot grip-
per, i.e., during automatic execution, the robot could derive
the desired velocity given its current position.

TP-GMM exploits locally consistent features among
demonstrations in each task frame (ENCODE) and trans-
forms them according to new situations (DECODE), gener-
ally yielding reliable performance for both interpolation
and extrapolation in many applications [12, 24].

However, TP-GMM does not have an explicit estimate of
how well the local information would perform with respect to
the new task situation in GMR; therefore, it cannot deter-
mine when new demonstrations are necessary. For example,
it may have poor generalization when the new task situation
is too different from what has been demonstrated. In addi-
tion, GMR may have trouble even when the test situation is
exactly the same as a demonstrated one, depending on the
quality and consistency of the demonstrated data. These
potential issues are illustrated in the next section.

2.1.2. TP-GMM with a Simplistic Task. Suppose the task of
interest is moving from a known start position to a known
goal position on a one-dimensional line, and the strategy that
generates demonstrations uniformly connects the start and
goal points in 100 time steps, as shown in Figure 2. In this
example, data points contain ξ = t x½ �⊤, where t = 1, 2,⋯,
100 is the time step and x is the coordinate. Consequently,
we include the start and the goal task frames for task parame-
ters when training a TP-GMM, and for each, we have A = I2
and b = 0 r½ �⊤, where r represents the location of the frame.
Without loss of generality, the start positions of all task situa-
tions are at x = 0.

Using vanilla TP-GMM with M = 3 in Algorithm 1, we
can generalize trajectories for different test situations (ξi = t
and ξℴ = x), as shown in Figure 3. We use three clusters in this
simulation because they generally cover the trajectories
well and require little time to train, but other numbers
work as well.

It can be seen that the generalized trajectories cover the
distance between the start and goal positions well
(Figure 3(a)), but they no longer contain uniform step
lengths (Figure 3(b)). If the start and goal are close to each
other (e.g., demonstration 1 in Figure 3), the generalized tra-
jectory may even reverse the direction of motion at time
values around 30 and 70, where the dominant Gaussian clus-
ter changes. On the other hand, if the start and goal are far
from each other (e.g., test 3 in Figure 3), the generalized tra-
jectory may cause very large velocities near the same time
points. Inconsistencies such as reversed motion direction
and high magnitude velocity may cause instabilities on real
hardware and might seem like faulty behaviors to a naive
user. Another inconsistency is that the generalized first and
last trajectory points do not always align with the prescribed
start and goal positions, as shown in Figure 3(b), which may
cause jumps at the beginning and end of autonomous execu-
tion. Importantly, although the types and locations of the
inconsistencies can vary in different implementations, their
existence is not specific to the task or the number of clus-
ters used in simulation.

procedure VT-TRAIN(ffξn,lgLnl=1g
N

n=1, fptrain,ng
N
n=1)

Π = ENCODE(ffξn,lgLnl=1g
N

n=1, fptrain,ng
N
n=1)

returnΠ
procedure VT-TEST(Π, ptest)

π = DECODE(Π, ptest)
ξℴ = GMR(π, ξi)
returnξℴ

procedure ENCODE(ffξn,lgLnl=1g
N

n=1, fptrain,ng
N
n=1)

forn = 1 to Ndo
forl = 1 to Lndo
forp = 1 to Pdo

XðpÞ
n,l =A−1

train,n,pðξn,l − btrain,n,pÞ
Xn,l = Xð1Þ

n,l
⊤

Xð2Þ
n,l

⊤
⋯ XðPÞ

n,l
⊤

h i⊤
Π = fπm, fμðpÞm , ΣðpÞ

m gPp=1g
M

m=1

= FITGMM(ffXn,lgLnl=1g
N

n=1))
returnΠ

procedure DECODE(Π, ptest)
form = 1 to Mdo
forp = 1 to PdobμðpÞ

m =Atest,pμ
ðpÞ
m + btest,pbΣðpÞ

m =Atest,p ΣðpÞ
m A⊤

test,p

Σm =
�
∑P

p=1
bΣðp−1Þ
m

�−1

μm = Σm∑
P
p=1

bΣðp−1Þ
m bμðpÞ

m

π = fπm, μm, ΣmgMm=1
returnπ

procedure GMR(π, ξi)
form = 1 to Mdo
μm = μim

⊤ μℴm⊤
� �⊤

Σm =
Σi
m Σiℴ

m

Σℴi
m Σℴ

m

" #
bμm = μℴm + Σℴi

mΣi
m
−1ðξi − μimÞ

hm = πmN ð ξi ∣ μim, Σi
mÞ/∑M

m′=1πm′N ð ξi ∣ μi
m′ , Σi

m′Þ
ξℴ =∑M

m=1hmbμm
returnξℴ

Algorithm 1: Given demonstrations ffξn,lgLnl=1g
N

n=1 for N situations

fptrain,ngNn=1 and test situation ptest, find a trajectory ξℴ for the test
situation using vanilla TP-GMM.
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Figure 2: Demonstrated trajectories for a simplistic movement task. Circles represent the start positions, and triangles represent the goal
positions of the task situations.
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Figure 3: Generalized trajectories for the two demonstrated situations and three new test situations using vanilla TP-GMM. (a) Generalized
trajectories. (b) Generalized trajectories over time.
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What causes this difficulty with generalization? TP-
GMM can be viewed as being similar to a regression algo-
rithm: task parameters are the independent variables, and
trajectories are generalized from local information in each
task frame. Consequently, the exact information from each
individual training point may be lost (e.g., demonstration 1
in Figure 3). In addition, because the function that maps task
parameters to trajectories is highly nonlinear, the regression
model does not have enough information to accurately gen-
eralize for a test point outside of the trained region (e.g., test
3 in Figure 3). Vanilla TP-GMM can have good generaliza-
tion properties (test 2 in Figure 3), but it does not offer an
estimate of generalized performance and thus cannot differ-
entiate between tests 1, 2, and 3. Instead, it has to rely on
the robot controller to handle the potential peculiarities of
the generated trajectory. Additionally, because information
from demonstrations is stored locally with respect to each
task frame, the original global strategy (in this case, connect-
ing start and goal positions with uniform step lengths) is
largely lost after modeling in TP-GMM.

