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Surface electromyography- (sEMG-) based hand grasp force estimation plays an important role with a promising accuracy in a
laboratory environment, yet hardly clinically applicable because of physiological changes and other factors. One of the critical
factors is the muscle fatigue concomitant with daily activities which degrades the accuracy and reliability of force estimation
from sEMG signals. Conventional qualitative measurements of muscle fatigue contribute to an improved force estimation model
with limited progress. This paper proposes an easy-to-implement method to evaluate the muscle fatigue quantitatively and
demonstrates that the proposed metrics can have a substantial impact on improving the performance of hand grasp force
estimation. Specifically, the reduction in the maximal capacity to generate force is used as the metric of muscle fatigue in
combination with a back-propagation neural network (BPNN) is adopted to build a sEMG-hand grasp force estimation model.
Experiments are conducted in the three cases: (1) pooling training data from all muscle fatigue states with time-domain feature
only, (2) employing frequency domain feature for expression of muscle fatigue information based on case 1, and 3)
incorporating the quantitative metric of muscle fatigue value as an additional input for estimation model based on case 1. The
results show that the degree of muscle fatigue and task intensity can be easily distinguished, and the additional input of muscle
fatigue in BPNN greatly improves the performance of hand grasp force estimation, which is reflected by the 6.3797% increase in
R2 (coefficient of determination) value.

1. Introduction

Surface electromyography (sEMG) is the recording of myo-
electric signals of muscle fiber contraction captured by elec-
trodes attached on the surface skin. Due to this electrical
manifestation, sEMG has the ability to represent the muscle
activation level and contains rich information of muscle
force. This ability is widely applied in the accurate estimation
of human joint moment which holds significant importance
for robot control system design. Human hand grasp force
estimation is one of the compelling applications among all
of these implementations. The manipulability and dexterity
of prosthetic hands, human-assisting devices, and telerobots
are facilitated by grasp force estimation. Yamanoi et al. used
sEMG signals to determine hand posture and estimate grip

force simultaneously for a myoelectric hand [1]. Kim et al.
obtained grasp force through upper limb forearm sEMG to
control a teleoperation system in real-time [2]. Peternel
et al. proposed a muscle fatigue-based method for human-
robot collaboration, by which the robot’s physical behaviour
can be adapted online to human motor fatigue [3]. It should
be noticed that the effectiveness and robustness of these
applications are depended on the validation of the sEMG-
based force estimation which is highly affected by the proper-
ties of sEMG signals.

The relationship between sEMG signals and muscle force
is mostly extracted by either machine learning-based method
or model-based method. Machine learning methods, such as
artificial neural network [4] and support vector machines [5],
enable the direct mapping from sEMG signals to desired
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force estimation. The model-based method takes advantage
of the musculoskeletal dynamics and incorporates the
human knowledge of physiology and motor functionality
in an explicit way [6]. The disadvantages of the model-
based method are that a general musculoskeletal system
modeling for force estimation is still missing which is
attributed to the unknown properties, and the correspond-
ing parameters are inherently difficult to identify. Machine
learning-based methods mitigate the gap with a compro-
mised yet acceptable interpretability. Among all the
modalities, sEMG together with classic regression models
has been mostly investigated. Naeem et al. estimated joint
force from EMG signals based on a back-propagation neu-
ral network (BPNN) [7]. Yang et al. compared different
pattern regression methods to optimize the relationship
between sEMG signals and hand grasp force [8]. Zhang
et al. used linear discriminant analysis (LDA) to realize
pattern recognition and artificial neural networks (ANN)
to establish the relationship between sEMG signals and
fingertip force in each hand grasp modes [9].

