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One of the most commonly used models in survival analysis is the additive Weibull model and its generalizations. They are well
suited for modeling bathtub-shaped hazard rates that are a natural form of the hazard rate. Although they have some advantages,
the maximum likelihood and the least square estimators are biased and have poor performance when the data set contains a large
number of parameters. As an alternative, the expectation-maximization (EM) algorithm was applied to estimate the parameters of
the additive Weibull model. The accuracy of the parameter estimates and the simulation study confirmed the advantages of the
EM algorithm.

1. Introduction

There are many situations in which the hazard rate function
shows a bathtub shape (BTS) with three life periods, early
decreasing hazard rate period, useful period (where the haz-
ard rate is approximately constant), and eventually increas-
ing hazard rate period. Lai et al. [1] and Nadarajah [2]
presented a list of distributions with BTS hazard rate. Many
authors assumed a BTS hazard rate model in their research,
and among them, we can point to Block et al. [3], Glaser [4],
Leemis and Beneke [5], Mi [6, 7], Mitra and Basu [8], and
Noughabi et al. [9].

Xie and Lai [10] and Jiang and Murthy [11, 12] studied
some aspects of the additive Weibull model with the hazard
rate function:

h xð Þ = α1λ
α1
1 x

α1−1 + α2λ
α2
2 xα2−1, x ≥ 0, ð1Þ

as a good candidate for describing the bathtub-shaped fail-
ure rate function. They urged that the statistical inference
about this model is complex due to the number of the
parameters, and as a remedy, they suggested the reduced
model by considering λ1 = λ2 and α2 = 1/α1 which still
accommodates the bathtub-shaped hazard rate.

Lai et al. [13] added one constant magnitude to the addi-
tive Weibull hazard rate (1) to provide more realistic model:

h xð Þ = α1λ
α1
1 x

α1−1 + α2λ
α2
2 xα2−1 + λ3, x ≥ 0: ð2Þ

In addition, Bebbington et al. [14] considered the addi-
tive Weibull models (1) and (2) in their research to express
the concept of the useful period of life of a bathtub-shaped
hazard rate distribution. They concluded that the additive
Weibull model is sufficiently flexible to describe a bathtub-
shaped hazard rate. The common estimator of the parame-
ters of these models is the maximum likelihood estimator
(MLE).

The EM algorithm is an iterative algorithm for estimat-
ing parameters of models involving latent variables, e.g.,
when data is derived from a mixture or competing risk
model. It was used by Dempster et al. [15], Balakrishnan
et al. [16], Davies et al. [17], Yang et al. [18], and Okamura
and Dohi [19] to estimate the parameters in their models. In
this paper, we use the EM algorithm to estimate the param-
eters of the additive model (2) and show by a simulation
study that this algorithm gives a better estimate than the
MLE and the least square estimator (LSE).

The paper has been organized as the following. In Sec-
tion 2, we present a short representation of the MLE and
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LSE of the parameters. Then, the EM algorithm has been
discussed. Section 3 provides a simulation study for compar-
ing the results related to MLE, LSE, and EM estimator. In
Section 4, a data set has been analyzed to show the applica-
bility of the proposed estimators.

2. The MLE, Least Square, and EM

Let x1, x2,⋯, xn represents a realization of an iid random
sample of the additive Weibull hazard rate distribution with
the hazard rate (2). The log-likelihood function has five
parameters and is of the form

l α1, λ1, α2, λ2, λ3ð Þ = 〠
n

i=1
ln α1λ

α1
1 x

α1−1
i + α2λ

α2
2 x

α2−1
i + λ3

� �

− 〠
n

i=1
λ1xið Þα1 + λ2xið Þα2 + λ3xið Þ:

ð3Þ

To find the MLE, we should find admissible values of ð
α1, λ1, α2, λ2, λ3Þ which maximize the log-likelihood
function.

