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Elderly and disabled population is rapidly increasing. It is important to uplift their living standards by improving the
confidence towards daily activities. Navigation is an important task, most elderly and disabled people need assistance with.
Replacing human assistance with an intelligent system which is capable of assisting human navigation via wheelchair
systems is an effective solution. Hand gestures are often used in navigation systems. However, those systems do not
possess the capability to accurately identify gesture variances. Therefore, this paper proposes a method to create an
intelligent gesture classification system with a gesture model which was built based on human studies for every essential
motion in domestic navigation with hand gesture variance compensation capability. Experiments have been carried out to
evaluate user remembering and recalling capability and adaptability towards the gesture model. Dynamic Gesture
Identification Module (DGIM), Static Gesture Identification Module (SGIM), and Gesture Clarifier (GC) have been
introduced in order to identify gesture commands. The proposed system was analyzed for system accuracy and precision
using results of the experiments conducted with human users. Accuracy of the intelligent system was determined with the
use of confusion matrix. Further, those results were analyzed using Cohen’s kappa analysis in which overall accuracy,
misclassification rate, precision, and Cohen’s kappa values were calculated.

1. Introduction

Assistive technology for elderly and disabled people is an
expeditiously growing field [1, 2]. Many researches are
focused on edifying living standards of human life. Common
issue with most elderly and disabled persons is navigation.
Since it is hard for them to move around, they need some
assistance from another person or a machine. However,
assisting is not sufficient when there are communication
problems [3]. It is hard to navigate in a domestic environ-
ment with difficulties to communicate accurately. Disabled
and elderly people are increasingly observed with speech dis-
orders such as apraxia of speech, stuttering, and dysarthrias.
Hence, vocal interaction becomes difficult to those among
this community. Moreover, incapability to navigate in a

domestic environment without getting help creates common
issues like anxiety, anger, and depression which leads to poor
health conditions [4]. Therefore, it is obvious that assistive
technologies should upgrade in a more intelligent manner
to make human life more comfortable and healthier [5].
Human prefers to use multiple modalities such as voice
and gestures to interact with each other in a domestic envi-
ronment [6-8]. Gestures included hand gestures, facial
expressions, or cues which are difficult to understand even
for human beings. Furthermore, vocal and gestural expres-
sions can be integrated to create navigation commands [9].
As an example, a person in a wheelchair might say “go there”
and the person can integrate hand gesture to the sentence by
showing which direction that he wants to move [10]. Vocal
command may contain uncertain terms such as distance


https://orcid.org/0000-0002-4689-3743
https://orcid.org/0000-0003-3346-7849
https://orcid.org/0000-0002-9440-1731
https://orcid.org/0000-0002-9977-4545
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/9160528

and direction expressing terms like “near,” “far,” “middle,”
“left,” and “right” or place expressing terms like “here” and
“there” [11]. Interpreting uncertain terms are a difficult task
for a robot. Moreover, such interpretation depends on vari-
ous factors such as user experience, eyesight, environment,
and cognitive feedbacks from the environment [12-14].
Consideration of those factors makes vocal command
interpretation extremely difficult. However, using an intelli-
gent system with a capability to understand such phrases
can be unlikely to be used by humans because small error
or misinterpretation made by the system can do critical dam-
age to a disabled or elderly human being.

Most elderly people show speech difficulties which make
it difficult to clarify voice commands given by them using
speech recognition systems. Moreover, voice commands
include various types of uncertainties such as time related,
frequency, distance, and direction which make it hard to
understand. As an example, “go there” and “come here” have
position uncertainty and commands like “wait here” and
“give me a minute” have time-related uncertainty. Gestures
are widely used in navigation and also have variances
[15]. However, comparing to vocal commands, gestures
show a more detailed instruction which lead to a more
accurate decision of an intelligent system. If an intelligent
system is capable of interpreting gestures into navigation
commands and a person could give navigation commands
using hand gestures for all the essential navigation tasks, it
will be a more simple and efficient method for systems
like intelligent wheelchairs [16]. Such systems should pos-
sess a capability to interpret hand gestures while under-
standing variances and would be like gesture alphabet for
navigation. Moreover, those gestures should be easily
remembered and able to express every essential task that
may be required by a disabled or elderly person on a
wheelchair. Furthermore, misunderstanding of unintended
hand movements can create critical situations. Therefore,
safety precautions should be also considered [17].

