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The seahorse relies on the undulatory motion of the dorsal fin to generate thrust, which makes it possess quite high
maneuverability and efficiency, and due to its low volume of the dorsal fin, it is conducive to the study of miniaturization of
the driving mechanism. This paper carried out a study on the undulatory motion mechanism of the seahorse’s dorsal fin and
proposed a dynamic model of the interaction between the seahorse’s dorsal fin and seawater based on the hydrodynamic
properties of seawater and the theory of fluid-structure coupling. A simulation model was established using the Fluent
software, and the 3D fluid dynamic mesh was used to study the undulatory motion mechanism of the seahorse’s dorsal fin.
The effect of the swing frequency, amplitude, and wavelength of the seahorse’s dorsal fin on its propulsion performance was
studied. On this basis, an optimized design method was used to design a bionic seahorse’s dorsal fin undulatory motion
mechanism. The paper has important guiding significance for the research and miniaturization of new underwater vehicles.

1. Introduction

With the increasing demand for natural resources in mod-
ern society, the speed of exploitation of terrestrial resources
is difficult to meet people’s needs for material life. The ocean,
which accounts for 71% of the entire surface of the earth, has
become a treasure trove of resources for all countries. There
are not only abundant fishery resources and mineral
resources but also sufficient energy resources, such as large
oil fields and combustible ice. Whether it is economic or mil-
itary, the treasure of the ocean is attractive enough, and the
rapid development of underwater vehicles will become inev-
itable. The seahorse relies on the undulatory motion of the
dorsal fin to generate thrust, which makes it possess quite
high maneuverability and efficiency, and due to its low vol-
ume of the dorsal fin, it is conducive to the study of minia-
turization of the driving mechanism. This article has
carried out research on the undulatory motion mechanism
of the seahorse’s dorsal fin.

The current research on the seahorse mainly focuses on
the following aspects: some focus on the distribution and

breeding of seahorse populations in global seas [1–3]; some
focus on the evolution of the seahorse, as well as basic bio-
logical characteristics and living habits [4, 5]; others focus
on the kinematics and dynamics of the seahorse’s dorsal
and caudal fins [6–10]. In addition, a high-speed camera sys-
tem is used to study the undulatory motion of the seahorse’s
dorsal fin [11]; and also, some focus on the study of the
physiological structure and the mechanical properties of
the muscle of the seahorse’s dorsal fin [12].

So far, few studies have been conducted on the undula-
tory motion mechanism of the seahorse’s dorsal fin. The rea-
son is mainly due to the uncertainty of living seahorse’s
movement, which leads to considerable difficulties in the
setup of the experimental device, and this uncontrollable
movement will also make it difficult for high-speed cameras
to obtain sufficient illumination and focus. In addition, dif-
ferences between seahorse’s species, between different gen-
ders, and between different individuals will hinder
systematic and reproducible research. There are so many
difficulties in living animal experiments, so many scholars
usually manufacture bionic prototypes for mechanism
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research. This method can solve the above-mentioned prob-
lems, but the prototype dorsal fin is difficult to achieve the
swing amplitude and frequency like a living seahorse, and
the difficulty in manufacturing and control causes the exper-
imental results to be inaccurate. In addition to physical
experiments, simulation can also be used to study the mech-
anism of seahorse’s movement. However, due to insufficient
computer computing power and other reasons, early simula-
tions were mainly two-dimensional plane simulations,
which were difficult to directly explore the movement mech-
anism. Nowadays, the computing power is greatly improved.
Compared with physical experiments, fluid-structure cou-
pling simulation can improve the efficiency of experiments
and reduce the cost of making prototypes. At the same time,
it can reduce the impact of the uncontrollable motion of the
living seahorse on the experiment, and it is beneficial to the
systematic and repeatable research [13].

Based on the theory of fluid-structure interaction, this
paper uses Fluent software to construct a dynamic model
of the interaction between the seahorse dorsal fin and seawa-
ter. The influence of the different swing frequency, wave-
length, and amplitude of the dorsal fin on the undulatory

motion of the seahorse’s dorsal fin was analyzed, which pro-
vide important support for the research on the undulatory
motion mechanism of the seahorse’s dorsal fin. On this
basis, an optimal design method was used to design a
seahorse-like dorsal fin wave motion mechanism, which
has important guiding significance for the development of
new underwater vehicle research and the miniaturization
of the vehicle.

2. Materials and Methods

2.1. Physical Model. The seahorse’s dorsal fin is composed of
fin rays and fin membrane. The length of adult seahorse’s
dorsal fin is generally between 3 and 25mm, and the number
of fin rays is between 10 and 30. Some types of seahorse are
shown in Figure 1 [14], and the number of fins and dorsal
fin length of some types of seahorse are shown in Table 1.

The common perpendicular of the fins is defined as the z
-axis, and this direction is called the chord direction. The y
-axis is perpendicular to the z-axis and straight down, and
this direction is called the span direction. Finally, according
to the right-hand spiral, determine the x-axis direction. The
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Figure 1: Some types of seahorse’s samples.
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coordinate system is shown in Figure 2. Points on the dorsal
fin of the seahorse approximately rotate around the z-axis.
For the real seahorse’s dorsal fin swinging, its swing ampli-
tude should change with the z-axis position. In order to sim-
plify the model, it is considered that the swing amplitude
does not change with the z-axis position.