Most current research is confined within the improve-
ment of accuracy and reliability for sEMG-based grasp force
estimation through a single optimisation of regression algo-
rithms in a laboratory environment instead of a clinical
scenario. And the practical factors in clinical settings such
as fatigue, sweating, and electrode shift are normally ignored
[10]. As one of the most critical factors, muscle fatigue influ-
ences the force estimation to a large extent in sEMG-based
applications [11]. In daily activities, muscle fatigue leads to
failure of force generation to a required value at a normal
muscle activation level [12]. When a muscle becomes
fatigued, the amplitude-related features of its sEMG signals
are notably affected [13]. A typical example is that the root
mean square (RMS) of sEMG increases when muscle fatigue
happens. In grasp force estimation, RMS is the main feature
adopted for EMG-force regression. As a result, the perfor-
mance of the pretrained force prediction model deteriorates,
which is attributed to the unstable RMS representation of
sEMG signals. It has been demonstrated that the variant of
amplitude-based representation of sEMG-like multiscale
RMS (MRMS) gets almost doubled under fatigue condition
in a laboratory environment [14]. It is reasonable to incorpo-
rate muscle fatigue in sEMG-based grasp force estimation
instead of solely depending on the plausible consistency of
sEMG signals.

Frequency domain-based method is mostly explored to
estimate muscle fatigue from sEMG signals by the analysis
of mean frequency (MNF) or median frequency (MDF)
[15]. A general conclusion summarises the decreasing shift
of MNF or MDF along with the increase of muscle fatigue
[15]. Xie et al. applied MNF derived via Hibert-Huang
transform to analyse fatigue sEMG signals [16]. Fernando
et al. used the ratio of MNF to average rectified value
(ARV) as the index of muscle fatigue and muscle fatigue
is detected when MNF/ARV falls below a predetermined
baseline [13]. Despite the promising results shown by the
transition between nonfatigue and fatigue status, the fre-
quency domain metrics exhibit without a determined
trend of shifting during singly-fatigue status [17]. An intu-

itive difficulty brought by this property is seen in the esti-
mation of muscle fatigue using solely frequency metric-
based sEMG signal representation. Thus, a more indicative
metric is desired to function robustly during the lasting
fatigue. The definition of fatigue as any reduction in the
maximal capacity to generate force [12] allows the adop-
tion of the loss of maximal voluntary contraction (MVC)
to estimate muscle fatigue, where the degree of muscle
fatigue is represented by the variant exerted force which
is relatively accurate to be measured by additional tangible
sensors.

Muscle fatigue has to be taken into account in order to
acquire accurate grasp force from sEMG signals. However,
so far nobody has been able to explain the relationship
between muscle fatigue and sEMG’s time-domain features.
Even the conclusions of some studies are completely oppo-
site. In this paper, we propose an algorithm to quantitatively
estimate the degree of muscle fatigue and evaluate the results
by three distinct methods. The substantial effect of muscle
fatigue on the performance of hand grasp force estimation
is preliminarily demonstrated with experiments on 10
healthy subjects. As the muscle fatigue detection and grasp
force estimation are improved, we believe that current
applications such as presented in [1–3] will be benefited from
our proposed method.

2. Forearm Muscle Fatigue Evaluation

Based on the fact that muscle force will decline steadily dur-
ing a sustained maximal contraction as shown in Figure 1, it
is straight to adopt MFL as the index for evaluation of muscle
fatigue. In this section, the definition of the proposed force-
based metric is given with an emphasis on the case of static
contraction for application.

2.1. Maximum Force Loss (MFL). The proposed method to
estimate muscle fatigue depends on the measurement of
maximal voluntary contraction, which is performed by exert-
ing maximum hand grasp force. To acquire reliable contrac-
tion measurement, an easy-to-implement protocol is
designed in this paper. At the beginning of a measurement
session, the maximum force value is exerted by the subjects
and recorded as MVCi. After repetition of predefined types
of static contraction, the force value is recorded for multiple
trials as MVCt. The maximum hand grasp force, as shown
in Figure 2, will decrease over contraction tasks and reflects
the remained muscle force capacity at the end of each trial.
The termination of a session is determined by the failure to
accommodate the exertion of required force which indicates
that the muscle is too fatigued to accomplish contraction
tasks. The required force value is recorded as MVCf. MFL is
finally defined as the following:

MFL =MVCi −MVCt , ð1Þ

whereMVCi andMVCt correspond to the initial and current
MVC force.