2.2. Hierarchical Task-Parameterized Learning from
Demonstration. To preserve the powerful generalization
capability of TP-GMM and overcome the previously dis-
cussed shortcomings, we propose a hierarchical structure
(HS) that explicitly reasons about task parameters using three
utility functions in the following steps.

First, we define a distance function that operates on a pair
of task situations and outputs a scalar value, representing
how similar the two situations are to each other. We argue
that this scalar value can serve to estimate test performance,
which can then be a trigger for requesting demonstrations.
Second, sets of demonstrations associated with the same task
parameters are each encoded as their own TP-GMM. Third,
given a test situation, we use the distance function to select
the TP-GMM from only the most similar situation. In addi-
tion, with only one situation per TP-GMM, we can manipu-
late the Gaussian clusters to enhance generalization with two
morphing functions, because the exact information and
strategy from that individual training data set are preserved.
Finally, the hierarchical structure makes it straightforward
to encode a large variety of task situations in the same
framework.

This section empirically validates the distance function
as a test performance estimator, the steps in the proposed
hierarchical structure, and the improvements of our
approach compared to vanilla TP-GMM for a simulated
movement task.

2.2.1. Simulated Task Definition. We use a movement task
with three task frames, representing the start (R1, r1), goal
(R2, r2), and via (R3, r3) points on a two-dimensional plane.
Task parameters for these frames include rotation matrices
with x-axes parallel to a vector pointing from the start to
the goal, z-axes pointing out of the page, and y-axes following
the right-hand rule. The demonstration strategy uniformly
connects the start and via points using a straight line with
100 time steps and then uniformly connects the via and goal
points using a straight line with another 100 time steps

(ξ = t x y½ �⊤, where t = 1, 2,⋯, 200), as shown in
Figure 4. We call a unique specification of the frame ranges
a task configuration.

We use this example task to instantiate the utility func-
tions and the evaluation procedure in the following subsec-
tions. Nevertheless, the hierarchical structure can also be
used in other tasks and/or with different data dimensions
(such as in Section 2.3).

2.2.2. Distance Function. For the example task, we define the
distance function in Algorithm 2 for two task situations
(pA and pB): the task frames of the compared situations
are transformed into their start frames, and the distance
function value is calculated as the sum of squares of the dis-
tances between the corresponding goal and via points. Note
that there may be many possible definitions for the distance
function; for example, one could also choose to include a
norm on the rotation matrices. Our particular definition
builds on the understanding that TP-GMM aligns clusters
in each task frame, and thus, the task frames’ positions with
respect to each other are more important than their absolute
positions in the world frame.

To understand the distance function, consider the two-
frame task in Section 2.1.2, where Algorithm 2 would simply
calculate the square of the distances between the goals of each
situation. In particular, DISTANCEðptest,3, pdemo,1Þ =
ð3 − 1Þ2 = 4, while DISTANCEðptest,3, pdemo,2Þ = ð3 − 2Þ2 = 1.
Therefore, test 3 would be consideredmore similar to demon-
stration 2 than it is to demonstration 1.

2.2.3. Situation and GMM Morphing. Similar to using DMP
on generalized trajectories from a GP to ensure that the pre-
scribed goals are reached [15], we introduce a generalization-
enhancing strategy that is specific to the movement task: if
the start and goal points become farther or closer to each
other, then the trajectory can be proportionately stretched
or compressed in the start-goal direction to accommodate
the change:

T =
r2 − r1ð Þ r2 − r1ð Þ⊤
r2 − r1ð Þ⊤ r2 − r1ð Þ , ð2Þ

r = x y½ �⊤, ð3Þ

r′ = r1 + αT r − r1ð Þ + I − Tð Þ r − r1ð Þ
= I + αT − Tð Þr − α − 1ð ÞTr1,

ð4Þ

where T is the projection operator along a unit vector from
start (r1) to goal (r2), r is an arbitrary point of the original tra-
jectory, α is the scalar value representing the extent of
stretching or compression, and r′ is the proportionately
changed new trajectory point, as shown in Figure 5.

Consequently, we can generate task parameters and
Gaussian clusters for the new situation in the same manner.
Algorithm 3 details how this process can be carried out in
accordance with the current definition of ξ = t x y½ �⊤
(see definitions of T′ and T″), where T is defined in Equation
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(3). The morphed task situation and GMM clusters are
plotted in Figure 5.

2.2.4. Hierarchical Structure. With the utility functions
defined in Algorithms 2 and 3, we propose a hierarchical
structure for TP-GMM, shown in Algorithm 4. Demon-
strations from each situation are encoded in separate
TP-GMMs (Πn) in the training step. In the test step,
the new situation is maximally matched with each demon-
strated situation (the arg min step in the for loop), and we
select the overall best match n⋆ for generalization in the
DECODE function if the matched result dn⋆ is below a
prescribed threshold. If the threshold is exceeded, new
demonstrations should be requested. This process serves
as a gating function, similar to the one in [17]. Finally, the
Gaussian clusters in the generated world-frame GMM π⋆
are inversely morphed with α−1n⋆ to ensure that the final
GMM π is compatible with and applicable to the actual,

desired test situation ptest. Note that the arg min step in the
for loop in Algorithm 4 can be solved analytically, because
of the linear operations on the task parameters and the
L2-norms.

