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This paper presents a low-cost, efficient, and portable in vivo method for identifying axes of rotation of the proximal
interphalangeal and distal interphalangeal joints in an index finger. The approach is associated with the screw displacement
representation of rigid body motion. Using the matrix exponential method, a detailed derivation of general spatial displacement
of a rigid body in the form of screw displacement including the Rodrigues’ formulae for rotation is presented. Then, based on a
gyroscope sensor, a test framework for determining axes of rotation of finger joints is established, and experiments on finding
the directions of joint axes of the PIP and DIP joints are conducted. The results obtained highly agree with those presented in
literature through traditional but complex methods.

1. Introduction

For clinical, prosthetic, rehabilitation, and ergonomic appli-
cations, an accurate model of the kinematics of the joints in
the fingers is essential for better understanding their normal
function and pathology. The axes of rotation of the finger
joints are crucial in the kinematic modelling and have great
impact on muscle activation. Hence, knowledge of their loca-
tion and orientation is important for constructing prosthetic
joints and in the planning of reconstructive surgeries like
tendon transfers [1]. So far, several different methods have
been proposed for identifying the axes of rotation in human
hand joints. These include the mechanical approach by using
an “axis finder” to find axes of rotation in the thumb and
index finger metacarpophalangeal (MCP) joints and the
thumb carpometacarpal (CMC) and interphalangeal (IP)
joints [2, 3]; the MR image-based method for modelling the
proximal interphalangeal (PIP) and distal interphalangeal
(DIP) joint kinematics [4]; the CT image-based method
for identifying the trapeziometacarpal joint during thumb
extension/flexion and abduction/adduction [5]; the LED
and CT-based cadaveric investigation for PIP joint of an

index finger [6]; and the surface marker-based method
for thumb carpometacarpal joint kinematics [7], for deter-
mination of the centre of rotations (CORs) of the DIP,
PIP, and MCP joints in the four fingers [8], and for
identification of centres and axes of rotation of wrist and
fingers in hand kinematic modelling [9]. Except for the
“axis finder,” the approaches presented previously are
costly and complex. However, the “axis finder” is based
on the assumption that the finger joint axis is fixed and
can only approximately find the rotation axis of a joint
at one specified position per measurement. Hence, the
“axis finder” cannot provide continuous measurement for
the whole range of motion of a finger joint and thus the
accurate vector of the average rotation axis.

In this paper, we propose an economic, intuitive, and
portable measuring method based on gyroscope sensors.
We show that combine with the screw displacement repre-
sentation of rigid body motion, the proposed method is
efficient for finding the axes of rotation of the PIP and DIP
joints, and for presenting kinematics of the middle and distal
phalanges in an index finger. The finger joints are formed by
bones which are commonly treated as rigid bodies, and,
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hence, the classical rigid body motion representation
methods can be used to describe the motion of bones and
the associated joints. Considering the motion of bones as
general spatial displacement, we introduce screw displace-
ment representation [10] to present the motion of joints
and bones in fingers. Screw displacement is widely used in
the fields of kinematics, robotics, and computer vision but
is not very popular in the field of biomechanics. To formulate
the screw displacement, there are mainly two approaches,
one based on geometric and vector interpretation and the
other with exponential derivation [11–14]. It is a very useful
and effective tool for identifying axes of rotation of joints and
presenting kinematics of fingers [15]. Hence, the detailed
derivation of screw displacement of rigid body motion is
presented in detail in this paper.

This paper firstly presents the matrix-exponential-based
representation of screw displacement of rigid body motion
laying background for the derivation and identification
of axes of rotation of finger joints. Then, a low-cost
gyroscope-sensor-based solution is proposed to identify the
direction vectors of the PIP and DIP joint axes in an index
finger, providing an in vivo method for determining axes of
rotation of finger joints. Discussions of the results and limits
are addressed, and a conclusion is drawn.

2. Screw Displacement Representation of Rigid
Body Motion

In the human hand, bones are responsible for rigidity and
joints between the bones provide freedom of movement.
Hence, assuming no deformation, motions among the bones
in the hand can be treated as rigid body motion. According to
Chasles’ theorem [10], the general motion between two rigid
bodies is screwmotion as presented in exponential derivation
of this section [11].

2.1. Exponential Derivation for Rotation. Rotation and
translation combined leads to the general spatial motion
of a rigid body in the three-dimensional space. There are
cases that motion between two bodies is a pure rotation
which can be mathematically presented with a rotation
matrix R that belongs to the special orthogonal group as
R ∈ SOð3Þ. Referring to Figure 1, we find that the rotation
matrix can be expressed as a function of rotation angle θ
and a vector ω that presents the direction of the axis of
rotation.