To find the LSE of the parameters, we apply the reliabil-
ity function related to the hazard rate model (2) which is

R xð Þ = e− λ1xð Þα1− λ2xð Þα2−λ3x, x ≥ 0: ð4Þ

The empirical reliability function is defined to be

~R tð Þ = 1
n
〠
n

i=1
I t < xið Þ, ð5Þ

in which the indicator function Iðt < xiÞ equals 1 when t < xi
and otherwise is 0. So, the LSE of the parameters can be
computed by minimizing the following sum of squares of
errors in terms of ðα1, λ1, α2, λ2, λ3Þ.

S2 = 〠
n

i=1
~R xið Þ − e− λ1xið Þα1− λ2xið Þα2−λ3xi
� �2

: ð6Þ

2.1. The EM Algorithm. Let X1i, X2i, and X3i, i = 1, 2,⋯, n
follows from the Weibull distributions with parameters
ðα1, λ1Þ and ðα2, λ2Þ and the exponential distribution with
mean 1/λ3, respectively. Assume that in a lifetime experi-
ment, the observations are realizations of the competing risk
random variable Xi =min fX1i, X2i, X3ig. This means that
the lifetime event may be due to one of three competing
causes. Let the latent random variable Zi with the support
f1, 2, 3g such that

Zi =
1 whenX1i ≤min X2i, X3if g,
2 whenX2i ≤min X1i, X3if g,
3 whenX3i ≤min X1i, X2if g:

0
BB@ ð7Þ

With these notations, the likelihood function is

L θ ; x, zð Þ =
Yn
i=1

Y3
j=1

f Zi = j ∣ Xi = xi, θð ÞI Zi=jð Þ
 !

f Xi = xi ∣ θð Þ

=
Yn
i=1

Q3
j=1λj xi ∣ θð ÞI Zi=jð Þ

λ1 xi ∣ θð Þ + λ2 xi ∣ θð Þ + λ3 xi ∣ θð Þ
× f1 xi ∣ θð ÞR2 xi ∣ θð ÞR3 xi ∣ θð Þð
+ f2 xi ∣ θð ÞR1 xi ∣ θð ÞR3 xi ∣ θð Þ
+f3 xi ∣ θð ÞR1 xi ∣ θð ÞR2 xi ∣ θð ÞÞ

=
Yn
i=1

Y3
j=1

λj xi ∣ θð ÞI Zi=jð Þ
 !

� R1 xi ∣ θð ÞR2 xi ∣ θð ÞR3 xi ∣ θð ÞÞ,
ð8Þ

where Rjðx ∣ θÞ, f jðx ∣ θÞ, and λjðx ∣ θÞ show the correspond-
ing reliability function, the density function, and the hazard
rate function of Xji, j = 1, 2, 3. Then, the log-likelihood func-
tion is

l θ ; x, zð Þ = ln L θ ; x, zð Þ = 〠
n

i=1
〠
3

j=1
I Zi = jð Þ ln λj xi ∣ θð Þ

+ 〠
n

i=1
〠
3

j=1
ln Rj xi ∣ θð Þ:

ð9Þ

The EM algorithm is an iterative algorithm, and every
iteration of it consists of two consecutive steps, namely, the
E step and the M step. In the E step, the expectation of the
log-likelihood with respect to the estimate of the conditional
probabilities of the latent variables has been constructed.
Then, in the M step, the constructed expectation of the E
step is maximized to compute the estimate of the parameters
in the current iteration.

2.2. The E Step. Suppose that the estimate of θ at iteration t
be denoted by θt , then the conditional distribution of Zi is

pi1,t = P Zi = 1 ∣ Xi = xi, θtð Þ = f1 xi ∣ θtð ÞR2 xi ∣ θtð ÞR3 xi ∣ θtð Þ
f xi ∣ θtð Þ ,

ð10Þ

pi2,t = P Zi = 2 ∣ Xi = xi, θtð Þ = f2 xi ∣ θtð ÞR1 xi ∣ θtð ÞR3 xi ∣ θtð Þ
f xi ∣ θtð Þ ,

ð11Þ
and pi3,t = 1 − pi1,t − pi2,t where

f xi ∣ θtð Þ = f1 xi ∣ θtð ÞR2 xi ∣ θtð ÞR3 xi ∣ θtð Þ
+ f2 xi ∣ θtð ÞR1 xi ∣ θtð ÞR3 xi ∣ θtð Þ
+ f3 xi ∣ θtð ÞR1 xi ∣ θtð ÞR2 xi ∣ θtð Þ:

ð12Þ
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The probabilities pi1,t , pi2,t , and pi3,t are called the mem-
bership probabilities.