To eliminate individual differences, the ratio of the vari-
ant maximum hand grasp force to the initial value is adopted
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as the index of the degree of forearm muscle fatigue, defined
as

MFL = MVCi −MVCt

MVCi
: ð2Þ

2.2. Case Study of Static Contraction. The definition given in
the previous section indicates the importance of required
force in forearm muscle fatigue estimation. The greater the
required force becomes, the less contraction time to maintain
the required force level lasts and the muscle is easier to fall
into fatigue state. In a case study where subjects perform
static contraction tasks by maintaining the required hand
grasp force level as steadily as possible, it is necessary to

incorporate the influence of required force on muscle fatigue
and MFL can be further redefined as

MFL = MVCi −MVCt

MVCi −MVCf
, ð3Þ

whereMVCf corresponds to the MVC force in the exhausted
condition. The proposed muscle fatigue metric MFL can vary
from 0 to 1 where 0 indicates the nonfatigue condition and 1
indicates the exhausted condition during static contraction
tasks. Equation (3) is adopted together with the assumption
of static contraction to estimate muscle fatigue in the follow-
ing sections.

3. Hand Grasp Force Estimation

In this preliminary study, back-propagation neural network
(BPNN) is adopted to build sEMG based hand grasp force
estimation model.

3.1. Experimental Protocol. Ten subjects (seven males and
three females, mass 61:1 ± 3 kg, height 1:70 ± 0:03m, all
right-handed) have been recruited in the experiment study.
The subjects gave written informed consent before the exper-
iment, and the study was approved by the ethics committee
of Wuhan University of Technology. The experiment is con-
ducted with solely nondominant hands, i.e., the left hands, of
our recruited subjects, where muscles are more prone to
fatigue during the measurement session [18]. The subjects
are asked first to seat in a comfortable position with their
forearm rest on the table. The sleeve with sEMG electrodes
embedded is worn on the subject’s forearm with appropriate
fixation to avoid the electrode shifting. A hand-muscle devel-
oper is held by the subjects’ nondominant hand. A pressure
sensor is attached to the hand-muscle developer for the mea-
surement of grasp force. With the forearm muscle initially at
rest, the captured sEMG with an amplitude at 0 uV is secured
prior to the measurement session. Then, the subject is asked
to hold the hand-muscle developer in the nondominant
hand, with the chair height subsequently adjusted to form
an obtuse angle between the forearm equipped with sensor
and the upper arm (shown in Figure 3). The sEMG signals
are easily interfered by cable movements or the surface elec-
trodes relative movement caused by sleeve slipping ground
the forearm. Thus, the subject is required to maintain his
posture as much as possible throughout the session to reduce
these artefacts.

There are three sessions for one subject to perform:
named 50%, 60%, and 70% session. At the beginning of one
session, the subject is instructed by visual hints to conduct
a 5-second hand grasps at MVC by exerting maximum hand
grasp force with the hand-muscle developer, and the force is
recorded as MVCi. Then, a 10-minute rest is provided. After
the break, the subject is asked to perform a hand grasp with a
muscle contraction at x% MVCi (x = 50, 60, 70, according to
which session is performed) as steadily as possible for 10 sec-
onds. This grasp force is recorded asMVCf. Then, a 5-second
grasp at MVC is performed immediately, without a rest, and
the maximum hand grasp force is recorded as MVCt. After
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Figure 1: MVC changes during a sustained maximal contraction
[12].
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that, another loop of 10-second x%MVCi steady contraction
and 5-second MVC contraction is performed and repeated
multiple times continuously, without a break untilMVCt falls
below MVCf. Then, one session is finished and a 30 minutes
rest is given for the purpose of recovering from the muscle
fatigue and preparing for the next session. The subject is pro-
vided with visual hints throughout the experiments to ensure
their adaption to the force variance. The entire experimental
procedure of one session is shown in Figure 4.