Figure 1 shows the rotation of rigid body 1 with respect to
body 0 about an axis passing through pointO in the direction
ω which is coincident with the z-axis of a reference frame
O − xyz. If the rigid body rotates at a constant unit angular
velocity about the axis ω, the velocity of a point P on the
body, denoted as _p, can be expressed as

_p tð Þ = ω × p tð Þ = ω½ �p tð Þ, ð1Þ

where ½ω� is the skew-symmetric matrix representation for
the cross product of vector ω, which complies with ½ω�T =

−½ω�. Equation (1) is a time-invariant differential equation
which can be integrated resulting in

p tð Þ = e ω½ �tp 0ð Þ, ð2Þ

with pð0Þ and pðtÞ being the initial (at time t = 0) and
current (at time t) positions of point P, respectively (see
Figure 1), and the matrix exponential e½ω�t can be expressed
in Taylor’s series form as

e ω½ �t = I + ω½ �t + ω½ �2t2
2! + ω½ �3t3

3! +⋯, ð3Þ

where I is a 3 × 3 identity matrix. Assuming that the rotation
about axis ω is a rotation with unit angular velocity for θ
units of time, e½ω�t becomes e½ω�θ, and Eq. (3) thus becomes

e ω½ �θ = exp ω½ �θð Þ = I + ω½ �θ + ω½ �2θ2
2! + ω½ �3θ3

3! +⋯: ð4Þ

Considering the relations that ½ω�2 = ωωT − kωkI, ½ω�3 =
− kωk2½ω�, and kωk = 1, Eq. (4) can be further expended as

e ω½ �θ = I + θ ω½ � + θ2

2! ω½ �2 − θ3

3! ω½ � − θ4

4! ω½ �2

+ θ5

5! ω½ � + θ6

6! ω½ �2 − θ7

7! ω½ � − θ8

8! ω½ �2+⋯

= I + θ −
θ3

3! +
θ5

5! −
θ7

7! +⋯
 !

ω½ �

+ θ2

2! −
θ4

4! +
θ6

6! −
θ8

8! +⋯
 !

ω½ �2:

ð5Þ

Using the relations that θ − θ3/3!+θ5/5!−θ7/7!+⋯ = sin
θ and θ2/2!−θ4/4!+θ6/6!−θ8/8!+⋯ = 1 − cos θ, Eq. (5) can
be simplified as

e ω½ �θ = I + sin θ ω½ � + 1 − cos θð Þ ω½ �2
= cos θI + sin θ ω½ � + 1 − cos θð ÞωωT :

ð6Þ
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Figure 1: Rotation of rigid body 1 about the axis ω by an angle θ.
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Equation (6) is known as Rodrigues’ formula for a rota-
tion of a rigid body about an arbitrary axis passing through
the origin of a reference coordinate system. It is a rotation
matrix which can also be obtained through the geometric
method [15]. Hence, expending Eq. (6) leads to a rotation
matrix

R ω½ �, θð Þ = e ω½ �θ = I + sin θ ω½ � + 1 − cos θð Þ ω½ �2

=

r11 r12 r13

r21 r22 r23

r31 r32 r33

2
6664

3
7775,

ð7Þ

where with the joint axis vector being ω = ½ωx, ωy, ωz�T , the
elements rij in Eq. (7) are as follows: r11 = cos θ + ω2

xð1 −
cos θÞ, r12 = ωxωyð1 − cos θÞ − ωz sin θ, r13 = ωxωzð1 − cos
θÞ + ωy sin θ, r21 = ωyωxð1 − cos θÞ + ωz sin θ, r22 = cos θ +
ω2
yð1 − cos θÞ, r23 = ωyωzð1 − cos θÞ − ωx sin θ, r31 = ωzωx

ð1 − cos θÞ − ωy sin θ, r32 = ωzωyð1 − cos θÞ + ωx sin θ, and
r33 = cos θ + ω2

zð1 − cos θÞ.
Hence, substituting Eq. (7) into Eq. (2) implies that

e½ω�tpð0Þ has the effect of rotating point P about a fixed
axis ω by an angle θ to a new position pðtÞ.

Equation (7) is also known as the screw-axis represen-
tation of the rotation of a rigid body. Such a representa-
tion involves four parameters: three describing the
direction of the screw (joint axis) and one associated with
the angle of rotation, whereas only two of the three variables
giving the direction of the screw axis are independent
because they comply with the condition of a unit vector,
i.e., ω2

x + ω2
y + ω2

z = 1.
Equation (7) indicates that for any rotation motion, there

always exists an instantaneous axis ω about which the rota-
tion is associated together with the angle θ. Hence, given
the joint axis vector and the angle of rotation, the nine ele-
ments of the rotation matrix in Eq. (7) can be computed.
On the other hand, given a rotation matrix R, the vector of
joint axis (screw axis) ω and the angle of rotation θ can be
calculated. Observing the elements in the rotation matrix in
Eq. (7), the angle of rotation θ can be obtained by adding
the diagonal elements of the rotation matrix as

θ = cos−1 trR − 1
2

� �
= cos−1 r11 + r22 + r33 − 1

2

� �
, ð8Þ

where trR stands for the trace of matrix R and trR = r11 +
r22 + r33 = 1 + 2cosθ.