2.2.5. Validation of HS in Simulation.We conducted simula-
tions to empirically validate the hierarchical structure and
compare its performance with vanilla TP-GMM (VT). The
simulation procedure is detailed in Algorithm 5. We used
N train = 2, 3,⋯, 10 and Mtest = 100 to explore how test per-
formance changes with an increasing number of demon-
strated situations. We repeated SIM 20 times for each value
of N train so that we could extensively sample both training
and test situations. We used dthreshold =∞ with HS to disable
new demonstration requests because VT cannot preemp-
tively stop execution. Finally, we used three different task
configurations of start, goal, and via frame sampling ranges
to verify the hierarchical framework’s performance.

Figure 6 shows sample generalized trajectories for a test
with three demonstrated task situations. We used EVAL in
Algorithm 5 to calculate generalization errors as the squares
of the distances between the first generalized trajectory point
and the start frame, the last trajectory point and the goal
frame, and the 100th trajectory point and the via frame.
These three pairs of points should coincide for a trajectory
that was perfectly generated according to the original demon-
stration strategy, yielding zero error.

procedure DISTANCE(pA, pB)
d = 0
forj = 2 to 3do
d = d + kR⊤

1,Aðrj,A − r1,AÞ − R⊤
1,Bðrj,B − r1,BÞk

returnd

Algorithm 2: Distance function.

0 2 4 6 8 10
x
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1
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y

Start frame range
Start frame
Goal frame range
Goal frame

Via frame range
Via frame
Demonstration trajectory

Figure 4: An example task situation and its trajectory. The frame ranges show the regions from which each task frame is randomly sampled.
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(1) Distance Function as a Performance Estimator. For the
task configuration shown in Figure 4, Figure 7 shows the
accumulated generalization errors against the corresponding
distance function values. For brevity, we show results only
when two, five, or eight situations were demonstrated. The
general trend that the upper bounds of the generalization
errors are roughly linearly proportional to the distance func-
tion value is true for all numbers of demonstrations. In other
words, the distance value can serve as a cautious estimator of
generalization errors so that if the user needs to maintain a
minimum level of performance (maximum allowed general-
ization error), he or she can prevent task execution if the dis-
tance value is above a certain threshold and can instead
provide more demonstrations to the robot.

(2) Generalization Performance. Figure 7 shows that HS
achieved better performance (lower generalization errors)
than VT. The accumulated generalization errors are shown
for a few different task configurations in Figure 8 to fully
verify that observation. It can be seen that as the number

of demonstrated situations increases from two to nine
(we explain the results with ten situations in the next
point), generalization errors become lower for both VT and
HS. Nevertheless, HS almost always has significantly better
performance than VT.

To showcase the difference in performance during inter-
polation/extrapolation, we performed an additional test
where the training demonstrations were generated from the
task configuration shown in Figure 4, while the goal frame
ranges of test task configurations may be closer to or farther
away from the start frame range, as shown in Figure 9.
Because TP-GMM utilizes affine transformations as task
parameters as opposed to scalar values or position vectors,
we chose these test task configurations to indicate that the
test task parameters could be drawn from the same distribu-
tion as the training task parameters (interpolation, test goal
frame range 3) or from different distributions (extrapolation,
test goal frame ranges 1, 2, 4, and 5). The simulation proce-
dure was the same as Algorithm 5, and we used N train = 5

2.5

2

1.5

1

0.5y

0

–0.5

0.5 1 2 3
x

3.5 4 5 5.54.52.51.5

–1.5
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Original start frame
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Original via frame

Original trajectory

Morphed GMM clusters
Morphed start frame

Morphed goal frame

Morphed via frame

Morphed GMM clusters
Stretching/compressing direction

Morphed trajectory

Figure 5: Illustration of Equations (2), (3) and (4) and the morphing functions in Algorithm 3. The original task frames are randomly
sampled, and the original trajectory and GMM clusters are generated from the demonstration strategy and trained accordingly. The
morphed frames, trajectory, and GMM clusters are calculated from the original ones with α = 1:5. Note that the original and morphed
start frames coincide.
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and Mtest = 100. The accumulated generalization errors are
shown in Figure 10. It can be seen that performance was
the best for both VT and HS during interpolation, and per-
formance decreased more severely for heavier extrapolation
(test goal frame ranges 1 and 5). Nevertheless, HS consis-
tently achieved better results than VT in all configurations.

(3) Effect of an Outlier Situation. We mentioned that
TP-GMM can be seen as a regression algorithm, with the task
parameters as independent variables and the trajectories as
dependent variables. Therefore, we explored the effect of
having outlier training data in TP-GMM when there were
ten demonstrated situations in the simulation procedure:
the tenth situation had a different sampling range for the
via frame, as shown in the top panels of Figure 8. It can be
seen that VT suffered from this single outlier: compared to
results with nine and sometimes even two demonstrated sit-
uations (see e1 in Figure 8(a) and e2 in Figure 8(c)), average
generalization errors increased when demonstrations from
ten situations were available, even though more training data
is often assumed to improve test performance. On the other
hand, HS was not affected by the outlier and maintained
the same level of performance, because task parameters were
used to first filter the training data, and only the most similar
situation was used in generalization.

Note that although the outlier situations differ from the
majority of the training data from the model’s point of view,
they may still be of interest to users and hence should be
learned by the robot. Therefore, it may be more sensible for
vanilla TP-GMM to encode the different situations in a sep-
arate model so that the robot can handle the outlier situations

without affecting performance for the regular situations.
However, to the best of our knowledge, allowing a robot to
automatically determine when to create a new model is still
an open problem regarding TP-GMM, precisely because the
strengths of TP-GMM include handling data from varied
task situations.