Now we define the expectation of the log-likelihood
function (8) with respect to the conditional distribution of
Zi.

Q θ ∣ θtð Þ = EZ∣X,θt l θ ; x, Zð Þð Þ = 〠
n

i=1
p1i,t ln α1λ

α1
1 x

α1−1
i

� ��

− λ1xið Þα1 − λ2xið Þα2 − λ3xi
�

+ 〠
n

i=1
p2i,t ln α2λ

α2
2 xα2−1i

� �
− λ1xið Þα1

�

− λ2xið Þα2 − λ3xi
�
+ 〠

n

i=1
p3i,t ln λ3 − λ1xið Þα1
�

− λ2xið Þα2 − λ3xi
�
= 〠

n

i=1
p1i,t ln α1λ

α1
1 x

α1−1
i

− 〠
n

i=1
λ1xið Þα1 + 〠

n

i=1
p2i,t ln α2λ

α2
2 xα2−1i

− 〠
n

i=1
λ2xið Þα2 + 〠

n

i=1
p3i,t ln λ3 − 〠

n

i=1
λ3xi:

ð13Þ

So the Qðθ ∣ θtÞ can be written as sum of three distinct
expressions Q1ðθ ∣ θtÞ, Q2ðθ ∣ θtÞ, and Q3ðθ ∣ θtÞ, where

Q1 θ ∣ θtð Þ〠
n

i=1
p1i,t ln α1λ

α1
1 x

α1−1
i − 〠

n

i=1
λ1xið Þα1 , ð14Þ

Q2 θ ∣ θtð Þ = 〠
n

i=1
p2i,t ln α2λ

α2
2 x

α2−1
i − 〠

n

i=1
λ2xið Þα2 , ð15Þ

Q3 θ ∣ θtð Þ = 〠
n

i=1
p3i,t ln λ3 − 〠

n

i=1
λ3xi: ð16Þ

These statements will be applied in the M step, to com-
pute the estimates of the parameters.

2.3. The M Step. The estimate of the parameters at iteration
t + 1 can be obtained by

bα1,t+1, bλ1,t+1 = arg max
α,λ

Q1 θ ∣ θtð Þ, ð17Þ

bα2,t+1, bλ2,t+1 = arg max
α,λ

Q2 θ ∣ θtð Þ, ð18Þ

bλ3,t+1 = arg max
λ

Q3 θ ∣ θtð Þ: ð19Þ

We should optimize Q1ðθ ∣ θtÞ and Q2ðθ ∣ θtÞ numeri-
cally since they have not closed form for their critical points.
But, the point which maximizes Q3ðθ ∣ θtÞ has a closed form,
and by solving the equation ð∂/∂λ3ÞQ3 = 0, we have

bλ3,t+1 =
∑n

i=1p3i,t
∑n

i=1xi
: ð20Þ

The iterative process can be concluded if Qðθt+1 ∣ θt+1Þ
<Qðθt ∣ θtÞ + ε for some small predefined ε.

3. Simulation Study

To provide a random instance of the competing risk model
with hazard rate (2), we simulate one random instance of
Weibull with parameters ðα1, λ1Þ, namely, X11, one random
instance of Weibull with parameters ðα2, λ2Þ, namely, X12,
and one random instance of the exponential distribution
with parameter λ3, namely, X13. Then, the random variable
X1 = min fX11, X12, X13g follows from the desired compet-
ing risk model.