Further investigating the rotation matrix, direction of the
screw axis can be obtained by taking the differences between
each pair of the two opposing off-diagonal elements:

ω =
ωx

ωy

ωz

2
664

3
775 = 1

2 sin θ

r32 − r23

r13 − r31

r21 − r12

2
664

3
775: ð9Þ

If represented in the skew-symmetric form, ½ω� can also
be expressed as

ω½ � =
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

2
664

3
775 = R − RT� �

2 sin θ
: ð10Þ

Since the angle θ in Eq. (8) has either positive or negative
value, Eqs. (9) and (10) give two solutions of the screw axis,
one being the negative of the other. However, the two solu-
tions represent the same screw since a rotation of angle −θ
about axis −ω has the same result as a rotation of θ about
the ω axis.

2.2. Exponential Expression of Spatial Rigid-Body Motion.
Section 2.1 presents the exponential derivation of rotation
motion of a rigid body. The same process can be applied to
derive the general spatial motion of a rigid body in the
three-dimensional space. Chasles’ theorem states that general
motion of a rigid body in three-dimensional space is a rota-
tion and a translation long some axis, such a motion is
known as a screw displacement [16].

Figure 2 shows the motion of a point P on a rigid body
from P1 firstly to P

r
2 and then to P2, and the motion contains

a rotation by θ and a translation by d, respectively, around
and along a axis ω. The combination of the two motions is
a screw motion about axis ω, with direction of the axis given
by a unit vector ω = ωx ωy ωz

� �T . By analogizing the
motion with the motion of a screw, if the angle θ ≠ 0, pitch
of the screw can be defined as h = d/θ such that the net trans-
lation after a rotation by θ is hθ. The two variables θ and d are
screw parameters which together with the screw axis ω
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Figure 2: Geometry of general spatial displacement of a rigid body.
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completely define the general displacement of a rigid body in
the three-dimensional space.

Referring to Figure 2, ω is the axis direction with kωk = 1,
and r0 is the vector for a point R0 on the axis. Let the rigid
body rotate about axis ω by an angular velocity of _θω
together with a translational velocity of _dω = h _θω, and the
velocity of point P at pðtÞ can be written as

_p tð Þ = ω × p tð Þ − r0ð Þ + hω: ð11Þ

This equation can be represented in a homogeneous
matrix form as

_p

0

" #
=

ω½ � −ω × r0 + hω

0 0

" # p

1

" #

=
ω½ � v

0 0

" # p

1

" #
= S½ �

p

1

" #
,

ð12Þ

where v = −ω × r0 + hω, and hence, there exists

_�p tð Þ = S½ ��p tð Þ: ð13Þ

Similar to solving the rotation case in Eq. (1), Eq. (13) can
be solved as

�p tð Þ = e S½ �t�p 0ð Þ, ð14Þ

where the matrix exponential of matrix ½S� can be derived
with Taylor’s series as

e S½ �t = I + S½ �t + S½ �tð Þ2
2! + S½ �tð Þ3

3! +⋯, ð15Þ

and if assuming that the rigid body rotates about axis ω at a
unit velocity for θ units of time, Eq. (15) becomes

T = e S½ �θ = I + S½ �θ + S½ �2 θ
2

2! + S½ �3 θ
3

3! +⋯, ð16Þ

with ½S�2 = ½ω�2 v

0 0

" #
, ½S�3 = ½ω�3 ½ω�2v

0 0

" #
, ½S�4 =

½ω�4 ½ω�3v
0 0

" #
,

And, hence, considering Eqs. (5) and (6), it has

T = e S½ �θ =
e ω½ �θ Q θð Þv
0 1

" #
=

R q

0 1

" #
, ð17Þ

where the term QðθÞ is

Q θð Þ = Iθ + ω½ � θ
2

2! + ω½ �2 θ
3

3! + ω½ �3 θ
4

4! +⋯

= Iθ + θ2

2! −
θ4

4! +
θ6

6! −⋯
 !

ω½ �

+ θ3

3! −
θ5

5! +
θ7

7! −⋯
 !