(4) Training Time. Another advantage that HS offers is
reducing computational load when demonstrations from
new situations become available gradually. The VT-TRAIN
function always encodes all demonstrations together, which
means previously encoded demonstrations have to be stored
for reuse later. On the other hand, because HS-TRAIN
encodes each situation in a separate TP-GMM, only new data
needs processing when it becomes available. Figure 11 shows
the time spent only in training TP-GMMs as the number of
available situations increases in the simulation procedure:
HS consistently took little time to encode new data, while
VT had to spend more time encoding everything.

Note that here we stored all demonstrations and com-
puted a new TP-GMM every time for VT, instead of using
one of the incremental TP-GMM methods in [23] because
of the following reasons. First, the generative technique in
[23] does not save computation time compared to VT
because it samples trajectories using the existing model to
represent previously encoded trajectories, which are then
encoded with new trajectories to form a completely new
model. Furthermore, performance may suffer because sam-
pled trajectories are used in the new model instead of actual
demonstrations. Second, the model addition technique in
[23] will also take strictly more time than HS because it
encodes new demonstrations in a new model like HS and
then has to concatenate and optimize the previous and the
new models together. Third, the direct update technique
[23] assumes that the old demonstrations and the new ones
are drawn from the same distribution, which is problematic
because we sample from a relatively large number of task
situations or even an outlier situation.

The advantage of reduced computational load is also true
when removing demonstrations. In this example, HS can
identify the outlier in the 10 demonstrated situations,
because it was never selected for generalization, and thus,
the corresponding TP-GMM could be deleted from the
robot’s database without affecting performance. In contrary,
there is no inherent method in VT to identify the outlier,
and even if a human operator identifies the outlier situation
to be deleted, a new TP-GMM has to be trained from scratch
to recover the performance of the nine remaining inlier dem-
onstrations. Incremental methods such as [15, 23] do not
seem to consider removing demonstrations.

2.2.6. Comparison Summary between HS and VT. Compared
to vanilla TP-GMM, the proposed hierarchical structure has
higher complexity because it encodes a separate TP-GMM
for each demonstrated task situation and has several utility
functions to compare and morph test situations against dem-
onstrated ones. However, this structured approach enables a
robot to differentiate between the demonstrated situations

procedure MORPH_TASK(p, α)
fori = 1 to 3do

Ri′= Ri

ri′= ðI + αT − TÞri − ðα − 1ÞTr1
Ai′=

1 0

0 Ri′

" #
bi′= 0 ri′

⊤
h i⊤

returnΠ
procedure MORPH_GMM(π, α, p)

T′ =
1 0

0 I + αT − T

" #

T′′ =
1 0

0 ðα − 1ÞT

" #
form = 1 to Mdo

μm′ = T′μm − T′′b1
Σm′ = T′ΣmT′

⊤

π′ = fπm, μm′ , Σm′ g
M
m=1

returnπ′

Algorithm 3: Utility functions that morph task situations and
Gaussian clusters in GMMs.
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and select the most similar experience for trajectory general-
ization. As a result, the robot can halt autonomous execution
if its expected performance is lower than a predefined thresh-
old. In contrast, VT does not offer these abilities. Because HS
selectively uses demonstrations during generalization, test
performance can also be improved via situation-specific
manipulation of trajectories using the morphing functions.
Moreover, it is possible to include a wide variety of task situ-
ations in the same HS framework without decreasing perfor-
mance, while VT may lose situation-specific information
because it effectively averages all demonstrations. Lastly,
new demonstrations can easily be added to the skill library
by creating a new TP-GMM, and poor or no-longer-wanted
demonstrations that are already encoded can easily be
removed with the hierarchical structure.

Special care needs to be considered when defining the
utility functions in HS. For tasks such as object movement,
Cartesian distances between corresponding task frames can
readily be used in the distance function because they utilize
the same information that TP-GMM considers. As for the
morphing functions, our example validates the effectiveness
of the hierarchical structure even with their simple and intu-
itive definitions. Other approaches, such as using reinforce-
ment learning to optimize task parameters [25], may be
used as well at the expense of additional design effort and
computational load.

2.3. Experiment Validation on Real Hardware.We tested our
proposed learning structure using a Willow Garage PR2 in
the real collaborative object-manipulating task shown in
Figure 1. The PR2 has two mirrored arms, each with four rev-
olute arm joints and three revolute wrist joints. We collected
demonstrations for three different task situations and con-

ducted a human-subject study to validate the generalization
performance of the proposed hierarchical structure in this
task. Fifteen adults participated in the study, each completing
the collaborative object-manipulation task under various task
situations, experiencing the demonstration process, and fill-
ing out questionnaires to evaluate their interactions with
the robot. The Penn IRB approved all experimental proce-
dures under protocol 829536. Subjects gave informed con-
sent and received no compensation for participating.

2.3.1. Task Definition. The left arm of the PR2 robot holds an
object (a rigid rectangular plate) together with the human
partner; the robot and the participant collaborate to move
the object from a start position to a goal position while avoid-
ing an obstacle. The plate has a mass of 0.77 kg and a size of
0.30m by 0.20m by 0.01m, and the obstacle is a slightly
tapered plastic cylinder with a top radius of 0.23m, as shown
in Figure 1. The minimum and maximum distances between
the robot end-effector at robot-shoulder height and the
shoulder joint are about 0.4m and 0.82m, so the size of the
obstacle is significant when compared to the robot’s work-
space. Thus, the robot’s trajectories during collaborative
movement need to make sense for the human partner for
the task to be successful.