In every run of the simulation study, we drive r = 500
replicates of samples of sizes n = 50 and 100. Then, for each
sample, the parameters have been estimated applying the
MLE, LSE, or EM algorithm (see Supplementary Materials
for all R codes used for simulation study). Every cell of
Table 1 shows the results of one run. The results contain
the bias (B), the absolute bias (AB), and the mean squared
error (MSE) which, for example for α1, have been computed
by the following relations.

Bα1
= 1
r
〠
r

i=1
bα1i − α1ð Þ, ð21Þ

ABα1
= 1
r
〠
r

i=1
bα1i − α1j j, ð22Þ

MSEα1
= 1
r
〠
r

i=1
α∧1i − α1ð Þ2, ð23Þ

where bα1i is the estimate of α1 based on the ith replication.
Some important observations of the simulation results have
been pointed out in the following.

(i) As sample size increases, the AB and MSE decrease
in all approaches

(ii) The EM estimator outperforms the LSE and MLE in
terms of AB and MSE in all cases

(iii) The LSE outperforms the MLE in terms of AB and
MSE in all cases

4. Applications

Lawless [20] analyzed failure times of some electrical
appliances. The scaled TTT transform plot drawn in
Figure 1 shows a bathtub shape for the hazard rate func-
tion. This gives us some nonparametric information indi-
cating that the data come from a BT hazard rate model.
So we tried to fit some distributions accommodating
bathtub-shaped hazard rate to this data set. We use the
MLE and the EM algorithm to fit the five parameters
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competing risk model (2). Also, the reduced model with
the reliability function

R xð Þ = exp − λxð Þα − λxð Þ1/α
n o

, ð24Þ

has been fitted by computing the MLE of the parameters. In
Figure 2, the cumulative distribution function (CDF) for
fitted models has been drawn. There is a significant distance

between the fitted model (14) and the empirical CDF which
shows that the reduced model may be improper in some
examples.

Moreover, some results of fit have been abstracted in
Table 3. Based on the Kolmogorov-Smirnov (K-S) statistics

Table 1: Every cell consists of the bias, the absolute bias, and the mean squared error for five parameters α1, λ1, α2, λ2, and λ3 from top to
bottom, respectively.

n
The EM algorithm The LSE The MLE

B AB MSE B AB MSE B AB MSE

α1 = 0:8
λ1 = 0:01
α2 = 1:3
λ2 = 0:02
λ3 = 0:04

50

0.114788 0.209461 0.073327 0.064984 0.266447 0.295491 0.150792 0.278228 0.475591

-0.001410 0.003386 0.000017 0.015999 0.020659 0.000707 0.026929 0.030571 0.001399

0.354883 0.414357 0.325645 0.450476 0.596059 1.216075 1.710262 1.829587 30.45458

0.001644 0.004211 0.000030 0.0008324 0.015219 0.000326 0.003705 0.013934 0.000315

0.006223 0.007680 0.000101 -0.018570 0.025329 0.000851 -0.025577 0.031822 0.001172

100

0.090420 0.161060 0.041728 0.075634 0.208668 0.090426 0.074398 0.221743 0.092066

-0.001857 0.002883 0.000011 0.014107 0.018573 0.000558 0.022671 0.027087 0.001132

0.269857 0.300074 0.151175 0.351361 0.551910 0.787756 1.266889 1.407221 38.77269

0.000711 0.002802 0.000012 0.007800 0.013041 0.000264 0.000171 0.012493 0.000243

0.006117 0.006801 0.000072 -0.017343 0.024008 0.000788 -0.018373 0.027122 0.000936

α1 = 1:1
λ1 = 0:1
α2 = 0:9
λ2 = 0:2
λ3 = 0:3

50

0.087247 0.189355 0.067184 0.388006 0.476704 0.656696 1.686055 1.736100 193.3874

0.010944 0.026164 0.001247 0.131134 0.184852 0.053799 0.057770 0.124714 0.025303

0.049117 0.165828 0.047906 -0.011756 0.306156 0.273852 0.019276 0.239581 0.241092