ω½ �2

= Iθ + 1 − cos θð Þ ω½ � + θ − sin θð Þ ω½ �2:

ð18Þ

Using the identities that ½ω�2ω = 0 and ½ω�3 = −½ω�, and
with v = −ω × r0 + hω, the term QðθÞv can be derived as

Q θð Þv = Iθ + 1 − cos θð Þ ω½ � + θ − sin θð Þ ω½ �2� �
−ω × r0 + hωð Þ

= Iθ −ω × ro + hωð Þ + 1 − cos θð Þ ω½ � −ω × r0 + hωð Þ
+ θ − sin θð Þ ω½ �2 −ω × r0 + hωð Þ

= − ω½ �r0θ + hθω − 1 − cos θð Þ ω½ �2r0
+ 0 + θ − sin θð Þ ω½ �r0 + 0

= hθω − 1 − cos θð Þ ω½ �2r0 − sin θ ω½ �r0
= I − e ω½ �θ
� 	

r0 − hθω = I − Rð Þr0 − dω = q:

ð19Þ

Expending Eq. (19) gives

q =
qx

qy

qz

2
664

3
775 =

dωx − r0x r11 − 1ð Þ − r0yr12 − r0zr13

dωy − r0xr21 − r0y r22 − 1ð Þ − r0zr23

dωz − r0xr31 − r0yr32 − r0z r33 − 1ð Þ

2
664

3
775:

ð20Þ

Substituting Eq. (19) into Eq. (17), the transformation
matrix T becomes

T = e ω½ �θ =
R q

0 1

" #

=
e ω½ �θ I − e ω½ �θ

� 	
r0 + hθω

0 1

2
4

3
5 =

R I − Rð Þr0 + dω

0 1

" #
:

ð21Þ
In addition, using the relation that ωTv =ωTð−ω × r0Þ +

hωTω such that h =ωTv and r0 =ω × v, Eq. (21) can also be
expressed as

T = e ω½ �θ =
e ω½ �θ I − e ω½ �θ

� 	
ω × vð Þ + ωωTvθ

0 1

2
4

3
5

=
e ω½ �θ I − e ω½ �θ

� 	
ω½ � + ωωTθ

h i
v

0 1

2
4

3
5:

ð22Þ
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In the case that the motion is pure translation with kωk = 0
and kvk = 1, it has R = e½ω�θ = I such that

T = e S½ �θ =
I dv

0 1

" #
: ð23Þ

On the other hand, in the case that the motion is pure
rotation with h = d = 0 and kωk = 1, it has

T = e S½ �θ =
e ω½ �θ I − e ω½ �θ

� 	
r0

0 1

2
4

3
5

=
e ω½ �θ I − e ω½ �θ

� 	
ω × vð Þ

0 1

2
4

3
5:

ð24Þ

In the above equations r0 = ½r0x r0y r0z�T is a vector for a
point on the screw axis and is perpendicular to the axis (see
Figure 2).

There are eight parameters required in the above deriva-
tion of a spatial displacement, three for presenting direction
of the screw axis ω, three for locating of the screw axis, i.e.,
r0, one for the rotation angle θ, and one for the translational
distance d. However, the three parameters relative to the
direction of screw axis must comply with ωTω = 1, and,
hence, only two of them are independent. In addition, only
two of the three parameters that depict location of the screw
axis are independent, since there exits the relationship that
r0T ω = 0. In summary, only six of the eight parameters are
independent.

Therefore, from the above derivation, given the six
parameters for describing the screw axis and the associated
variables, the transformation matrix for spatial displacement
in Eqs. (21) and (22) can be obtained. On the other hand,
providing a specified spatial displacement of a rigid body
with a rotation matrix R and a position vector q, angle of
rotation θ can be found using Eq. (8), direction of the screw
axis can be solved with Eq. (9) or Eq. (10), and the transla-
tional displacement d can be calculated with

d = ωTq
ωk k2 : ð25Þ

Since these equations are linear, there exists one solution
corresponding to each solution set of ω, θ, and d.

The screw displacement form of general spatial motion
derived above lays background for the kinematic analysis of
robot manipulator with transform operator approach [17],
which is also known as POE (product of exponential)
method [13]. The POE presentation of robotic kinematics is
different from the Denavit-Hartenberg convention [18] in
the setting of coordinate frames and system variables. In this
paper, the screw displacement approach presented above is
used in the identification and representation of joint axes of
rotation of human fingers.

3. Gyroscope Sensor-Based In Vivo Finger Joint
Axis Identification

The axis of rotation between two bones is loosely defined as a
line that does not move with respect to either bone while the
bones move around each other [1]. Identifying finger join
axis is important in constructing prosthetic joints and in
planning reconstructive surgery of human finger. In this sec-
tion, a novel and efficient method is presented for in vivo fin-
ger joint axis identification.