2.3.2. Demonstrating Procedure. When collecting demon-
strations, we used the PR2’s right arm as the master and
its left arm as the slave in bilateral teleoperation [26].
The teacher guided the master to help the human partner
accomplish the desired task with the slave arm, therefore
directly feeling the motions and limits of the robot arm,
similar to how demonstrations are done in kinesthetic
teaching. Demonstration recordings included the Cartesian

procedure HS-TRAIN(ffξn,lgLnl=1g
N

n=1, fptrain,ng
N
n=1)

forn = 1 to Ndo
Πn = ENCODE(fξn,lgLnl=1, ptrain,n)

returnfΠngNn=1
procedure HS-TEST(fΠngNn=1, fptrain,ngNn=1, ptest, dthreshold)

forn = 1 to Ndo
αn = arg min

α
DISTANCEðMORPH TASKðptest, αÞ, ptrain,nÞ

pn =MORPH TASKðptest, αnÞ
dn = DISTANCEðpn, ptrain,nÞ

n⋆ = arg min
n

dn

ifdn⋆ < dthreshold
π⋆ = DECODE(Πn⋆ , pn⋆ )
π = MORPH_GMM(π⋆, α−1n⋆ , ptest)
ξℴ = GMR(π, ξi)
returnξℴ

else
Request new demonstrations.
return

Algorithm 4: Given demonstrations ffξn,lgLnl=1g
N

n=1 for N situations fptrain,ngNn=1 and test situation ptest, find a trajectory ξℴ for the test
situation using hierarchical TP-GMM.
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position of the slave’s wrist center calculated from forward
kinematics. Force feedback between the master and the slave
was achieved through a joint-level proportional-derivative
(PD) torque controller, and therefore, no force or torque
sensor was required.

For the master-side wrist joints, an additional virtual fix-
ture [27] was applied to help the teacher control the robot’s

hand orientation. The virtual fixture torques were calculated
using a PD controller with zero desired velocity:

τi,vf = Kp qi,vf − qi,m
� �

− Kd _qi,m, ð5Þ

where qi,m are the desired wrist joint angles for the virtual
fixture. In the current work, we used the virtual fixture to

procedure SIM(N train, Mtest, start_range, goal_range, via_range)
forn = 1 to N traindo

Sample ptrain,n from sampling ranges

Generate a demonstration trajectory fξn,lg200l=1

ΠVT = VT-TRAIN(ffξn,lg200l=1g
N train

n=1 , fptrain,ngN train
n=1 )

fΠngNn=1 = HS-TRAIN(ffξn,lg200l=1g
N train

n=1 , fptrain,ngN train
n=1 )

form = 1 to Mtestdo
Sample ptest,m from sampling ranges
forn = 1 to N traindo
dm,n = DISTANCE(ptest,m, ptrain,n)

dm =min dm,n
ξℴVT = VT-TEST(ΠVT, ptest)
ξℴHS = HS-TEST(fΠngN train

n=1 , fptrain,ngN train
n=1 , ptest, ∞)

eVT,m = EVAL(ptest,m, ξℴVT)
eHS,m = EVAL(ptest,m, ξℴHS)

returnfdmgMtest
m=1 , feVT,mgMtest

m=1 , feHS,mgMtest
m=1

procedure EVAL(p, ξ)
e1 = kξ1 − r1k
e2 = kξ2 − r2k
e3 = kξ3 − r3k
returnfe1, e2, e3g

Algorithm 5: Simulation procedure.
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Figure 6: Generalized trajectories for a test when three demonstrated task situations are available: (a) vanilla TP-GMM (VT); (b) hierarchical
structure (HS).
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constrain one degree of freedom of the gripper orientation:
the desired center axis of the gripper frame was constrained
to be horizontal in the world frame, and qi,vf were found
using inverse kinematics. The virtual fixture could also be
used to satisfy task-specific requirements by choosing a dif-
ferent desired gripper orientation, e.g., when the carried
object needs to be tilted to go through a doorway.

2.3.3. Training Procedure and Robot Controller. The task
frames were defined to include positions rp and orientations
Rp of the start (p = 1), the goal (p = 2), and the obstacle (p = 3).
When collecting demonstrations, we used forward kinematics
to determine the start and the goal poses, and we calculated
the obstacle’s pose by making the robot’s end-effector touch
the edge of the cylindrical obstacle along its radial direction

and adding an offset of the cylinder’s radius. Because the start,
goal, and obstacle frames may have different orientations in
each task situation, we expanded the previously listed distance
function (Algorithm 2) to iteratively align all task frames, as
shown in Algorithm 6.

We assumed the existence of a desired trajectory corre-
sponding to each task situation. Given the robot’s wrist tra-
jectories (x) for a situation of interest, we resampled all
trajectories to L data points based on trajectory length and
used standard GMM/GMR to generate an average trajectory
(xavg) in the world frame for that task situation. We then

derived a desired trajectory for the task situation: xdes =

fxavg,lgLl=ld+1 xinterp
h i

, where ld serves as a look-ahead var-

iable to make the robot appear more active during execution
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Figure 7: Generalization errors against distance metric when different numbers of situations were demonstrated during training: (a) with two
situations; (b) with five situations; (c) with eight situations.
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Figure 8: Continued.
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Figure 8: Continued.
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Figure 8: Comparison of generalization errors when different numbers of situations were demonstrated. The robot behavior abbreviations
shown at the top stand for vanilla TP-GMM (VT) and hierarchical structure with TP- GMM (HS). Top panels show task configurations
and samples of task situations, where each task frame was sampled from the specified range. When ten situations were demonstrated, the
via frame of the tenth situation was drawn from an outlier range. Panels in the bottom three rows show boxplots of error metrics with
different numbers of demonstrated situations in the corresponding task configurations. The center box lines represent the medians, and
the box edges are the 25th and 75th percentiles. Circles show mean values. An asterisk and a horizontal line below boxplots show that the
mean error from HS is significantly lower than the mean error from VT with p < 0:001.
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and xinterp is a linearly interpolated trajectory between the last
average trajectory point (xavg,L) and the goal of the task situ-
ation (r2) in ld steps. In the current work, L = 500 and ld = 50.
In the experiment, xavg,L was typically close the goal point,
and thus, xinterp generally was a short line segment connect-
ing xavg,L to the exact goal location.