The kinematics equation of the dorsal fin is

r ∈ 0, l½ �,
z ∈ 0, L½ �,

θ = π

2 + A sin 2πf t + 2πz
λ

� �
,

x = r cos θð Þ,
y = r sin θð Þ,

ð1Þ

where l is the fin length, L is the total length of the dorsal
fin, A is the swing amplitude, f is the swing frequency, λ is
the swing wavelength, and t is time.

First, calculate the coordinates of a large number of
points on the dorsal fin in excel. Then, import them to Solid-
works to generate a point cloud, as shown in Figure 3(a).
Through surface treatment, the physical model of the dorsal
fin is obtained as shown in Figure 3(b).

2.2. Fluid-Structure Coupling Dynamics Modelling. In order
to obtain the dynamic model of the seahorse’s dorsal fin,
the dynamic equation of the seahorse’s dorsal fin needs to
be established first. First, establish two coordinate systems,
one of which is fixedly connected to the seahorse’s dorsal
fin and is called the coordinate system O′. And the other
is an inertial coordinate system which is called the coordi-
nate system O. The two coordinate systems coincide at the
initial moment.

The position of the origin of the coordinate system O′ is
given by:

a = a0+
ð
vxdt,

b = b0+
ð
vydt,

c = c0+
ð
vzdt,

ð2Þ

where a, b, c is the position of the origin of the coordi-
nate system O′ in the coordinate system O. a0, b0, c0 is the
initial position of the origin of the coordinate system O′ in
the coordinate system O. vx , vy , vz is the speed of origin of

the coordinate system O′ along the x-, y-, and z-axes in
the coordinate system O.

Table 1: The number of fins and dorsal fin length of some types of seahorse.

Species Amount of dorsal fins
Dorsal fin length

0~5 5~10 10~15 15~20 20~25
Big-belly seahorse 27–28 √
West African seahorse 17–18 √
Narrow-bellied seahorse 17–19 √
Barbour’s seahorse 16–22 √
Bargibanti’s seahorse 13–15 √
Réunion seahorse 16–18 √
Short-snouted seahorse 20–21 √
Giraffe seahorse 19–22 √
Knysna seahorse 16–18 √
Tiger tail seahorse 17–19 √
Crowned seahorse 14 √
Denise’s pygmy seahorse 14 √
Lined seahorse 18–19 √
Fisher’s seahorse 17–18 √
Sea pony 14–17 √

z

x

y

r

θ
0

Figure 2: Coordinate system.
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The relationship between Euler angle change rate and
angular velocity is given by:

α′

ϕ′

θ′

2
664

3
775 =

1 tan ϕ sin α tan ϕ cos α
0 cos α −sin α

0 sin α/cos ϕ cos α/cos ϕ

2
664

3
775 ⋅

ωx

ωy

ωz

2
664

3
775: ð3Þ

Then, we can get the Euler angle by:

α = α0+
ð
ωxdt+

ð
tan ϕ sin α ⋅ ωydt+

ð
tan ϕ cos α ⋅ ωzdt,

ϕ = ϕ0+
ð
cos α ⋅ ωydt−

ð
sin α ⋅ ωzdt,

θ = θ0+
ð sin α ⋅ ωy

cos ϕ dt+
ð cos α ⋅ ωz

cos ϕ dt,

ð4Þ

where α, ϕ, θ is the Euler angle of the coordinate system
O′. α0, ϕ0, θ0 is the initial Euler angle of the coordinate sys-
tem O′. ωx, ωy, ωz is the angular velocity of the coordinate

system O′.
The speed in formula (2) is obtained by:

v! = v!0+
ð
F
!

m
dt+

ð
M
!

Ic
× r!cdt ð5Þ

where v!0 is the initial velocity of the origin of the coor-

dinate system O′ in the coordinate system O. F
!
is the resul-

tant external force on the dorsal fin. m is the total mass of

the dorsal fin. M
!

is the resultant moment of the dorsal fin.
Ic is the moment of inertia with the center of rotation as
the axis of rotation. r!c is the distance between the origin
of the coordinate system O′ and the center of mass.

The angular velocity in formula (4) is solved by

ω
! = ω

!
0+

ð
M
!

Ic
dt, ð6Þ

where ω
!
0 is the initial angular velocity of the origin of

the coordinate system O′.
The position of any point on the dorsal fin in the coordi-

nate system O is given by:

r! =H tð Þ ∗ r!0 tð Þ, ð7Þ

where HðtÞ is the coordinate transformation matrix. r!0
ðtÞ is the position of any point on the dorsal fin in the coor-
dinate system O′.