3.1. Representation of Joint Axis Using Screw Displacement. A
human finger contains three phalanges connected by three
joints including the metacarpophalangeal (MCP) joint, prox-
imal interphalangeal (PIP) joint, and distal interphalangeal
(DIP) joint. Actuated by extrinsic and intrinsic muscles (six
or seven for the fingers and eight for the thumb), the fingers
can perform agile movement leading to the grasping and dex-
terous manipulation of human hand. In the kinematic
modelling of the fingers, it is commonly assumed that the
joint axes of the PIP and DIP joints are parallel to each other
and perpendicular to the sagittal plane. However, these
assumptions are not accurate since the joint axes in human
finger have neither parallel nor perpendicular relationships.
The joint axes are formed according to the shapes of the
bones, leading to the so-called conjoint rotations of the joints
and the three-dimensional movements of the fingers [1, 20].
As pointed out in [1], the joint axes are assumed to be fixed
with respect to the associated phalanges and can be identified
with various methods [2–8]. This paper proposes a low-cost
and efficient method for identifying the axes of DIP and
PIP joints in the fingers. The proposed method is related to
the screw displacement representation derived in Section 2.

Figure 3(a) shows a finger with three coordinate frames
fOpg, fomg, and fodg attached to the centres of the head of
the proximal, middle, and distal phalanges, respectively. At
the anatomical position, as shown in Figure 3(a), the orienta-
tions of frames fOpg, fomg, and fodg are coincident. The
frames are defined in such a manner of the x-axis is along
the radial-ulnar direction, the y-axis is along the proximal-
distal direction, and the z-axis is along the dorsal-palmar
direction. Taking the motion of the middle phalanx about
the PIP joint with respect to the proximal phalanx as an
example, referring to Figure 3(b), if the middle phalanx
rotates from position 1 (at anatomical position such that
frame fomg aligns with frame fOpg) to position 2, with
respect to frame fOpg, the change of orientation of the mid-
dle phalanx, which is reflected in orientation change of frame
fomg, can be expressed in a rotation matrix of direction
cosine form [13] as

1
2R =

xp ⋅ xm2 xp ⋅ ym2 xp ⋅ zm2

yp ⋅ xm2 yp ⋅ ym2 yp ⋅ zm2

zp ⋅ xm2 zp ⋅ ym2 zp ⋅ zm2

2
664

3
775: ð26Þ

With this rotation matrix and considering the relation
that 12R = Rðω, θÞ, using Eq. (8) and Eq. (9) or (10), the joint

5Applied Bionics and Biomechanics



axis about which the middle phalanx rotating with respect to
the proximal phalanx ω and the rotating angle θ (see
Figure 3(b)) can be calculated as

θ = cos−1 tr12R − 1
2

� �

= cos−1
xp ⋅ xm2 + yp ⋅ ym2 + zp ⋅ zm2 − 1

2

� � ð27Þ

and

ω½ � =
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

2
664

3
775 = 1

2 sin θ
1
2R − 1

2R
T

� 	
: ð28Þ

Therefore, once the rotation matrix in Eq. (26) is given,
the rotation angle θ and the joint axis ω = ωx ωy ωz

� �T
can be obtained, since rotation of the middle phalanx about
joint axis ω relative to the proximal phalanx takes a sequence
of positions and thus a sequence of rotation matrices 1

2Ri,
leading to sequence of rotation angle θi and joint axis vector
ωi. Hence, the direction of joint axis of the PIP joint can be
obtained by taking the average of the net values as

�ω = 1
n
〠
n

i=1
ωi: ð29Þ

From the above derivation, it can be found that the key to
identify the direction of joint axis is the rotation matrix R. In
this paper, an efficient, intuitive and in vivo method is pre-
sented for finding R and thus direction of join axis based
on a gyroscope sensor.

3.2. Gyroscope Sensor-Based In Vivo Finger Joint Axis of
Rotation Detection. In this section, the MPU-9250 gyroscope
sensor (Banggood Technology, Cyprus) is used for in vivo
identification of joint axes of the PIP and DIP joints. As

shown in Figure 4, for testing the PIP joint rotation axis of
an index finger, two MPU-9250 sensors were attached to
the proximal and middle phalanges, respectively, which are
both connected to the Arduino board (Mega2560, ARDU-
INO), providing the orientation information for both the
proximal and middle phalanges. During the test, the proxi-
mal phalanx is fixed, and we move the middle phalanx in
an even sequence. Data containing orientation information
of both the two surface gyroscopes is collected at each motion
step of the middle phalanx. Then, through the open source
programme from the SparkFun Electronics and the filter
algorithm developed by Sebastian Madgwick of the Univer-
sity of Bristol, the raw data gathered from the MPU-9250
gyroscopes can be transformed and output as quaternion
groups, which can be further transformed into the direction
cosine matrix R in computer programme such as MATLAB®.
It should be pointed out that the hand does not have to be in
a prone position (see Figure 4) for accurate data collection.
The prone position used in the experiment is just one exam-
ple, and in this example, the original axes of the sensor are

zd

od
yd

om

Op

Yp

ym

xd

zm

xmZp

Xp

Radial side

Ulnar side

(a)

ω𝜃

xm1

zm1

Xp

Zp

om1

ym1

ym2

xm2 zm2

om2
Op

Yp

Position 1

Position 2

(b)

Figure 3: (a) Coordinate frames attached to each phalanx of a finger; (b) rotation of the middle phalanx about the PIP joint with respect to the
proximal phalanx.