We chose to learn TP-GMMs that use the robot’s 3D
wrist center position as the input and the desired 3D trajec-
tory point calculated from above as the output: ξi = x and
ξℴ = xdes. Consequently, the task parameters were defined as

Ap =
Rp 0

0 Rp

" #
ð6Þ

and bp = r⊤p r⊤p
� �⊤, p = 1, 2, 3. We chose to use position

rather than time for parameterization to increase robustness
[28] and eliminate the need for phase estimation (e.g., [29])
or dynamic time warping. In addition, we updated defini-
tions of T′ and T″ in Algorithm 3 to accommodate 3D tra-
jectories and the dimensions of our TP-GMM:

T′ =
I + αT − T 0

0 I + αT − T

" #
,

T″ =
α − 1ð ÞT 0

0 α − 1ð ÞT

" #
:

ð7Þ

We selected three different task situations to collect
demonstrations. We collected five demonstrations for each
situation to ensure that the variability of trajectories was
captured. The collected demonstrations and their task
parameters were encoded in VT-TRAIN and HS-TRAIN,
and the TP-GMMs (ΠVT, fΠng3n=1) were tested and evalu-
ated in the user study. We used the Bayesian Information
Criterion (BIC) [30] to determine the number of Gaussian
clusters M for each TP-GMM (15 clusters for ΠVT and 4
or 5 clusters for each Πn).

At test time, the PR2 robot could calculate a desired wrist
position (xdes) from its current wrist position at each time
step using VT-TEST or HS-TEST, and a generic PD control-
ler was used to generate the motor commands:

τ = J⊤ K xdes − xð Þ − B _xð Þ, ð8Þ

where J is the Jacobian matrix of the position dimensions,
and we chose K and B as diagonal matrices with 120Nm−1

and 10N sm−1. We also included a passive mode where the
robot provided only gravity compensation for the half of
the object’s weight, with

τ = −
1
2
J⊤mg, ð9Þ

where m is the mass of the held object and g is the gravity
vector, assuming that the robot and the human share the
object’s weight equally. This control mode was included so
we could directly test whether the complexity of TP-GMM
confers any benefits.

2.3.4. User Study. We conducted a human-subject study to
evaluate how the three described control algorithms affect
task performance and how users perceive the robot behaviors
in the collaborative movement task. Since the task situations
were defined in the robot frame, we used a projector
mounted on the ceiling to help participants identify and find
the desired start, goal, and obstacle positions, as shown in
Figure 12.
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Figure 11: Additional time spent to train TP-GMMs increased as more demonstrated situations became available for VT but remained low
for HS.

Procedure DISTANCE(pA, pB)
d = 0
fori = 1 to 3do
forj = 1 to 3do

d = d + kR⊤
i,Aðrj,A − ri,AÞ − R⊤

i,Bðrj,B − ri,BÞk
returnd

Algorithm 6: Distance function used in the user study.
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(1) Participants. Our participant pool consisted of 15
University of Pennsylvania affiliates, including undergradu-
ate and graduate students, postdoctoral associates, and
visiting researchers. Of the 15 participants, three were
female and 12 were male, with ages ranging from 22 to
35 years (μ = 26:3, σ = 3:42).

(2) Dependent Measures. We recorded robot motions during
each trial, and we used two quantitative measures to evaluate
task performance: average trajectory length and average task
completion time.

In addition, we used three questionnaires to evaluate the
quality of the human-robot interactions during the task.
First, the subject completed a Unified Theory of Acceptance
and Use of Technology (UTAUT) survey [31] at the begin-
ning and the end of the study. Results from the two surveys
were compared to determine how interacting with the robot
affected the general perception of subjects toward using the
robot in everyday tasks.

Second, we adapted the questionnaire used in [32] and
asked participants to answer the following questions on a
100-point scale from strongly disagree to strongly agree after
each collaboration trial:

(Q1) The robot moved too fast
(Q2) The robot moved too slowly
(Q3) The robot had problems doing the task
(Q4) I felt safe when working with the robot
(Q5) I trusted the robot to do the right thing at the right

time
(Q6) The robot and I worked well together
These questions sought to evaluate how subjects

perceived the robot’s behaviors and performance.
Third, a NASA-TLX survey [33] was administered

after the participants experienced the process of providing
demonstrations via teleoperation to gauge the workload of
this interaction.

(3) Procedure. The human-subject study consists of two main
components: collaborating with the robot and providing
demonstrations. We chose to put the collaborating
component first because it allows participants to become
more familiar with the robot before demonstrating new
movements.

The first component, collaborating with the robot, took
place after the opening UTAUT survey. Participants were
asked to collaborate with the robot to move the object from
the start to the goal in five different situations. Four common
situations, shown in Figure 13, were predetermined by the
research team and were the same for all subjects, with situa-
tion 1 having the lowest and situation 4 having the highest
dn⋆ value. These common situations were chosen to be some-
what close to the training situations so that both VT and HS
should intuitively work well. They span a relatively large por-
tion of the robot’s workspace (Figure 13(a)) and have varied
configurations (Figure 13(b)). Recall that we use TP-GMMs
to encode data with ξi = x and ξℴ = xdes. Figure 14 shows
the ξℴ dimensions of generalized VT and HS GMM clusters
for two example test situations. Situation 5 was chosen by
each subject so that a large number of situations were
sampled in the study.