A method has been proposed in [18] to recognize
dynamic hand gestures of human hand using a RGB depth
camera. The system is capable of automatically recognizing
hand gestures against a complicated background. However,
the system is capable of identifying limited navigation com-
mands, and the system is designed to control a mobile robot
using hand gestures. Therefore, the robot can perform only
the basic robot motions. A real-time hands-free immersive
image navigation system that can respond to various gestures
and voice commands has been proposed in [19]. The system
has a capability to identify a wide range of hand and finger
gestures and voice commands using Kinect and leap motion
sensors. However, the system is specifically designed for
image navigation, and it does not possess any motion naviga-
tion understanding capability.

An intelligent wheelchair with hand gesture recogni-
tion facility is developed in [20]. The wheelchair can be
controlled through basic hand gestures such as FOR-
WARD, BACKWARD, and RIGHT/LEFT. However, this
wheelchair is not capable of recognizing more complex
static and dynamic gestures, and recognition of tasks is
not in real time.
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Another method has been proposed in [21] to recognize
dynamic hand gestures using a leap motion sensor. This sys-
tem can recognize simple dynamic gestures such as swipe,
tap, and drawing circle to authenticate logins. However, this
system cannot recognize complex dynamic gestures used in
a domestic navigation task. A dynamic and static gesture rec-
ognition method has been proposed in [22] for an assistive
robot. This system can recognize simple dynamic gestures
such as waving and nodding while simple pointed gestures
can be identified in locating places. However, this system
cannot recognize dynamic motion commands of hand and
static commands used for navigation. Another weakness of
this system is the lack of flexibility in using separate fingers
and the lack of real-time gesture recognition. Most dynamic
and static gestures use separate fingers.

The hand recognition system proposed in [23] is using
a Kinect sensor to get the depth map and the color map.
The use of the depth map with a color map has increased
the robustness of the gesture recognition, and the Finger-
Earth Mover’s Distance method has been used to remove
any input variation or the color distortions. As this
method only considers distance between fingers, move-
ment of fingers against each other will not be detected.
These types of finger tremors cause gesture variances
which will not be recognized in this setup. The purpose
of this article is to develop a simple yet unique gesture
system to help navigate in domestic environments com-
pensating above-mentioned gesture variances. The method
proposed in [24] has used depth image to identify real-
time dynamic hand gestures through a Hidden Markov
Model (HMM). Dynamic hand gesture variances consider-
ing hand orientations, speed, and styles have been consid-
ered in this system. However, miniscule variances such as
finger orientations, finger bone orientations, and finger
speeds have not been considered in this system. There is
another method that has used the HMM to space-time
hand movement pattern in a 3D space [25]. In this
method, they have considered hand movement, palm ori-
entation in a 3D space to compensate for the hand gesture
variances or tremors. However, it fails to identify the fin-
ger movements against the palm orientation usually seen
among elderly. There are many hand gesture recognition
systems that have been developed in order to recognize
most static and dynamic hand gestures. However, very
few have tried to compensate the involuntary hand gesture
variance. Systems introduced in [26, 27] have tried to
define more features in order to minimize all static and
dynamic variances or tremors. To avoid overfitting and
redundancy, they have used 2 level classifier fusion to filter
out the unnecessary features. Even with about 44 features,
individual classifiers, and 2 level fusions, the system in
[26] has failed to compensate the finger tremors. Since
they [26, 27] have not considered finger angles against
the palm orientation or bone angles, fusion of those fea-
tures into their methods become tediously difficult. The
system developed in [28] has introduced a gesture vocab-
ulary to operate a mobile phone as opposed to the system
proposed in this article. However, this system has consid-
ered both large scale hand gestures and small scale
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FIGURE 1: System overview.

gestures in which miniscule gesture variances matter.
Bayesian linear classifier has been used in small scale ges-
tures while HMMs have been used in large scale gestures.
However, finger movements, bone angles, or finger orien-
tations which were not considered in the features and var-
iances in both static and dynamic gestures will not be
compensated by using individual classifiers.