MPU-9250 gyroscope

Arduino board
Mega2560

Figure 4: Gyroscope sensor in in vivo test of joint axis of PIP joint
in an index finger.
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located at the initial position aligned with the directions of
gravity (minus z-axis of the sensor) and geomagnetism (x-
axis of the sensor). Besides, we put the finger joint at the edge
of the table to avoid the movement of the proximal phalanx
so as to reduce the errors of its position measurement.

Once the sequence of rotation matrices 1
2Ri is obtained

through the above tests, the joint axis of the PIP joint can be
computed. Similarly, by placing one additional sensor on the
distal phalanx, the joint axis of the DIP joint can be determined.

In the experiment, the flexion-extension movements
were continuously repeated 3 times during one test process.
The results obtained from the above tests are processed and
illustrated in Figure 5. Figure 5(a) shows the results for the
PIP joint, and the blue line clusters are the direction vectors
of PIP joint axis obtained from each rotation matrix 1

2Ri dur-
ing the rotation process, which indicates that the joint axis
direction varies slightly at each. The red line indicates the
average direction vector of the rotation axis of the PIP joint.
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Figure 5: The rotation axes in PIP and DIP joints in an index finger.
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From the figure, it can be found that presented in the coordi-
nate frame fOpg, for the PIP joint in the index finger, the

average direction vector of the joint axis is �ωPIP =
0:998 0:024 0:061½ �T with around ±3.5° variation, of
which the variation of the joint axis is the maximum angle
between the average joint axis vector (red line) and each
instantaneous joint axis vector (blue line). The maximum
angle was identified by using the embedded MATLAB com-
mand. Similarly, presented in the coordinate frame fomg,
for the DIP joint, the direction vector of the joint axis is
�ωDIP = 0:955 0:231 0:184½ �T with around ±5° variation.
Accordingly, a 14° orientation difference can be found
between the average rotation axes of PIP and DIP joints.
The result is consistent with the description of the cadaveric
tests presented in Ref. [4, 6].

Further, using the screw displacement transformation
derived in Section 2.2, based on the rotation axes of the PIP
and DIP joints in an index finger identified above, motion of
the distal endpoint with respect to the PIP joint can be formu-
lated and characterised. Let us define the natural anatomical
position as the reference (zero) position, give the screw axes
of the PIP and DIP joints as ωPIP = ω2 = ð0:998, 0:024, 0:061
Þ and ωDIP = ω3 = ð0:955, 0:231, 0:184Þ as identified from
the above in vivo tests, and specify the lengths of the middle
and distal phalanges as l2 = 23:16mm and l3 = 15:83mm,
respectively. Forward kinematics of the distal and middle
phalanges relative to the PIP joint can be formulated as

TOpOd
= e S2½ �θ2e S3½ �θ3MOd

, ð30Þ

where in coordinate frame fOpg, there are S2 = ðω2, r2 × ω2Þ
with r2 = ð0,−l2, 0Þ and S3 = ðω3, r3 × ω3Þ with r3 = ð0,−ðl2

+ l3Þ, 0Þ and MOd
, and the position vector of point od in

the zero configuration expressed in the reference frame f
Opg as

MOd
=

1 0 0 0
0 1 0 −l2 − l3

0 0 1 0
0 0 0 1

2
666664

3
777775: ð31Þ

Substituting the parameters into Eqs. (24) and (30) and
using the experimental joint angle range of the PIP and
DIP joints from [15] as θ2 ∈ ½0, 101°� and θ3 ∈ ½0, 73°�, work-
space of the fingertip (i.e., point od) can be calculated and
plotted as shown in Figure 6. One can see that the work-
space is distributed in a three-dimensional space rather than
on a plane. This workspace is generated due to the offset of
the axes of rotation of the PIP and DIP joints from their
anatomical planes, which leads to the conjoint rotation,
and thus the three-dimensional motion of the fingertip.