Participants compared three different robot behavior
modes: (P) passive with gravity compensation for the
object, (VT) active with vanilla TP-GMM, and (HS) active
with hierarchical structure and TP-GMM. Therefore, each
participant evaluated the collaboration in 15 different
combinations of task situation and robot behavior. For
each situation, we asked participants to experience all
three robot behaviors sequentially (completing two collab-
orations under each robot behavior), and then reexperience
and rate each robot behavior. After the subject evaluated
all three robot behaviors, a new situation was presented.
This process repeated until all five situations had been
shown. For each subject, the five situations were presented

Projector

Object

Obstacle

PR2 robot

(a) (b)

Figure 12: The experimental setup for the human-subject study. A projector helps the subject find the start, goal, and obstacle positions, and a
square is projected on the PR2’s wrist when the start position is reached.
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in a randomized order, and within each situation, the pre-
sentation order of the three robot behaviors was also ran-
domized. Examples of human-robot interactions during the
user study are shown in the supplementary video attachment.

Then, participants were presented with the second
component of the study: providing demonstrations. The
experimenter acted as the partner and moved the object
with the robot, and the participant manipulated the

0 0.5 1 1.5
x position (m)

−0.2

0

0.2

0.4

0.6

0.8

1

y p
os

iti
on

 (m
)

Training situations
Situation 1 
Situation 2 

Situation 3 
Situation 4 
Robot base

(a)

Training situations
Situation 1 
Situation 2 

Situation 3 
Situation 4 
Robot base

−0.4 −0.2 0.40 0.2 0.6 0.8
x position (m)

0

0.2

0.4

0.6

0.8

1

1.2

y p
os

iti
on

 (m
)

(b)

Figure 13: Task situations involved in the experiment. Circles represent the start frames, triangles the goal frames, and asterisks the obstacle
frames. Dashed circles represent the boundary of the obstacle. Note that the start frames of situations 2 and 3 coincide. With respect to the
three demonstrated situations, the dn⋆ values for these four common situations in Algorithm 4 with the definition in Algorithm 6 are
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Figure 14: Generalized GMM clusters (ξℴ dimensions) for two test situations from Figure 10: (a) situation 1; (b) situation 4.
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robot’s right arm to teleoperate the slave arm. Each partic-
ipant experienced the demonstrating process for three to
five minutes and then filled out the NASA-TLX survey.
Finally, the participant filled out the closing UTAUT
survey.

(4) Hypotheses. Based on the dependent measures, our main
hypotheses for this experiment were as follows:

(i) The hierarchical structure (HS) will lead to better
task performances, including shorter trajectory
lengths and lower task completion times, compared
to using vanilla TP-GMM (VT) and passive gravity
compensation (P)

(ii) Participants will be more satisfied with the robot
when it uses the hierarchical structure (HS) to gener-
ate motion controls, compared to VT and P

(iii) Given feedback after task execution in a wide variety
of situations, the robot will be able to learn a decision
boundary for when to ask for new demonstrations

3. Results

Figure 15 shows results from the NASA-TLX survey that
subjects completed after providing demonstrations. The
median value for “How mentally demanding was the
task?” was 53 out of 100, and the median values for the
other five questions were all below 50, indicating that the
subjects perceived teaching by teleoperation as a low-to-
moderate-effort task.

Objective performance at the collaborative movement
task was determined by calculating the two quantitative
measures of average trajectory length and average task
completion time for the four common task situations. Results
are shown in Figure 16. One-way repeated measures analysis
of variance (ANOVA) was used to determine whether the
differences in these measures between the three behavior
modes under the same task situation were significant. If

there was, a Tukey-Kramer post hoc multiple comparison
test was conducted to determine which robot behaviors
produced significantly different ratings. It can be seen that
with the hierarchical structure, traversed trajectories were
significantly shorter and took significantly less time for
almost all situations, while VT reduced average completion
time compared to passive gravity compensation only in test
situation 1, which is the most similar to the demonstrated
situations.

Results from the subjective ratings under the four
common task situations are shown in Figure 17. Plotted
ratings of Q1, Q2, and Q3 were subtracted from 100 so that
a higher rating is better for all questions. The same procedure
used for the quantitative measures was used to determine
significant differences. It can be seen that with passive gravity
compensation, the robot almost always appeared signifi-
cantly slower (Q1, Q2) and safer (Q4). No significant differ-
ences in perceived pace and safety were found between the
two active modes. Compared to vanilla TP-GMM, the hierar-
chical structure appeared to have significantly fewer prob-
lems doing the task (Q3) in all situations. In situations 2
and 3, participants had more trust in the robot doing the
right thing at the right time (Q5) with the hierarchical struc-
ture than vanilla TP-GMM. Finally, participants felt they
worked better with the robot (Q6) with the hierarchical
structure than the other two modes in situation 1. Figure 18
shows the sums of these ratings. Vanilla TP-GMM generally
had the lowest rating sums. Significant differences were
found between the hierarchical structure and vanilla TP-
GMM in situations 2 and 4 as well as between passive gravity
compensation and vanilla TP-GMM in situation 3.