In order to obtain the required force parameter in the
dynamic equation, the N-S (Navier-Stokes) equation under
turbulent flow is used to solve it. For incompressible fluids,
the N-S equation turns to:

f x −
1
ρ

∂p
∂x

+ v∇2vx =
dvx
dt

,

f y −
1
ρ

∂p
∂y

+ v∇2vy =
dvy
dt

,

f z −
1
ρ

∂p
∂z

+ v∇2vz =
dvz
dt

,

ð8Þ

where f x, f y , and f z are the mass force components of
unit mass fluid in x, y, and z directions. vx, vy , and vz are
the velocity components of the fluid in the x, y, and z direc-
tions. p is relative pressure. v is the kinematic viscosity of the
fluid.

The continuity equation for viscous fluid is given by:

∇·ν = 0: ð9Þ

There are three existing turbulence numerical simulation
methods: Direct Numerical Simulation (DNS), Reynolds
Average Navier-Stokes(RANS), and Large Eddy Simulation
(LES). RANS is the application of statistical theory of turbu-
lence, which is the simulation method commonly used in
engineering. Usually based on Boussinesq’s eddy viscosity
hypothesis, the zero equation, one equation, or two equa-
tions are introduced to close the equation. The zero-
equation model has a common shortcoming, that is, the tur-
bulence viscosity coefficient only depends on the local flow

(a) (b)

Figure 3: (a) Point cloud import to Solidworks. (b) Generated physical model of the dorsal fin.
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parameters, and has nothing to do with the flow elsewhere,
which is inconsistent with experimental observations. On
this basis, a one-equation model and two-equation model
were developed. Among the two-equation model, the SST
model has certain accuracy and consumes limited comput-
ing resources and has higher calculation accuracy for near-
wall surfaces compared to the other two-equation models.
Therefore, the SST model is used in this project.

2.3. Simulation Model. Use the grid processing software
ICEM to mesh the computing space. The area near the fin
surface needs to be focused, so the density of mesh nodes
near the fin surface increases. The height of the first cell per-
pendicular to the body surface is 0.05mm. This height is
chosen to make the y + of most of the cells in contact with
the body surface fall within the effective range of the stan-
dard wall function. At the same time, considering the calcu-
lation speed, take the outer division step of the model as
0.1mm, and the model is shown in Figure 4.

Import the ICEM file into Fluent, and set the seawater
parameters according to the seahorse’s living environment,
and then, you can simulate the undulatory motion process
of the seahorse’s dorsal fin under different conditions. Set
the model boundary parameters as shown in Table 2, and
the Fluent simulation preset parameters as shown in Table 3.

The undulatory motion of the seahorse’s dorsal fin is
controlled by using Fluent UDF. In the numerical calcula-
tion process, the instantaneous force acting on the dorsal
fin is obtained by integrating the fin surface pressure and
shear stress.

3. Results and Discussion

3.1. Simulation Process. Import the Fluent calculation results
into CFD POST for postprocessing, and then, we can get the
flow field distribution at any time. Take 1Hz frequency,
200mm wavelength, and π/5 swing amplitude for qualitative
explanation. The pressure distribution on the surface of the
dorsal fin in 0.25 s, 0.5 s, 0.75 s, and 1 s is shown in Figure 5.

It can be clearly seen from Figure 5 that one side of the
surface of the dorsal fin that pushes the water flow is a
high-pressure area, and the other side is a low-pressure area.

Take a section as shown in Figure 6 to obtain the flow
field pressure distribution of the section, as shown in
Figure 7.

It can be seen more clearly from Figure 7 that one side of
the fin along the wave propagation direction is a high-

pressure area, and the other side is a low-pressure area.
The pressure difference between the two sides results in the
generation of forces in the x and z directions. Since the dor-
sal fin of this example is composed of two complete sine
waves, the forces generated in the x direction cancel each
other out. Take another section as shown in Figure 8 to
obtain the flow field pressure distribution of the section, as
shown in Figure 9.

It can be seen from Figure 9 that when the dorsal fin ray
swings, due to the pressure difference between the upper and
lower fins, a force in the negative direction of the y-axis is
generated.

3.2. The Effect of Dorsal Fin Swing Frequency on Propulsion.
Use Fluent to simulate the five swing frequencies of 1Hz,
10Hz, 35Hz, 50Hz, and 100Hz. The wavelengths are all
200mm, and the swing amplitudes are all π/5. Record the
force of the dorsal fin in x, y, and z directions, respectively,
and perform curve fitting in matlab. Since the force scatter
diagram has not stabilized in the first few periods, the third

Figure 4: Meshing diagram in ICEM.

Table 2: Model boundary parameters.

Boundary name Boundary type

Above surface Wall

Below surface Wall

Left surface Wall

Right surface Wall

Front surface Wall

Behind surface Wall

Inlet Velocity-inlet

Outlet Pressure-outlet

Table 3: Fluent simulation preset parameters.

Parameter Prevalue

Solver Pressure-based

Time Transient

Turbulence model SST

Pressure-velocity coupling PISO

Transient formulation First-order implicit

Other term spatial discretization First-order upwind

Time step size 0.001 s/0.0001 s/0.00003 s

Number of time steps 4000
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Figure 5: Surface pressure distribution on the dorsal fin.

Figure 6: Section position.