Therefore, this paper presents a novel method to rec-
ognize dynamic and static motion-related hand gestures
even with tremors, based on a gesture classification model
for wheelchair users with speech disorders. A complete
gesture model with essential navigation commands is
defined. It can be used to navigate an intelligent wheel-
chair through a domestic environment. Elaborated feature
set is extracted in order to compensate for user variances
that occur in gestures.

The purpose of this article is to develop a hand gesture
model to help a wheelchair user to navigate in a domestic
environment. Therefore, the gestures designed have to
cover all possible navigation scenarios. These gestures will
vary as static, dynamic, palm, and finger gestures. A sys-
tem should be able to recognize not only both static and
dynamic gestures, but it should be able to compensate
hand and finger tremors happening among elderly. A sys-
tem should be able to identify different variations of the
same gesture from one user to the other. In summary,
none of the above existing systems was not specifically
designed as a gesture model for navigation. There were
few which worked as a sign language gesture model. How-
ever, those gesture vocabularies will not be effective for
the purpose of this article. Gesture recognition methods
and tools used in the above systems have focused in the
accuracy of a gesture. Some systems have considered ges-
ture variances caused by palm tremors. However, none of
them has considered finger tremors and finger bone
angles as possibilities. In this article, we are not only
focusing on developing a specifically designed gesture
vocabulary but also considering all possible variations of
the same gesture.

Therefore, tremors in the elderly people will not be a
cause of confusion for the navigation system. The overall
functionality of the proposed system is explained in Section
2. The proposed concept to create a gesture model and fea-
ture extraction process is explained in Section 3. Experi-
mental results are presented and discussed in Section 4.
Finally, the conclusion is presented in Section 5.

2. System Overview

Overall functionality of the proposed system is shown
in Figure 1. The proposed system is capable of identi-
fying static and dynamic gestures and interpreting those
gestures into navigation commands. Gesture Memory
(GM) is built based on identified gestures from a human
study which are capable of creating every essential navi-
gation task in a domestic environment. Moreover, user’s
capability to remember and recall gestures is also
evaluated.

Gesture recognition module extracts the information of
hand skeleton using a leap motion sensor, and extracted
data is sent to the Gesture Clarifier (GC) for clarification
of gestures into static and dynamic gestures based on ges-
ture features. Static Gesture Identification Module (SGIM)
and Dynamic Gesture Identification Module (DGIM)
understand and identify the navigation command related
to the observed gesture. State Identification Module
(SIM) works together with GC, SGIM, DGIM, and State
Controlling Module (SCM) in order to differentiate ges-
tures and unintended hand movements. SCM understands
user requirement to use a gesture identification system by
controlling most prioritized gesture commands such as
“Turn on” and “Turn oft.”

3. Gesture Model

3.1. Human Study I: Identification of Navigation Commands.
Natural human communication consists of multiple
modalities like voice and hand gestures. Therefore, defined
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hand gestures should have been able to replace all possible
navigational commands. In order to identify the com-
mands used by wheelchair users during basic navigation,
a human study was conducted. 20 wheelchair users of
age 55 to 70 have participated in the study. Participants
were asked to guide their wheelchair using hand gestures
or voice or multimodal interaction. Natural navigation
command identification was the priority. Hence, interac-
tion method was not limited to hand gestures. Location
is changed in order to cover all possible navigation scenar-
ios. Participants did not have any prior knowledge of the
locations or the previous study results. Hence, the accu-
racy of the results was ensured, and repetition of results
was avoided. All possible navigation commands were
recorded, most frequent commands were identified, and
the graphical representation of the identified command
frequencies is given in Figure 2.

Most frequent commands identified above were consid-
ered for the proposed gesture system.