4. Discussions

From the above derivation and investigation, we found that
the rotation axes of the PIP and DIP joints are offset from
the anatomical planes, such an arrangement leads to conjoint
rotations [1] that generate three-dimensional motion for
dexterous grasping and manipulation of hand with fewer
joints. The axes of rotation of the PIP and DIP joints are
not fixed but vary throughout the range of motion of the
joints. This agrees with the statements in [19, 20]. As pointed
out in [20], the finger joints are synovial joints which move
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with both rotation and sliding, and, hence, the axes of rota-
tion are the evolute of the serial of locations of the instanta-
neous axes of rotation. In clinical practice and in ordinary
clinical situations [1], simplification to an average axis of
rotation, like formulated in Eq. (29), is assumed to occur
throughout the entire range of motion of a joint. This average
direction of axis is located by an anatomic landmark that
pierces the convex member of the two bones forming the
joint. The results obtained by the proposed method in this
paper also agree with the experimental results in [21], which
indicates that the PIP and DIP joint axes are not fixed, the
joints are approximately parallel to the flexion-extension
creases [1, 2], and are approximately perpendicular to the
bone segments in full extension, but progressively are oblique
during flexion. The MR image measurement in [4] showed
changes of up to 14° in the directions of the PIP and DIP
joint axes during motion. In [22], based on the 3D
scanned data, the changes of axes of rotation of finger
joints during motion were characterised as surface of
screws based on screw theory, and the results are similar
to those illustrated in Figure 5 in this paper. In addition,
we found that the proposed method was more efficient
than the “axis finder” [2]. If we want to identify the rota-
tion axes of the MCP joint in both flexion-extension and
abduction-adduction planes, the “axis finder” system needs
to be reconstructed to find the rotation axis in different
planes. But using the proposed gyroscope sensor, we can
keep the same position of the sensors to identify all the
rotation axes in one joint.

Further, the experimental results obtained in this paper
have some errors because of the noise in the sensor’s signals
and the deformation of the finger tissue and skin during the
movement. In addition, the rotation axis direction in the fin-
ger joint can be quite different between individuals, and, thus,
for clinical and medical applications, the test needs to be car-
ried out individually. The above experimental setup, testing
process, and data processing method hence provide an effi-
cient, convenient, and intuitive approach for identifying
rotation joint axis in human fingers. This approach is effi-
cient for not only the PIP and DIP joints in the fingers and
IP joint in the thumb, but also the MCP and CMC joints.
In order to identify the joint axis vectors of the DIP, PIP,
andMCP joints in the fingers at the same time, the additional
sensors need to be placed on the distal, middle, and proximal
phalanges and the metacarpal bone. Otherwise, two sensors
are enough for one joint axis identification even there are
more than one degree of freedom. These will be investigated
in our future research.

Therefore, in this paper, a low-cost, efficient, and intu-
itive in vivo approach is proposed for detecting axes of
rotation of the PIP and DIP joints of the index finger.
Using the proposed method, rotation axes of the one
degree of freedom joints in the hand can be conveniently
identified. The method can be extended to the identifica-
tion of axes of rotation of PIP and DIP joints of the other
fingers and IP joint of the thumb, and it can be also
potentially extended for determining axes of rotation of
the other synovial joints, such as knee joint and elbow
joint, in the human body.

5. Conclusion

Kinematics and axes of rotation of human joints are impor-
tant in constructing prosthetic joints and planning recon-
structive surgery, and, hence, various methods including
goniometry, mechanical finder, MR and CT images, and sur-
face markers have been used to identify the axes of rotation of
joints, especially finger joints. In this paper, a low-cost,
intuitive, and portable in vivo method based on gyroscope
sensors was for the first time proposed for detecting axes of
joints of the PIP and DIP joints in an index finger. The
proposed experimental method was integrated with screw
displacement representation of rigid body motion, and
the matrix exponential-based derivation of general spatial
displacement was described in a detailed manner, provid-
ing background for wider applications in the field of bio-
mechanics. The experimental results demonstrated the
efficiency and effectiveness of the proposed method, and
the results are comparable and agree with the previous
published works [4, 6].

Data Availability

No data are associated with this paper.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding this publication.

Acknowledgments

This work is partly supported by the projects of the National
Natural Science Foundation of China under grant No.
91948302 and No. 91848204 and the project of National
Key R&D Program of China under No. 2018YFC2001300.

References

[1] P. W. Brand and A. Hollister, Clinical Mechanics of the Hand,
Mosby, St. Louis, Missouri, 3rd Ed edition, 1999.

[2] A. Hollister, D. J. Giurintano, W. L. Buford, L. M. Myers, and
A. Novick, “The axes of rotation of the thumb interphalangeal
and metacarpophalangeal joints,” Clinical Orthopaedics and
Related Research, vol. 320, pp. 188–193, 1995.

[3] J. Agee, A. M. Hollister, and F. King, “The longitudinal axis of
rotation of the metacarpophalangeal joint of the finger,” Jour-
nal of Hand Surgery, vol. 11A, p. 767, 1986.

[4] N. Miyata, M. Louchi, M. Mochimaru, and T. Kurihara,
“Finger joint kinematics from MR images,” in 2005 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
pp. 2750–2755, Edmonton, Alta., Canada, Aug. 2005.

[5] J. J. Crisco, E. Halilaj, D. C. Moore, T. Patel, A. C. Weiss, and
A. L. Ladd, “In vivo kinematics of the trapeziometacarpal joint
during thumb extension-flexion and abduction-adduction,”
The Journal of Hand Surgery, vol. 40, no. 2, pp. 289–296, 2015.