Pressure
contour 2

2.00e+01
1.632e+01
1.263e+01
8.947e+00
5.263e+00
1.579e+00
–2.105e+00
–5.789e+00
–9.474e+00
–1.316e+01
–1.684e+01
–2.053e+01
–2.421e+01
–2.789e+01
–3.158e+01
–3.526e+01
–3.895e+01
–4.263e+01
–4.632e+01
–5.000e+01

(Pa)

Time = 0.25 (s)

Time = 0.75 (s)

Time = 0.50 (s)

Time = 1.00 (s)

Wave direction

Wave direction

Wave direction

Wave direction

Figure 7: Pressure distribution diagram of cross-sectional flow field.
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and fourth period scatter diagrams are selected for fitting.
Since the minimum frequency of 1Hz and the maximum
frequency of 100Hz are too far apart, the abscissa is set to
time multiplied by the frequency of the corresponding work-
ing condition, in order to show the difference of different
working conditions more clearly and intuitively.

By using a custom function f ðxÞ = a sin ð2πbx + cÞ + d to
curve-fit the force data of the dorsal fin at different swing fre-
quencies in the x direction, the following results are obtained.

It can be clearly seen from Figure 10(a) that as the fre-
quency increases, the average force d and the fluctuation
amplitude a in the x direction both increase. It can be seen
from Table 4 that the approximate sinusoidal frequency of
the force in the x direction is basically the same as the swing

frequency of the dorsal fin, and the phase is also basically the
same. From Figure 10(b), the fluctuation amplitude a and
frequency f can be better fitted with a quadratic function,
and the relationship between the amplitude and frequency
of the force fluctuation in the x direction of the dorsal fin
can be obtained by:

Fx amplitude = −0:02467 × f + 8:105ð Þ2 + 3:93: ð10Þ

However, in Figure 10(c), the average force d does not
change much after 35Hz.

By using a custom function f ðxÞ = a sin ð2πbx + cÞ + d
to curve-fit the force data of the dorsal fin at different swing

Figure 8: Section position.
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Figure 9: Cross-sectional flow field pressure distribution.
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frequencies in the y direction, the following results are
obtained.

It can be clearly seen from Figure 11(a) that as the fre-
quency increases, the average force d and the fluctuation
amplitude a in the y direction both increase significantly. It
can be seen from Table 5 that the approximate sinusoidal

frequency of the force in the y direction is twice the swing
frequency of the dorsal fin, and the phase difference is
approximately π/2. From Figure 11(b), the amplitude of
fluctuation a and frequency f can be better fitted with a qua-
dratic function, and the relationship between the amplitude
of the force fluctuation in the y direction of the dorsal fin
and the frequency can be obtained by:

Fy amplitude = −0:02735 × f + 0:5421ð Þ2 + 0:2775: ð11Þ

From Figure 11(c), the average force d and frequency f
can also be better fitted with a quadratic function, and the
relationship between the average force in the y direction of
the dorsal fin and the frequency can be obtained by:

Fy average = −0:2353 × f − 0:1594ð Þ2 − 0:3479 ð12Þ

Fy average = −0:2353 × f − 0:1594ð Þ2 − 0:3479 ð13Þ

Table 4: x-direction force parameter values of the dorsal fin at
different frequencies.

Parameter
a b c d

Frequency

1Hz -0.0274 1.02 -0.1266 -0.0016

10Hz -3.038 10.42 -0.2721 -0.1448

35Hz -36.51 36.16 -0.0187 -5.132

50Hz -84.58 51.59 -0.1224 -4.175

100Hz -283.7 104.9 -0.3844 -6.922
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Figure 10: (a) x-direction force on the dorsal fin at different frequencies. (b) The relationship between amplitude of force and frequency. (c)
The relationship between average value of force and frequency.
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By using a custom function f ðxÞ = a sin ð2πbx + cÞ + d
to curve-fit the force data of the dorsal fin at different swing
frequencies in the z direction, the following results are
obtained.

It can be clearly seen from Figure 12(a) that as the fre-
quency increases, the average force d and the fluctuation
amplitude a in the z direction both increase significantly. It
can be seen from Table 6 that the approximate sinusoidal
frequency of the force in the z direction is twice the swing
frequency of the dorsal fin, and the phase is basically the

same. From Figure 12(b), the fluctuation amplitude a and
frequency f can be better fitted with a quadratic function,
and the relationship between the amplitude of the force fluc-
tuation in the z direction of the dorsal fin and the frequency
can be obtained by

Fz amplitude = −0:05819 × f + 0:1248ð Þ2 + 0:07337: ð14Þ

From Figure 12(c), the mean force d and frequency f can
also be better fitted with a quadratic function, and the rela-
tionship between the mean force in the z direction of the
dorsal fin and the frequency can be obtained by:

Fz average = −0:4687 × f + 0:01611ð Þ2 + 0:386 ð15Þ

In summary, the average force and fluctuation amplitude
in each direction increase with the increase of frequency, and
the average force and fluctuation amplitude in the y and z
directions have a quadratic relationship with frequency.
The amplitude of the force fluctuation in the x direction also
has a quadratic relationship with the frequency, but the
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Figure 11: (a) y-direction force on the dorsal fin at different frequencies. (b) The relationship between amplitude of force and frequency. (c)
The relationship between average value of force and frequency.