3.2. Human Study II. Hand Gesture Identification. A
human study was conducted in order to understand the
hand gesture features used by wheelchair users for the
identified navigational commands. A group of 20 people
randomly selected from the same age group (55 to 70)
participated in the study. Participants were asked to exe-
cute the basic navigation commands, identified in the
human study I using only the hand gestures. Data col-
lected in this study were used to build the gesture system
that will be elaborated later. A leap motion sensor was
used to track hand gestures, and raw data collected
through that were processed to identify the gesture fea-
tures. Most predominant hand feature associated in exe-
cuting each command was recorded. Results are shown
in Table 1. Frequently used hand features for each gesture
were used as a basis in feature extraction.

Two main types of hand gestures were identified as
static gestures (pointers or poses) and dynamic gestures
(hand movements). Static gestures were mainly used in
subtle motion commands like Stop, Turn around, and
Turn slightly left/right. For vigorous motion commands,
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participants used hand movements. Other important ten-
dency was that participants liked to use both static and
dynamic gestures more evenly. These commands are also
found to be two types: finger-pointing gestures and palm-
opening gestures. Numbers of fingers used by the partic-
ipants were unpredictable in pointing gestures, and
mainly one finger or two fingers were used. Dynamic ges-
tures were mainly used to express movements and direc-
tions that a wheelchair needs to execute.

3.3. Hand Gesture System. Navigation commands of a
wheelchair user should cover all the possible navigation
scenarios. If the user has vocal abilities, the commands will
include information covering exact instructions. For an
intelligent wheelchair to work through only hand gestures,
they should be simple, clear, and accurate. The proposed
gesture system is based on all basic navigation scenarios.
These hand gestures are simple and clear. Out of the hand
gestures defined, dynamic gestures were used to represent
motion instructions. Defined hand gestures are given in
Figure 3.

The gesture system was built based on the following
considerations.

(1) Defined hand gestures should be simple, clear, and
accurate

(2) Gestures should be defined in a way that a user can
navigate through a path using a minimum number
of gestures

(3) A user should be able to remember and recall the
defined hand gestures. To ensure user’s adjustabil-
ity to the gesture system, a human study was con-
ducted. Details of this study are explained in
Sections 4.1 and 4.2

(4) Significant difference should be identified among
hand gestures. Therefore, users will not have any
confusion with gestures

(5) A hand gesture system should have both static and
dynamic gestures in order to mitigate inaccuracies
caused by the leap motion sensor

3.4. Feature Extractions. Hand gestures accompanied with
vocal interaction tend to be both voluntary and involun-
tary. These gestures carry information such as direction
and motion. For a wheelchair user with vocal disabilities,
these hand gestures could be considered as the primary
modality. Even though there are gesture systems such as
American sign language, the execution of these gestures
differs from one elderly person to the other. To compen-
sate for this variation, bone angles as explained below
were used.

Defined gesture system consists of two main forms of
gestures: dynamic gestures and static gestures. Static ges-
tures are nonmoving hand poses which can be modeled
through basic hand features. Dynamic gestures are mod-
eled using dynamic hand features like finger movement
and hand movement.



Applied Bionics and Biomechanics

TaBLE 1: An analysis of hand feature frequencies associated with navigation commands.

Navigation command  Palm orientation =~ Palm movement  Fingertip movement  Finger bones Single ﬁngerFm%\fIrjl tiple fingers
Go forward 92% 32% 28% 6% 44% 56%
Turn left 84% 75% 42% 18% 8% 48%
Turn right 82% 75% 44% 16% 7% 52%
Stop 96% 68% 64% 24% 18% 74%
Turn around 98% 56% 86% 77% 14% 84%
Slow down 98% 87% 54% 21% 19% 72%
Turn slightly left 90% 34% 97% 42% 47% 52%
Turn slightly right 89% 35% 98% 44% 46% 53%

-
()

(1) Palm orientation. Palm orientation was taken based

on leap motion coordinates. The pitch angle, roll
angle, and yaw angle of the palm depict the ori-
entation. Pitch angle is the angle rotated around
the +Y axis, roll angle is the angle rotated around
the +X axis, and Yaw angle is the angle rotated
around the +Z axis. As illustrated in Figure 4, the
Quaternion angle theory is used to take the yaw,
pitch, and roll of the x, y, z vectors relative to a single
vector. Usually Euler angles are used as it has the
ability to take the vectors relative to each other.
But Euler angles have certain limitation that can