3.2. Data Acquisition. In this study, three muscles closely
related to hand grasp are selected to record the sEMG sig-
nals, which are palmaris longus, flexor carpiulnaris, and
extensor digitorum. A 16-channel electrode-embedded
sleeve (ELONXI, UK) is used to cover the aforementioned
forearm muscles to collect the sEMG signals where pal-
maris longus, flexor carpiulnaris, and extensor digitorum
mainly correspond to 1-channel electrode, 3-channel elec-
trode, and 5-channel electrode, respectively, as shown in
Figure 5. The reference electrode is at the subject’s wrist.
Before wearing the electrode sleeve, the skin is cleaned
by alcohol, and a 10-minute-rest is given after the elec-
trode attachment to improve the contact of the electrode
with skin to reduce the resistance within [19]. sEMG sig-
nals are amplified by a factor of 5000 with linear range
20Hz to 500Hz and sampled at 1000Hz. The FingerTPS
system (Pressure Profile Systems, Inc. (PPS), USA), origi-
nally utilised for capturing the tactile force on the finger
pulp, is used to measure the hand grasp force in the
experiment. Since the finger pulp is not the optimum pres-
sure point during hand grasp, a highly sensitive capacitive-
based pressure sensor is fixed to the appointed position on
hand-muscle developer (shown in Figure 3). The sample
frequency is 100Hz controlled by the PC clock. The sEMG

signals and force measurements are captured and synchro-
nized simultaneously during the experiment.

3.3. Data Processing. The relation between sEMG and force
signals is extracted in an offline scheme. Two Sallen-Key fil-
ters are employed to band-pass filter raw sEMG signals at a
bandwidth between 20Hz and 500Hz. In addition, a notch
filter with central cut-off frequency at 50Hz (UK power line
frequency) is used to remove the power line interference.

The sEMG signals of each channel are segmented by the
overlapped windowing technique [20] with a 300ms window
and 100ms window shift for feature extraction. In this study,
RMS and MNF/ARV [21–23] are selected as sEMG features.
Except for sEMG signal processing, the mean value of hand
grasp force data is adopted in each analysis window.

3.4. Force Estimation Methods. BPNN is used to learn the
association between sEMG signals and hand grasp forces.
In order to evaluate the effect of muscle fatigue on hand grasp
force exertion, we propose the following three methods and
compare them with locally acquired experiment data.

Time-domain feature driving machine learning-based
method (TMLM, as shown in Figure 6): train the BPNN with
pooled training data from all muscle fatigue status together.
The inputs of BPNN are three muscles’ sEMG feature RMS,
forming the feature vector

RMSi×n½ �, ð4Þ

where i is the channel and n is the number of window shift.
And the output is the measured hand grasp force. All the data
acquired under three distinct hand grasp force levels are
formed as the training/testing data for the BPNN.

Combined feature driving machine learning-based
method (CMLM, as shown in Figure 7): train the BPNN with

Electrode

Pressure sensor

ELONXI hardware box

Subject’s non-dominant hand

Hand-muscle developer

16-channel electrode-embedded sleeve

Figure 3: Experimental setup.
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combination of time domain and frequency domain features.
MNF is often employed for the expression of muscle fatigue
information in sEMG-based force estimation. And Japanese
researchers further proposed MNF/ARV, which has achieved
good results in muscle fatigue detection [13]. So, a combined
feature vector is given as

RMSið Þn, MNFi/ARVið Þn
� �

R2 = 1 − ∑N
k=1 Fk − F∧kð Þ2

∑N
k=1 Fk − �Fk

� �2 ,
ð5Þ

where i is the channel and n is the number of window shift.
Fk denotes the actual hand grasp force, F̂k is the predicted
hand grasp force, �Fk is the average of actual hand grasp force,
and N is the number of testing data.