Table 5: y-direction force parameter values of the dorsal fin at
different frequencies.

Parameter
a b c d

Frequency

1Hz -0.027 2.003 1.714 -0.2349

10Hz -2.769 20.13 1.600 -23.59

35Hz -33.06 73.5 1.919 -285.7

50Hz -70.69 100.5 1.667 -585

100Hz -276.1 201.3 1.612 -2346

9Applied Bionics and Biomechanics



average value of the force in the x direction does not change
much after 35Hz. In reference [15], the authors presented an
experimental investigation of flexible panels actuated with
heave oscillations at their leading edge. Results were pre-
sented from kinematic video analysis, particle image veloci-
metry, and direct force measurements. They draw the
conclusion “The magnitudes of both signals (net thrust
and power) increase with heaving frequency, as expected.”
And they gave the net thrust and power curves of different
frequencies as Figure 13. It can be seen that as the frequency

increases, the net thrust gradually increases, and it becomes
an approximate sine function in the swing period, which
verifies the correctness of the simulation in this study.

3.3. The Influence of the Swing Wavelength of the Dorsal Fin
on the Propulsion Force. Since the total length of the dorsal
fin is 400mm, in order to minimize the force fluctuations
in the x direction, an integer number of traveling waves
should be selected for the entire dorsal fin. Therefore, Fluent
is used to simulate the three swing frequencies of 400mm,
200mm, and 133mm, respectively. The frequencies are all
10Hz, and the swing amplitudes are allπ/5. Record the force
of the dorsal fin in x, y, and z directions, respectively, and
perform curve fitting in matlab. Since the force scatter dia-
gram has not stabilized in the first few periods, the third
and fourth period scatter diagrams are selected for fitting.

By using a custom function f ðxÞ = a sin ð2πbx + cÞ + d
to curve-fit the force data of the dorsal fin at different swing
wavelengths in the x direction, the following results are
obtained.

It can be clearly seen from Figure 14 and Table 7 that as
the wavelength increases, the average force d in the x
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Figure 12: (a) z-direction force on the dorsal fin at different frequencies. (b) The relationship between amplitude of force and frequency. (c)
The relationship between average value of force and frequency.

Table 6: z-direction force parameter values of the dorsal fin at
different frequencies.

Parameter
a b c d

Frequency

1Hz -0.0594 2.004 -0.0411 -0.4454

10Hz -5.995 19.99 0.1282 -46.41

35Hz -71.04 73.5 0.0686 -573.4

50Hz -146.7 100 0.1183 -1173

100Hz -583.2 200.4 0.0136 -4688

10 Applied Bionics and Biomechanics



direction increases. When the swing wavelength is 400mm,
reducing the wavelength can significantly suppress the fluc-
tuation amplitude a of the force in the x direction. But after
the wavelength of 200mm, the influence of decreasing the

wavelength on the amplitude a of the force fluctuation in
the x direction is greatly reduced. The approximate sinusoi-
dal frequency of the force in the x direction is basically the
same as the swing frequency of the dorsal fin, and the phase
changes with wavelength.

By using a custom function f ðxÞ = a sin ð2πbx + cÞ + d
to curve-fit the force data of the dorsal fin at different swing
wavelengths in the y direction, the following results are
obtained.

It can be seen from Figure 15 and Table 8 that the aver-
age force d in the y direction increases significantly with the
increase of the swing wavelength, but the fluctuation ampli-
tude a hardly changes.

By using a custom function f ðxÞ = a sin ð2πbx + cÞ + d
to curve-fit the force data of the dorsal fin at different swing
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Time (s)

0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40

–30

–20

–10

0

10

20

30

40

Fo
rc

e i
n 

x-
di

re
ct

io
n 

(N
)

400mm
200mm
133mm

Wavelength

Figure 14: x-direction force on the dorsal fin at different wavelengths.

Table 7: x-direction force parameter values of the dorsal fin at
different wavelengths.

Parameter
a b c d

Wavelength

133mm -3.637 10.05 0.3407 -0.0742

200mm -3.038 10.42 -0.2721 -0.1448

400mm -17.4 10.03 -2.1592 -0.7686
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wavelengths in the z direction, the following results are
obtained.

It can be seen from Figure 16 and Table 9 that the mean
value d of the force in the z direction increases significantly
with the increase of the swing wavelength, but the fluctua-
tion amplitude a hardly changes.

Based on the analysis of the force in the above three
directions, it can be seen that when the wavelength is
between 400mm and 200mm, as the wavelength decreases,
the x direction fluctuation of the dorsal fin is significantly
suppressed while below 200mm, the impact is small. At
the same time, as the wavelength increases, the mean value
of the force in the y and z directions increases significantly,
but the fluctuation range is almost unchanged.

3.4. The Influence of the Swing Amplitude of the Dorsal Fin
on the Propulsion Force. Use Fluent to simulate the three
swing amplitudes, the frequency is 10Hz, and the wave-
length is 200mm. Record the force of the dorsal fin in x, y,

and z directions, respectively, and perform curve fitting in
matlab. Since the force scatter diagram has not stabilized
in the first few periods, the third and fourth period scatter
diagrams are selected for fitting.