FiGURE 3: Navigation gestures: (a) Go forward, (b) Stop, (c) Go backward, (d) Hard left, (e) Hard right, (f) slightly left, (g) Slightly right,
(h) Turn around, (i) Slow down, (j) Go faster, (k) Turn off, and (I) Turn on.

be addressed by Quaternion angles. The main lim-
itation of using Euler angles is that difficulty in
interpolating between two orientations of an object
smoothly [29]

(2) Finger bone angles. Bone angles of fingers with

respect to the metacarpal bone of the hand are
extracted. These angles are shown in Figure 5. Hence,
even when (i) Slow down, (j) Go faster, (k) Turn off,
and (1) Turn on, fingers have improper position that
will not affect the gesture recognition. As shown in
Figure 5, the angles of distal («), proximal (), and
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FiGure 5: Hand features.

intermediate () bones with respect to the metacarpal
bone were calculated using Equation (1). These
angles were taken for the index finger and middle
finger. For the thumb finger, only the distal and
proximal bone angles were taken as the thumb
does not have an intermediate bone. These three

fingers were considered specifically since most of
the navigational gestures identified were associated
with them. As the ring finger and pinky finger
are tightly associated couple, the average of distal,
proximal, and intermediate angles was considered.
Navigational gestures defined have sole ring or
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F, = fingertip velocity of Finger 1
F, = fingertip velocity of Finger 2

Require: : F,, F,, F, V,
Ensure: : Activation Module
for ‘K’ in n do

end if
end for

Activate DGIM

Activate SCM
else

Activate SGIM
end if

F =mean value for fingertip velocity of Fingers 3 and 4
K = captured frame from a leap motion sensor
n = frames taken from a leap motion sensor from 0.25 s intervals

if F; >00r F,>0o0rF>0and V, >0 then
Change state to waiting

if F;>0o0rF,>0o0rF>0and V, >0 then

ArcoriTHM 1: Gesture Clarification Algorithm.

pinky finger features. But it was important to get
separate features for other three fingers as they
were included separately in the hand gestures.
Here, the direction of metacarpal bone, proximal
bone, intermediate bone, and distal bone is

denoted by p, ¢, 7, and u, respectively.

p=b-a,
G=<c-b,
T=d-7¢
- - 5>
1

L (1)
u=¢e—d,

R

u.
a:cos_lg‘v.

— —

EH|

The calculation of other two angles was done using the
same approach

(3) Fingertip velocity. To detect the dynamic gestures
defined, fingertip velocity of the index finger was
considered. Two different inputs were considered
for both magnitude and direction of the velocity
vectors. Also, mean fingertip velocity of other fin-
gers was considered to detect finger movements.
All the properties considered are shown in
Figure 4

(4) Palm velocity. To detect the palm movement of the
hand, palm velocity magnitude and direction were
considered as inputs. Palm orientation angles were
also input features to detect dynamic gestures

Require: : activate
Ensure: : DGIM activation
if activate = 0 then
DGIMactivatezl

if gesture = ‘Turn off’ then
Activate waiting state

DGIMactivate:()

else
Deactivate waiting state
DGIMactivate =1

end if

end if

ALGORITHM 2: DGIM Activation Algorithm

3.5. Gesture Classification. Artificial Neural Networks
(ANNs) have been developed to identify and clarify dynamic
and static gestures. Each Static Gesture Identification Module
(SGIM) and Dynamic Gesture Identification Module
(DGIM) consist of an ANN. Gesture Clarifier (GC) consists
of Algorithms 1 and 2 to distinguish dynamic gestures from
static gestures. GC priorities dynamic gestures since critical
commands like “Turn off” and “Turn on” are defined in
DGIM. It controls system state based on prioritized com-
mands. If received navigation command was “Turn off,” the
GC will isolate GI from DGIM and SGIM and wait for the
next command to be “Turn on.” Moreover, when a gesture
confirmation is identified by GC and SCM, the appropriate
submodule will be activated.