This method is identical with the above method in output
and selection of training/testing data.

Fatigue feature driving machine learning method
(FMLM, as shown in Figure 8): train the BPNN with
estimated muscle fatigue value as an additional attribute.
An additional input of the degree of muscle fatigue estimated
by using (3) in combination with the RMS features is
provided to the BPNN and expressed as

RMSi×n,MFLi×n½ �, ð6Þ

where i is the channel and n is the number of window shift.
The output and selection method of training/testing data
remain the same for all methods, as shown in the following
three figures.

All methods adopt the BPNN architecture for force esti-
mation, whose performance is dependent on the choice of
network structure, training data, and testing data. The net-
work structure is adjusted by setting different number of
nodes from 2 to 20 in the hidden layer with the optimal
results [24] provided by a three-layer BPNN. And a Log-
Sigmoid function is selected as the transfer function in the
network.

S xð Þ = 1
1 + e−x

, ð7Þ

where x is the input and e is the exponential function. More-
over, a four-fold cross validation is adopted to avoid random
classification of training data and test data from affecting the
prediction results, which helps ensure the reliability and
stability of the model.

Start

Y

N

5-second hand
grasp at MVC

Record MVCi

10 minutes
rest

MVCf = X %
MVCi

10-second
hand grasp at

MVCf

5-second hand
grasp at MVC

Record MVCt

MVCt > MVCf

30-minute rest
prepare for the next session

Figure 4: Diagram of the experimental procedure of one session.

Extensor digitorum (back) Palm of non-dominant hand

Flexor carpiulnaris (front) Palmaris longus (front)

Figure 5: Diagram of the experimental procedure.
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Figure 9: Continued.
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In this study, R2 is used to evaluate the estimation perfor-
mance of three methods, which can be expressed as

R2 = 1 − ∑N
i=1 Fi − F∧ið Þ2

∑N
i=1 Fi − �Fi

� �2 : ð8Þ

The R2 can be comprehended as the percentage of the
response variable variation that is explained by a linear
model [25] and ranges from 0 to 1. In general, the higher
the R2, the better the model fits the data.

T-tests were used to verify differences in TMLM, CMLM,
and FMLM between different conditions. Differences among
subjects are not considered in this paper, as muscle-level
dynamic variation is commonly existed. p < 0:05 is consid-
ered statistically significant for all tests.

4. Results and Discussion

In this paper, an algorithm to quantitatively estimate the
degree of muscle fatigue is introduced. And the effect of mus-
cle fatigue on hand grasp force estimation is evaluated by
conducting three distinct comparison methods. The experi-
mental results of one subject are shown in Figure 9. They
are sEMG signals, RMS, and MNF/ARV of three muscles in
different levels of static contraction tasks, actual hand grasp
force, maximum hand grasp force, and MFL of each sample
in different levels of static contraction tasks. These selected
features, seen in Figure 10, can basically reflect the force
and muscle fatigue information.
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Table 1: Gradient of MFL.

MVCf 50% MVCi 60% MVCi 70% MVCi

Gradient 0.0077 0.0108 0.0532
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4.1. Results of Muscle Fatigue Estimation. The experiments
last for 300 s, 240 s, and 50 s corresponding to 50% MVCi
(250N), 60% MVCi (300N), and 70% MVCi (350Nkg) in
static contraction tasks, respectively. Figure 10 shows the
estimation results of muscle fatigue by the proposed method.
Dot arrays of different colors represent the estimation results
at different force levels. Through linear fitting, it can be
directly seen that MFL grows linearly with the increase of
contraction time, which is in accordance with Vøllestad’s
assumption [12] of muscle fatigue’s variety law during a sus-
tained and steady contraction. In addition, the results show
that the gradient of time-varying MFL varies at different

levels of static contraction. The greater the required force
becomes in static contraction, the faster MFL rises, shown
in Table 1, which implies that the task intensity can also be
distinguished through the proposed metric. The feasibility
of the proposed method is recognized in static contraction
tasks to estimate muscle fatigue quantitatively.