By using a custom function f ðxÞ = a sin ð2πbx + cÞ + d
to curve-fit the force data of the dorsal fin at different swing
amplitudes in the x direction, the following results are
obtained.

From Figure 17 and Table 10, it can be seen that the
swing amplitude has little effect on the force in the x direc-
tion. No matter how the swing amplitude changes, the aver-
age force d in the x direction fluctuates near the 0 line, and
the fluctuation amplitude a is relatively small. The approxi-
mate sinusoidal frequency of the force in the x direction is
basically the same as the swing frequency of the dorsal fin,
and the phase is also basically the same.

By using a custom function f ðxÞ = a sin ð2πbx + cÞ + d
to curve-fit the force data of the dorsal fin at different swing
amplitudes in the y direction, the following results are
obtained.

It can be seen from Figure 18 that as the swing amplitude
increases, the average force d and the fluctuation amplitude
a in the y direction both increase. It can be seen from
Table 11 that the approximate sinusoidal frequency of the
force in the y direction is twice the swing frequency of the
dorsal fin, and the phase difference isπ/2.

By using a custom function f ðxÞ = a sin ð2πbx + cÞ + d
to curve-fit the force data of the dorsal fin at different swing
amplitude in the z direction, the following results are
obtained.
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Figure 15: y-direction force on the dorsal fin at different wavelengths.

Table 8: y-direction force parameter values of the dorsal fin at
different wavelengths.

Parameter
a b c d

Wavelength

133mm -1.556 20.12 1.5236 -13.85

200mm -2.77 20.13 1.5946 -23.59

400mm -2.636 19.97 2.336 -50.11
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It can be seen from Figure 19 that as the swing amplitude
increases, the average force d in the z direction and the fluc-
tuation amplitude a both increase. It can be seen from
Table 12 that the approximate sinusoidal frequency of the
force in the z direction is twice the swing frequency of the
dorsal fin, and the phase is the same.

In summary, the average value of the force in each direc-
tion increases with the increase of the swing amplitude, but
the influence on the force in the x direction is negligible.
At the same time, the increase of the swing will cause the
fluctuation of the force to increase.

3.5. Design of Undulatory Motion Mechanism Imitating
Seahorse’s Dorsal Fin. In order to realize that adjacent fins
oscillate with a fixed phase difference, a crank-rocker mech-
anism driven by a crankshaft is designed, as shown in
Figure 20.

A crankshaft is composed of a left part, a right part, and
a plurality of middle parts, as shown in Figure 21. The left
part has two protruding ends, the left of which is in the cen-

ter while the right one with eccentricity. There is a shaft flat
position on the right-side extension to match the middle
part. An eccentric hole on the left side of the middle part
is matched with the left part, and an eccentric shaft on the
right side is matched with the next middle part. There is also
a flat shaft position, and there is a 45° phase difference
between the left hole and the right shaft, which makes adja-
cent fins produce a fixed phase difference. The right part also
has an eccentric hole to fit with the middle part, and a con-
centric shaft on the right is connected to the motor. When
making crankshaft parts, consider hollowing out the middle
disc to reduce the moment of inertia.

The comprehensive problem of the function mechanism
means that the functional relationship between the input
and output angles corresponding to the rocker and the crank
is required to be as close as possible to the given
functionψ = f ðφÞ. The comprehensive theory of the mecha-
nism proves that the kinematics of the crank-rocker mecha-
nism has nothing to do with the actual length of the rod, but
only with the shape of the mechanism, that is, the relative
length between the rods. Let us set the relative length of
the crankshaft as l1 = 1. The relative length of the connecting
rod is l2. The relative length of the pendulum is l3. The rela-
tive length of the frame is l4. And the initial angle of the
crankshaft and the swing lever is φ0, ψ0, so there are 5 vari-
ables. Therefore, at most five sets of corresponding angular
positions can be accurately met. If the organization is
required to best approximate the expected function in more
positions, the optimal synthesis method can be used. In the
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Figure 16: z-direction force on the dorsal fin at different wavelengths.

Table 9: z-direction force parameter values of the dorsal fin at
different wavelengths.

Parameter
a b c d

Wavelength

133mm -4.735 20 0.07619 -27.15

200mm -5.995 19.99 0.1235 -46.41

400mm -4.671 19.93 -0.1782 -69.39

13Applied Bionics and Biomechanics



optimization design of the kinematics of the planar four-bar
linkage, the objective function is generally established
according to the kinematics parameters of the mechanism.
For example, the movement realized by a four-bar linkage
mechanism is an input-output angular function derived
from the geometric relationship of the mechanism’s move-
ment, and it is required to have the smallest deviation from
a given function within a certain range of motion. In the
optimization design of linkage mechanism dynamics, it is
relatively simple to use the pressure angle and transmission
angle in the mechanism as important indicators for the
motion analysis and dynamic analysis of the mechanism.
In order to obtain good transmission performance and
increase the reliability of the mechanism, it is necessary to
select the best mechanism dynamics parameters so that the
maximum pressure angle is the smallest or the minimum
transmission angle is the largest during the movement of
the mechanism. In this project, the crank angle is required
to be at any position in a circle, that is,