SGIM consists of an ANN that has 14 inputs (B1, B2,
B3, B4, B5, B6, M1, M2, M3, T1, T2, P1, P2, and P3).
There are two hidden layers in that ANN, and the output
layer has four outputs (N1, N2, N3, and N4). The output
of the SGIM represents a static navigation command
number from 1 to 12. DGIM consists of an ANN that
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FIGURE 6: Research platform during experiment session.

has 5 inputs (C1, C2, Q1, Q2, P1, P2, P3, and V1) and 4
outputs (N5, N6, N7, and N8). The output of the DGIM
represents a dynamic navigation command number from
1 to 12. Both outputs of the SGIM and DGIM were in binary
numbers. Both ANNSs use a sigmoidal function as the activa-
tion function.

4. Result and Discussion

To evaluate the validity and accuracy of the proposed intelli-
gent gesture system, experiments were carried out from two
aspects: (a) accuracy of remembering and recalling of the
defined gestures and (b) accuracy and robustness of the intel-
ligent hand gesture recognition system. System was imple-
mented on the intelligent wheelchair explained in [20]. To
carry out the experiments, a group of participants of 20
wheelchair users were randomly selected. They were selected
from three age groups of 20 to 30, 30 to 55, and over 55 years.
Participants were generally healthy with no cognitive impair-
ments except for mobility impairment of legs. The research
platform during the experiment session is shown in
Figures 6(a) and 6(b).

The implementation of the developed intelligent sys-
tem requires a high-performing smart wheelchair with fast
and reliable computing power. For this purpose, we used a
wheelchair robot which is developed in our laboratory that
has basic navigational capabilities. In this wheelchair, we
have installed an industrial grade high-end computer in
which DDR4 SO-DIMM memory is 32 GB and processor
is a 6th generation i7 quad core (3.6GHZ). Also, to
increase the computational capacity, a SSD memory of
1 TB is installed. To compensate for the high performance
and rugged operation, it can withstand from -20°C to 60°C
temperature. These are essential for the intelligent system
to work properly since training and execution will take a
lot of computational power.

4.1. Experiment I. A detailed presentation of the navigation
commands and relevant hand gestures was shown to each
participant. They were asked to memorize the commands
and gestures for 15 minutes. Then, each participant was
asked to recall the relevant hand gesture for randomly given

TaBLE 2: Result of experiment 1.

Command Navigation Exp. Exp. Exp. Exp.
no. command 1 2 3 4

a Go forward 98% 99% 99%  99%
b Stop 99% 99% 98% 100%
c Go backward 98% 98% 97% 98%
d Hard left 95% 97% 97% 94%
e Hard right 95% 97% 97%  95%
f Slightly left 94% 95% 98%  89%
g Slightly right ~ 93%  95% 98% 91%
h Turn around 95% 95% 98%  98%
i Slow down 96% 97% 97% 99%
j Go faster 95% 96% 98% 99%
k Turn off 100% 100% 98% 100%
1 Turn on 99% 100% 100% 100%

navigation command. Percentage accuracy of recalling the
hand gesture for each navigation command was recorded
as Exp. 1. In the next step, each participant was asked to
recall the navigation command for a randomly given hand
gesture. Percentage accuracy of recalling the navigation
command for each hand gesture was recorded as Exp. 2.
After that, participants were asked to recall all the naviga-
tion commands in one go. Percentage accuracy of recalling
a navigation command was recorded for this step as Exp.
3. Finally, each participant was given a fixed navigation
path, and they were asked to guide themselves with hand
gestures defined in the system. Navigation path was
selected considering all the navigation commands identi-
fied. Percentage accuracy of remembering each gesture in
a task situation was recorded as Exp. 4. Recorded data is
presented in Table 2. Boxplots given in Figures 7(a) and
7(b) show the remembering and recalling capability of
each dynamic and static hand gesture.