4.2. Results of Hand Grasp Force Estimation. In order to
weaken effect of network structure, initial weights, and bias
values on the estimation performance, the neural network
is retrained ten times at different numbers of nodes (from 2
to 20) in the hidden layer.

Table 2: R2 (mean ± sd) of predictions in TMLM.

Number of nodes 2 3 4 5 6

R2(mean ± sd) 0:6530 ± 0:0314 0:7037 ± 0:0037 0:9093 ± 0:0205 0:6933 ± 0:0083 0:4682 ± 0:0949
Number of nodes 7 8 9 10 11

R2(mean ± sd) 0:8328 ± 0:0095 0:8201 ± 0:0013 0:7978 ± 0:0311 0:7738 ± 0:0183 0:8610 ± 0:0406
Number of nodes 12 13 14 15 16

R2(mean ± sd) 0:8259 ± 0:0007 0:7103 ± 0:0074 0:7561 ± 0:0273 0:6653 ± 0:0170 0:6531 ± 0:0713
Number of nodes 17 18 19 20

R2(mean ± sd) 0:7817 ± 0:0211 0:8261 ± 0:0021 0:8156 ± 0:0076 0:8033 ± 0:0145

Table 3: R2 (mean ± sd) of predictions in CMLM.

Number of nodes 2 3 4 5 6

R2 (mean ± sd) 0:7321 ± 0:0599 0:8357 ± 0:0081 0:7897 ± 0:0276 0:9255 ± 0:0063 0:6594 ± 0:1223
Number of nodes 7 8 9 10 11

R2 (mean ± sd) 0:7623 ± 0:0132 0:6229 ± 0:0818 0:6648 ± 0:0049 0:7149 ± 0:0563 0:7281 ± 0:0218
Number of nodes 12 13 14 15 16

R2 (mean ± sd) 0:7579 ± 0:0357 0:7932 ± 0:0026 0:5954 ± 0:0214 0:4769 ± 0:1373 0:8362 ± 0:0035
Number of nodes 17 18 19 20

R2 (mean ± sd) 0:7074 ± 0:0104 0:6305 ± 0:0201 0:5928 ± 0:0450 0:7207 ± 0:0422

Table 4: R2 (mean ± sd) of predictions in FMLM.

Number of nodes 2 3 4 5 6

R2 (mean ± sd) 0:8158 ± 0:0096 0:8663 ± 0:0220 0:8425 ± 0:0055 0:9193 ± 0:0185 0:8356 ± 0:0149
Number of nodes 7 8 9 10 11

R2 (mean ± sd) 0:8343 ± 0:0205 0:8795 ± 0:0016 0:8746 ± 0:0127 0:9572 ± 0:0030 0:8842 ± 0:0122
Number of nodes 12 13 14 15 16

R2 (mean ± sd) 0:8312 ± 0:0474 0:8652 ± 0:0018 0:8892 ± 0:0017 0:7465 ± 0:1342 0:7358 ± 0:0545
Number of nodes 17 18 19 20

R2 (mean ± sd) 0:8272 ± 0:0143 0:8100 ± 0:0063 0:7836 ± 0:0054 0:8472 ± 0:0010

Table 5: Prediction results of three different methods.

Method TMLM CMLM FMLM

Number of nodes 4 5 10

R2 (mean ± sd) 0:8782 ± 0:0005 0:9065 ± 0:0011 0:9506 ± 0:0009
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In TMLM, we pool training data from all muscle fatigue
states to make the network learn the differences among them
alone. Predictions of BPNN are shown in Table 2. When the
number of node is 4, the mean R2 is 0.9093, which is the
maximum.