whenφ = φ0 ~ ðφ0 + 2πÞ, the output angle of the rocker is
as close to the function ψ = ψ0 + π/5ðsin ðφ − φ0 − π/2Þ + 1Þ
as possible. Assuming that the initial position angles of the
crank and the joystick φ0, ψ0 correspond to the input and
output angles when the joystick is in the right extreme posi-
tion. In this way, φ0, ψ0 is no longer an independent vari-
able, so there are three relative lever length variables left.
Since the three-dimensional search is more complicated
and time-consuming, it is assumed that the relative length
of the rack is l4 = 15. Take the relative length of the connect-
ing rod l2 and the relative length of the rocker l3 as design
variables.

The crank-rocker mechanism is in accordance with the
corresponding relationship between the input and output
angles between the driving crank and the driven rocker.
The independent parameters include the relative length of
the rod l2/l1, l3/l1, and l4/l1 and the initial angular positions
of the crank and the rocker φ0 and ψ0. As shown in
Figure 22, assume that the acute angle between the crank
and the rocker and the frame when the pendulum reaches
the right limit position is taken as the initial position angle
φ0 andψ0. Due to the geometric relationship of the right
limit position, the crank and the connecting rod are collin-
ear, so the two initial angles can be determined according
to the geometric relationship of the initial position.

ψ0 = a cos l1 + l2ð Þ2 − l23 − l24
2 l1 + l2ð Þl4

ð16Þ
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Figure 17: x-direction force on the dorsal fin at different swing amplitudes.

Table 10: x-direction force parameter values of the dorsal fin at
different swing amplitudes.

Parameter
a b c d

Amplitude

π/12 -3.552 9.885 0.3358 -0.01746

π/6 -4.124 9.983 0.4201 -0.1871

π/6 -3.038 10.42 -0.2722 -0.1448
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ψ0 = a cos l1 + l2ð Þ2 − l23 − l24
2l3l4

ð17Þ

Therefore, the two initial angles can be expressed by
other rod lengths and are no longer independent parameters.
According to the above assumption, the crank length is the
unit length l1 = 1. Frame length is l4 = 15. Therefore, the
length of the connecting rod l2 and the length of the rocker

l3 are selected as design variables X =
l2

l3

" #
=

x1

x2

" #
. This

turns into a two-dimensional optimization design problem.
Taking the least square deviation of the output angle of

the mechanism as the design goal, the given function and
the actual function are discretized, and the discrete deviation
function is obtained. The sum of the discrete deviation func-
tions is used as the objective function, as shown in

min f Xð Þ = 〠
∞

i=0
ψi − ψsið Þ2, ð18Þ

where ψi is the expected output angle and ψsi is the
actual output angle.

According to the given functional relationship and the
corresponding relationship between the two initial angles,
the output angle expression can be obtained by

ψi = ψ0 +
π

5 sin φ − φ0 −
π

2
� �

+ 1
� �

, ð19Þ

φi = φ0 +
π

2 × i
s
i = 0, 1, 2,⋯,sð Þ ð20Þ

where s is the uniform number of discrete points of the
crank angle φ in the interval φ0 ~ ðφ0 + 2πÞ and i is the serial
number of each discrete point. The actual output angle
expression can be determined according to the geometric
relationship of the movement of the mechanism, as shown
in Figure 23.

ψsi =
π − αi − βi,
π − αi + βi,

(
0 < φi ⩽ πð Þ,
π < φi ⩽ 2πð Þ:

ð21Þ

Among them, in ΔBDC and ΔABD, applying the law of
cosines, we can get
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Figure 18: y-direction force on the dorsal fin at different swing amplitudes.

Table 11: y-direction force parameter values of the dorsal fin at
different swing amplitude.

Parameter
a b c d

Amplitude

π/12 -0.5752 20.1 1.7978 -6.333

π/6 -2.142 20.04 1.9166 -20.42

π/5 -2.77 20.13 1.5946 -23.59
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αi = acos r
2
i + x22 − x21
2rix2

,

βi = acos r
2
i + l24 − l21
2l4ri

,

ri =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l24 + l21 − 2l1l4 cos φi

q
:

8>>>>>>>><
>>>>>>>>:

ð22Þ

In order to make the transmission performance of the
mechanism better, the minimum transmission angle of the
mechanism γmin ≥ 45° and the maximum transmission angle
of the mechanism γmax ≤ 135°. When the crank and the
frame are collinear, the mechanism has the minimum or
maximum transmission angle, as shown in Figure 24. When
the mechanism is in these two positions, the law of cosines
can be used to obtain by:

cos γmin =
x21 + x22 − l4 − l1ð Þ2

2x1x2
⩽ cos 45°,

cos γmax =
x21 + x22 − l4 + l1ð Þ2

2x1x2
⩾ cos 135°:

8>>><
>>>:

ð23Þ
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Figure 19: z-direction force on the dorsal fin at different swing amplitude.

Table 12: z-direction force parameter values of the dorsal fin at
different swing amplitudes.