4.2. Experiment II. Participants were given a specific naviga-
tion task to complete using hand gestures. Navigation path of
the task was planned in a way that all gestures were utilized.
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FIGURE 7: Boxplots to represent remembering and recalling capability of each dynamic and static hand gesture.
Q oF TaBLE 3: Confusion matrix for identification of static gestures.
Ee
De a b c d e
a 0.99 0.01
b 0.97 0.03
c 0.02 0.98
2m || Be oC °G d 0.01 0.99
e 0.01 0.99
Observed Standard .95 confidence interval
kappa error Lower limit Upper limit
0.9648 0.0145 0.9363 0.9933
° ticular hand gesture are given in the confusion matrix
given in Tables 3-5.
13m In the experiment I, participants showed almost per-

F1GURE 8: Experiment II setup. Participants were asked to give gesture
instructions for the path A>B>C>D>E>F>E>D>C>G.

Navigation task and fixed path are given in Figure 8. Each
participant had to guide themselves using the hand ges-
tures, and the proposed system classified the hand ges-
tures. This process was repeated for all the participants.
System recognition accuracies were recorded for each hand
gesture. Rates of success and failure in recognizing a par-

fect memory of basic navigation commands such as “Go
forward,” “Stop,” “Go backward,” and “Turn on/off” com-
mands. Recalling accuracy percentage of most navigation
commands was in the high 90s except for “Slightly right/-
left” commands. As mentioned in Table 2, Exp. 2 accura-
cies are higher than Exp. 1. Therefore, it can be deduced
that recalling navigation command for hand gesture is
easier. Exp. 4 values are slightly lower than other accu-
racy values. Recalling hand gestures during a task is
tougher than in any situation. Overall, almost all accuracy
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TaBLE 4: Confusion matrix for identification of dynamic gestures.

f g h i j k 1
f 0.95 0.01 0.04
g 0.01 0.99
h 0.04 0.96 0.01
i 0.03 0.97
j 003 097
k 1.00
1 1.00
Observed Standard .95 confidence interval
kappa error Lower limit Upper limit
0.9879 0.003 0.9819 0.9939

TaBLE 5: Confusion matrix for identification of dynamic and static
gestures.

Static Dynamic
Static 24 1 25
Dynamic 2 23 25
26 24
Accuracy 0.94
Misclassification rate 0.06
Precision 0.95

Cohen’s kappa 0.88 (>0.81)

values are higher than 90% and for most critical gestures
such Turn on/off has almost perfect recalling accuracy.
Therefore, it can be proved that the proposed gesture sys-
tem is user friendly and easy to memorize.

In the experiment II, three confusion matrices were cre-
ated in order to validate the recognition accuracies. For the
two hand gesture recognition systems, static and dynamic,
recognition accuracies were shown for each hand gesture.

For all the static gestures, accuracy is over 90% as
shown in the confusion matrix given in Table 3. In the
static gesture matrix, Cohen’s kappa value was calculated
with linear weighting. Used weights were equal in the
static confusion matrix. For all the dynamic gestures, rec-
ognition accuracy is over 90% and overall accuracy is
higher than the static gesture recognition system. Hence,
the use of a high number of dynamic gestures than the
static gestures for the system is validated. Cohen’s kappa
value was also calculated for this matrix as shown in
Table 4 with linear weighting. Critical dynamic gestures
such as “Turn on/off” were weighted with two points
and other gestures with one point. Since kappa values
for both recognition systems are over 0.81, it can be
proved that the systems are working properly. For the
gesture type selection system, a confusion matrix was cre-
ated and overall accuracy, misclassification rate, precision,
and Cohen’s kappa values were calculated. Overall, accu-
racy is 0.94 (>0.90) and kappa value is over 0.81. There-
fore, it can be concluded that selection system is also
working properly.
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5. Conclusions

This paper proposed a novel method to identify hand ges-
tures related to navigation based on a gesture recognition
model with compensations for user variances. An intelligent
gesture identification system was introduced in order to
clarify gestures with high precision. Bone angles with
respect to metacarpal bone were introduced as novel fea-
tures in order to elevate identification of gesture variances.
The system is capable of eliminating complications due to
user inability in executing precise hand gestures. An intelli-
gent clarification system has been implemented to separate
static and dynamic hand gestures. Experimental results
confirmed that the wheelchair users with speech disabilities
can remember and recall the proposed hand gesture system.
Therefore, the proposed gesture model can be considered as
user friendly, and it is concluded that the proposed intelli-
gent gesture recognition system can recognize user hand
gestures with a high accuracy.
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