In CMLM, we employ MNF/ARV, one feature proposed
by Fernando’s team for the expression of muscle fatigue
information. Predictions of BPNN are shown in Table 3.
We set 5 nodes in the hidden layer, and the mean R2 of pre-
diction results is 0.9255.

In FMLM, we incorporate the quantitative metric of mus-
cle fatigue value as an additional input to explain the effect of
muscle fatigue on hand grasp force estimation. Predictions of

BPNN are shown in Table 4. The network structure of 10
nodes in the hidden layer brings the maximum mean R2.
Its value is 0.9572.

Comparing the best prediction results of three different
methods, as shown in Table 5 and Figure 11, it can be
indicated that the mean R2 obtained in TMLM is 0.9093.
It just passes the baseline of applicability (0.9000), which
implies the estimation performance of the BPNN model
in TMLM is not good enough and predicting model need
to be readjusted. In CMLM, the mean R2 is 0.9255. This
shows that employing MNF/ARV proposed by Fernando
et al. [13] in sEMG-based force estimation under fatigued
conditions is indeed feasible. But it is not an obviously
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Figure 11: Single four-fold cross-validation results of each method (a) TMLM. (b) CMLM. (c) FMLM.
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effective approach. Compared with the result in TMLM,
R2 increases by 1.7816%.

As the main work of this study, the estimated muscle
fatigue value is used directly as an additional input in FMLM.
The results show mean R2 can reach to 0.9572, which proves
predicting model fits the data very well. It is a great improve-
ment (5.2678%, above 5%, p < 0:05) in estimation perfor-
mance compared with CMLM. It is demonstrated that the
additional attribute is an applicable solution to the effect of
muscle fatigue on sEMG-based hand grasp force estimation.
And MFL proposed in this paper is better than MNF/ARV
(p < 0:05).

For further explanation, the experimental results of all
subjects under different methods are presented as shown in
Table 6. Statistics show that the mean R2 values obtained
under the three methods are 0.8656, 0.8919, and 0.9209.
Adopting MNF/ARV proposed in [12] for measure muscle
fatigue could bring the 3.0383% growth in R2 in hand grasp
force estimation. For comparison, using the MFL proposed
in this paper can increase R2 by 6.3797%.

The experimental results show that FMLM provides the
best estimation performance among the three methods.

5. Conclusion

In this paper, we propose an easy-to-implement method to
quantitatively estimate muscle fatigue and evaluate the effect
of muscle fatigue on hand grasp force estimation. The exper-
iment results demonstrate that the incorporation of muscle
fatigue metrics explicitly in the grasp force estimation has a
substantial impact on the performance. When estimated
muscle fatigue value as an additional input in the machine
learning approach, the estimation accuracy improves to a
large extent in FMLM. Because the neural network is trained
offline and is computationally cheap, the proposed method
can be implemented in the current applications, such as in
[1–3], as a calibration part to improve the effectiveness and
robustness. At the same time, there are still some limitations
in this study. During the experiments mentioned above, the
degree of the subject’s forearm muscle fatigue needs to be
estimated at each moment, which requires to intermittently

measure the subject’s current maximum grasp force. As a
result, the force estimation in this work could only be proc-
essed offline. So the future work is mainly to address how
to estimate muscle fatigue online, that is, how to get MFL
online. In fact, the results of this study have provided some
potential and guiding ideas for the following work. Under
static muscle contraction, the subject’s forearm muscle
fatigue and muscle contraction time are approximately linear
when maintaining a fixed level of hand grasp force. And this
linear coefficient seems to have a nonlinear increasing rela-
tionship with the target hand grasp force level. Therefore, a
nonlinear estimation model of muscle fatigue could be more
appropriated in this case, such as

MFL = a × eb×n%MVC
� �

× t + c, ð9Þ

where n%MVC is the target hand grasp force level. t is mus-
cle contraction time. a, b, and c are model parameters.
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