Results from the subjective ratings under the participant-
selected situations were used to validate the distance function
as a performance estimator in the collaborative task. To
acquire labels of successful/failed execution, we defined the
following criterion: an HS success has a subjective rating
sum that is greater than 80% of the largest sum of ratings
for any control mode under any task situation from the
corresponding subject. Figure 19(a) shows the classification
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Figure 15: NASA-TLX ratings of the teaching procedure (lower is better). For the performance question, 0 indicates perfect and 100 indicates
failure.
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results using the above criterion, where we additionally
include a second feature dimension (max ðαn⋆ , 1/αn⋆Þ),
which is calculated from the distance function in HS-TEST
and represents the degree of stretching or compression in
the morphing functions. We also plot the common situations
in Figure 19(a) for completeness; these are manually labeled
as successes with the hierarchical structure, because there
were significant advantages in the quantitative measures

and some significant advantages in the subjective ratings.
Three of the custom situations for which the hierarchical
structure was rated as a failure are manually marked as being
out of workspace, because the obstacle was placed so close to
the robot that some GMM clusters of the hierarchical struc-
ture policy were outside of the robot’s workspace. As a result,
the robot arm would become stuck when it first reached the
workspace boundary following the control policy, and the
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robot arm would then slide along the workspace boundary
and appear less smooth to participants. This behavior at least
partially caused these three poor ratings; an example is
shown in Figure 19(b).

Note that each participant tested only one custom situa-
tion and hence contributed one data point to Figure 19(a).
The distribution might look different if a single participant
did all of the tested situations, and it might change for differ-
ent participants. Nevertheless, not counting the out-of-

workspace situations, one could simply place a decision
boundary for when to ask for new demonstrations at
max ðαn⋆ , 1/αn⋆Þ = 1:87 with one misclassified task situation
or at dn⋆ = 0:4m2 with two misclassified data points.

Figure 20 shows the ratings from the UTAUT questions.
Paired sample t-tests were used to determine whether the dif-
ferences between the means of these ratings were significant.
A significant difference was found for the question “I am
afraid of breaking something while using the robot,”
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indicating subjects were less afraid of breaking something
after the study. No significant differences were found for other
questions.

4. Discussion

The results from the user study provide strong support for
our first hypothesis: the significant differences in the quanti-
tative measures in favor of HS indicate that explicitly reason-
ing about task situations and generalizing over selected
demonstrations could lead to significantly better trajectories
and hence better task performance. In comparison, although
VT also uses task parameters to annotate and process the
demonstrations in ENCODE and DECODE, it does not dif-
ferentiate between demonstrated situations and thus cannot
apply situation-specific trajectory and model morphing to
better accommodate the test situation. As a result, VT falls
short of HS in task performance. Passive gravity compensa-
tion offers little help to users and leads to the longest trajec-
tory lengths and task completion times.

Hypothesis 2 centers on user perception of the three
tested robot control modes. In the subjective ratings, HS
was rated to be significantly less problematic (Q3) than VT
in all situations, indicating that users were able to differenti-
ate the two modes and preferred HS. Furthermore, HS
achieved significantly higher ratings than VT for trust (Q5)
and working well together (Q6) in particular situations. The
sum of the subjective ratings generally favored the hierarchi-
cal structure and passive gravity compensation, with the for-
mer being perceived as fast and effective and the latter as slow
and safe. Thus, we conclude that the subjective ratings
support our second hypothesis.

Results from the custom situations provide some support
for our third hypothesis, which stated that the robot would be
able to learn a decision boundary for when to ask for new
demonstrations in the object movement task. In the particu-
lar instance of Figure 19(a), only one situation would have
been misclassified by the robot with decision boundary 1.
We think that predicting the performance of generalized
behaviors is a critical component of LfD, since demonstra-
tions are typically available only for a small subset of task
situations and robot designers often cannot test every possi-
ble one. In addition to uncertainty- or confidence-based
methods, TP-GMM offers unique opportunities in this
effort because it utilizes the task parameters that contain

additional information about the demonstrations and also
enhance generalization capabilities. As for the custom situ-
ations with GMM clusters out of the robot’s workspace,
approaches to the Procrustes problem [34] could have
been used to select an initial pose for the robot base before
autonomous execution.

The NASA-TLX survey and the pre- and poststudy
UTAUT surveys were not used to evaluate our hypotheses,
but they provide some insights on the proposed approach.
When subjects provided new demonstrations using our kin-
esthetic teleoperation method, they indicated that the heavi-
est workload was mental, most likely because the robot’s
motion was a mirror image of the demonstrated motion. In
the pre- and poststudy UTAUT surveys, subjects became less
afraid of breaking things when using the robot, suggesting
that the human-robot interactions during the study had a
slight positive effect on their opinions about the robot.
Importantly, the participants experienced multiple robot
behavior modes and multiple task situations where the robot
might have worked well or poorly, which may explain the
lack of significant changes in other questions.

5. Conclusions

The hierarchical structure proposed in this paper enables
robots to additionally reason about task situations when uti-
lizing TP-GMM. We showed that task performance can be
improved in both interpolation and extrapolation scenarios
and that computational load can be reduced with the hierar-
chical structure in simulation. We then showed that a robot
can use the hierarchical structure to collaborate better with
people in a real object movement task, also learning a deci-
sion boundary for when to ask for new demonstrations.
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Supplementary Materials

We show three example trials with typical interactions
encountered in the human-subject study, where the start
and goal positions were the same. The robot said “start” at
the beginning of each trial, and it said “reached goal” when
the object was successfully moved to the prescribed goal posi-
tion. In example trial 1, the robot successfully and quickly
finished the task with the subject. In example trial 2, the
robot’s trajectory did not end at the goal location, and the
human partner had to correct it by overpowering the robot.
In example trial 3, the robot additionally did not make
enough room for the partner to walk by the obstacle easily,
so the subject slightly rotated his body when walking towards
the goal. (Supplementary Materials)
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