0.011833 0.033445 0.001913 0.082536 0.215583 0.070223 0.161446 0.250880 0.084662

0.010969 0.033325 0.001867 -0.149815 0.212298 0.056467 -0.165021 0.245053 0.068212

100

0.057342 0.128094 0.027325 0.332300 0.424207 0.583780 0.919810 0.977701 8.022046

0.005099 0.018084 0.000525 0.104450 0.160100 0.040268 0.030251 0.106644 0.017581

0.035447 0.107349 0.018491 -0.011164 0.227723 0.132404 0.008467 0.179967 0.311876

0.004282 0.023096 0.000883 0.087848 0.195858 0.057835 0.170213 0.248756 0.082494

0.003564 0.025512 0.001046 -0.151875 0.206708 0.053532 -0.158807 0.236292 0.064980

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

i

Sc
al

ed
 to

ta
l t

im
e o

n 
te

st

Figure 1: The scaled TTT transform plot for data sets of Table 2.
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Figure 2: The empirical CDF and some fitted models to data set of
Table 2.
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and p value, the competing risk model (2) which has been
fitted by the EM algorithm gives the best description of the
data. The MLE has also provided good results, but it is wor-
thy to denote that we applied the estimates of the EM algo-
rithm as the initial values in the likelihood maximization
process. All of the fitted models confirm a BT hazard rate
model which was firstly recognized by the TTT transform
plot. So it may be interesting to investigate the point which
maximizes the mean residual life and/or the median residual
life functions. These points are referred to burn-in points
and show the time at which the component is in its most

reliable condition. The left side of Figure 3 draws the mean
residual life function along with the median residual life
function related to the best fitted model. Also, the burn-in
points related to both functions have been determined in
the figure. The right side of Figure 2 draws the hazard rate
function of this model and shows a BT hazard rate model.

5. Conclusion

The competing risk model of the baseline distribution Wei-
bull plays a vital role in describing nonmonotone hazard rate

(163.6, 2258.228)

(213.5, 1823.894)
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Figure 3: (a) The mean residual life and the median residual life of the fitted model. (b) The hazard rate function of this fitted model.

Table 3: The results of fitting some suitable models to the data set.

The model The method Estimations K-S statistics K-S p value AIC

Model (2) EM

bα1 = 0:62125, bλ1 = 0:00011
0.05246 0.9936 -bα2 = 1:98826, bλ2 = 0:00021

bλ3 = 0:00012

Model (2) MLE

bα1 = 0:62445, bλ1 = 0:00011
0.05359 0.9917 1049.014bα2 = 1:99617, bλ2 = 0:00021

bλ3 = 0:00012

Model (20) MLE bα = 0:00023, bλ = 0:62891 0.09987 0.5539 1044.176

Table 2: Failure time of electrical appliances in terms of 1000 s cycles.

34 59 61 69 80 123 142 165 210 381

479 556 574 839 917 969 991 1064 1088 1091

1270 1275 1355 1397 1477 1578 1649 1702 1893 1932

2161 2292 2326 2337 2628 2785 2811 2886 2993 3122

3715 3790 3857 3912 4100 4106 4116 4315 4510 4584

5299 5583 6065 9701
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models. One drawback of this model is that it has large num-
ber of the parameters which causes the estimation problem
harder. Some authors suggested reduced versions to over-
come this problem. But, there are many examples showing
that the reduced model may not be proper. So, we imple-
mented the EM algorithm for estimating the parameters.
The simulation results confirm that this algorithm is better
than MLE and LSE. As future works, such EM algorithm
may be constructed for similar competing risk models or
mixture models, for example, the gamma competing risk
model with the following reliability function may be a good
candidate:

R xð Þ = 1
Γ α1ð ÞΓ α2ð ÞΓ α1, λ1xð ÞΓ α2, λ2xð Þ, x ≥ 0, ð25Þ

in which Γðα, tÞ = Ð∞t yα−1e−ydy is the upper incomplete
gamma function and α1 > 0, λ1 > 0, α2 > 0, and λ2 > 0.
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