[6] F. Hess, P. Furnstahl, L.-M. Gallo, and A. Schweizer, “3D anal-
ysis of the proximal interphalangeal joint kinematics during
flexion,” Computational and Mathematical Methods in Medi-
cine, vol. 2013, Article ID 138063, 2013.

9Applied Bionics and Biomechanics



[7] L. Y. Chang and N. S. Pollard, “Method for determining kine-
matic parameters of theIn VivoThumb carpometacarpal
joint,” IEEE Transactions on Biomedical Engineering, vol. 55,
no. 7, pp. 1897–1906, 2008.

[8] X. Zhang, S.-W. Lee, and P. Braido, “Determining finger seg-
mental centers of rotation in flexion-extension based on sur-
face marker measurement,” Journal of Biomechanics, vol. 36,
no. 8, pp. 1097–1102, 2003.

[9] P. Cerveri, N. Lopomo, A. Pedotti, and G. Ferrigno, “Deriva-
tion of centers and axes of rotation for wrist and fingers in a
hand kinematic model: methods and reliability results,”
Annals of Biomedical Engineering, vol. 33, no. 3, pp. 402–412,
2005.

[10] J. S. Dai, “Finite displacement screw operators with embedded
Chasles’ motion,” Journal of Mechanisms and Robotics, vol. 4,
no. 11, article 041002, 2012.

[11] R. M. Murray, Z. Li, and S. S. Sastry, AMathematical Introduc-
tion to Robotic Manipulation, CRC Press, Boca Raton, FL,
1994.

[12] K. M. Lynch and F. C. Park, Modern Robotics: Mechanics,
Planning, and Control, Cambridge University Press, NY, 2017.

[13] R. W. Brockett, “Robotic Manipulators and the Product of
Exponential Formula,” in Mathematical Theory of Networks
and Systems, pp. 120–129, Springer Berlin Heidelberg, Berlin,
Heidelberg, 1984.

[14] G. Wei, A. H. Jones, and L. Ren, “Note on Geometric and
Exponential Expressions of Screw Displacement,” in Towards
Autonomous Robotic Systems. TAROS 2019. Lecture Notes in
Computer Science, vol 11649, K. Althoefer, J. Konstantinova,
and K. Zhang, Eds., pp. 401–412, Springer, Cham, 2019.

[15] E. Y. S. Chao, K.-N. An, P. W. Cooney III, and R. L. Linscheid,
Biomechanics of the Hand: A Basic Research Study, World Sci-
entific Publishing Co. Pte. Ltd., Farrer Road, Singapore, 1989.

[16] O. Bottema and B. Roth, Theoretical Kinematics, North Hol-
land Publishing Company, Amsterdam, 1979.

[17] J. J. Craig, Introduction to Robotics: Mechanics and Control,
Pearson Education, Inc., Upper Saddle River, New Jersey, 4th
edition, 2018.

[18] J. Denavit and R. S. Hartenberg, “A kinematic notation for
lower pair mechanisms based on matrices,” Journal of Applied
Mechanics, vol. 77, pp. 215–221, 1955.

[19] C. Dumont, G. Albus, D. Kubein-Meesenburg, J. Fanghänel,
K. M. Sturmer, and H. Nagerl, “Morphology of the interpha-
langeal joint surface and its functional relevance,” The Journal
of Hand Surgery, vol. 33, no. 1, pp. 9–18, 2008.

[20] L. K. Sara and D. A. Neumann, “Basic Structure and Function
of Human joints,” in Kinesiology of the Musculoskeletal System,
D. A. Neumann, Ed., Elsevier Inc., St. Louis, Missouri, 3rd edi-
tion, 2017.

[21] I. A. Kapandji, The Physiology of the Joints, Churchill Living-
stone, New York, 2nd ed. edition, 1982.

[22] M.-J. Tsai, H.-W. Lee, and H.-C. Chen, “Construction of a
Realistic Hand Model with 22 Joint Freedoms,” in 13th World
Congress in Mechanism and Machine Science, pp. A22–370,
Guanajuato, Mexico, 2011.

10 Applied Bionics and Biomechanics


	Gyroscope Sensor Based In Vivo Finger Axes of Rotation Identification Using Screw Displacement
	1. Introduction
	2. Screw Displacement Representation of Rigid Body Motion
	2.1. Exponential Derivation for Rotation
	2.2. Exponential Expression of Spatial Rigid-Body Motion

	3. Gyroscope Sensor-Based In Vivo Finger Joint Axis Identification
	3.1. Representation of Joint Axis Using Screw Displacement
	3.2. Gyroscope Sensor-Based In Vivo Finger Joint Axis of Rotation Detection

	4. Discussions
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