Parameter
a b c d

Amplitude

π/12 -1.442 19.99 0.1344 -9.263

π/6 -4.833 19.99 0.1575 -33.73

π/6 -5.995 19.99 0.1235 -46.41

Figure 20: Mechanism assembly drawing.
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After sorting, get the constraint equation:

g1 Xð Þ = x21 + x22 − 2 cos 45°x1x2 − 15 − 1ð Þ2 ⩽ 0,
g2 Xð Þ = −x21 − x22 + 2 cos 135°x1x2 − 15 + 1ð Þ2 ⩽ 0:

(

ð24Þ

According to the condition of the sum of the rod lengths
of the crank connecting rod (in the crank-rocker mecha-
nism, the crank is the shortest rod, and the sum of the length
of the shortest rod and the longest rod is not greater than the
sum of the lengths of the other two rods), the constraint con-
ditions are obtained after sorting out:

(a) (b)

(c)

Figure 21: Crankshaft components: (a) the left part; (b) the middle part; (c) the right part.

Φ
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ψ

l3
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l1

l2

Figure 22: Right limit position of the joystick.
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l2 ⩾ l1,
l3 ⩾ l1,
l2 + l3 ⩾ l1 + l4,
l3 + l4 ⩾ l1 + l2,
l2 + l4 ⩾ l1 + l3,

8>>>>>>>><
>>>>>>>>:

g3 Xð Þ = l1 − x1 ⩽ 0,
g4 Xð Þ = l1 − x2 ⩽ 0,

g5 Xð Þ = l4 + l1ð Þ − x1 − x2 ⩽ 0,
g6 Xð Þ = x1 − x2 − l4 − l1ð Þ ⩽ 0,
g7 Xð Þ = −x1 + x2 − l4 − l1ð Þ ⩽ 0:

ð25Þ

Draw the constrained planning area of the optimal
design problem, as shown in Figure 25. It can be seen from
the figure that the constraint condition of the sum of the
rod length of the crank is a nonfunctional constraint, and
the effective constraint is the constraint condition of the
mechanism transmission angle g1ðXÞ ⩽ 0 and g2ðXÞ ⩽ 0.
The area enclosed by them is the feasible region of the two
design parameters.

In summary, the mathematical model of the optimiza-
tion problem is

min f Xð Þ =min 〠
i=0

ψi − ψiið Þ2 X ∈D,

X =
l2

l3

" #
=

x1

x2

" #
,

g1 Xð Þ = x21 + x22 − 2 cos 45°x1x2 − l4 − l1ð Þ2 ⩽ 0,
g2 Xð Þ = −x21 − x22 + 2 cos 135°x1x2 − l4 + l1ð Þ2 ⩽ 0:

8>>>>>>>>>><
>>>>>>>>>>:

ð26Þ

Using matlab to optimize the design, the results are as
follows:

Relative length of connecting rod l2/l1 = 14:7497.
Relative length of rocker l3/l1 = 1:7039.
Combined with the overall size of the mechanism, take

the length of the crank l1 = 8 and the length of the frame l4
= 120, and according to the matlab optimization design
results, the connecting rod length and the rocker length
can be obtained:

l3 = 14:7497 × 8 ≈ 118,
l4 = 1:7039 × 8 ≈ 13:63:

(
ð27Þ

The kinematics simulation of the crank and rocker
mechanism is performed, and the output angle function is
shown in Figure 26.
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Figure 23: Different ranges of crank input angle correspond to rocker output angle.
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Figure 24: Maximum and minimum transmission angle position
of the mechanism.
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Figure 26: Crank-rocker output angle simulation.
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Fitting result:

f xð Þ = 35:65 sin 2πx − 1:677ð Þ + 102:9: ð28Þ

It can be seen that the output angle function of the
mechanism fits well with the objective function.

4. Conclusions

In this paper, a theoretical model of the interaction between
the seahorse’s dorsal fin and seawater is firstly carried out,
and a fluid-structure coupling model suitable for this subject
is derived, and then, a simulation model of the seahorse’s
dorsal fin and seawater is established based on the fluid-
structure coupling theory and the physical properties of sea-
water. And refer to the Fluent database for parameter match-
ing. Taking a certain working condition as an example, the
interaction process between the seahorse’s dorsal fin and the
sea is analyzed, and the pressure distribution on the surface
of the seahorse’s dorsal fin and the flow field around it during
the undulatory motion of the seahorse’s dorsal fin is obtained
through data postprocessing. Then, using the controlled vari-
ablemethod, keeping other variables the same, the influence of
the swing frequency, wavelength, and amplitude of the sea-
horse’s dorsal fin on the instantaneous force and average force
in various directions of the seahorse’s dorsal fin during the
undulatory motion is studied, and the swing frequency, wave-
length, and amplitude of the seahorse’s dorsal fin are summa-
rized. For the influence of the instantaneous force and the
average force on the seahorse’s dorsal fin in various directions
during undulatory motion, finally, an optimal design method
is used to design a seahorse-like dorsal fin undulatory motion
mechanism, which has important guiding significance for the
development of new underwater vehicle research and the min-
iaturization of the vehicle.
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