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In the lifetime and reliability experiments, the censored samples play a fundamental and important role in order to control time
and cost. The researchers developed the censored sample schemes to solve the problems that arise by applying the previous
methods. Recently, Górny and Cramer (2018) proposed a new general type of censored sample called Type-II unified
progressive hybrid censored sample. In this paper, we present an overview of the Type-II unified progressive hybrid censored
sample. We used this censored sample to compute the maximum likelihood estimates of unknown parameters from the Pareto
distribution, as well as Bayesian estimates for unknown parameters under three different error loss functions. The point and
interval Bayesian predictions one- and two-sample Bayesian predictions from the Pareto distribution are shown. Simulation
studies are carried out to compare the efficacy of the various inference approaches. Finally, real data sets are examined to
determine the applicability of the proposed model and various estimating approaches.

1. Introduction

In order to time and expense constraints, experiments in
reliability analysis frequently end before all units in the test
have failed. In such circumstances, failure information is
only accessible for a portion of the sample, and only limited
information is given on all units that have not failed. Data
that has been censored is referred to as censored data. There
are several different censoring schemes such as Type-I and
Type-II. Since Epstein [1] presented Type-I hybrid censor-
ing, various hybrid censoring modifications have been devel-
oped to address the model’s flaws. Due to the fact that Type-
I hybrid censoring does not guarantee the observation of at
least one of the failures, Childs et al. [2] developed Type-II
hybrid censoring, which ensures the observation of at least
m failures from the n units put on the life test. However,
the main disadvantage of this censoring system is that the
experimenter has not controlled the test time. The disadvan-
tages of both Type-I and Type-II hybrid censoring are miti-
gated by Chandrasekar et al. [3]. In addition, the unified

hybrid censoring methods are even more flexible than
hybrid censoring techniques (see, e.g., Balakrishnan et al.
[4]; Huang and Yang [5]; Park and Balakrishnan [6]). In
unified hybrid censoring method, consider, n identical units
are placed on a life-testing device. Fix the integers k, m ∈ f
1, 2,⋯, ng, and T1 and T2∈ð0,∞Þ such that k <m and T1
< T2: The experiment is stopped at min ðmax ðT1, Ym:nÞ,
T2Þ if the kth failure occurs before time T1: Otherwise, the
experiment is stopped at min ðmax ðYk:n, T2Þ, Ym:nÞ%. We
can guarantee that the experiment will be completed at most
in time T2 with at least k failures, and if not, we can guaran-
tee exactly k failures under this censoring strategy.

If one of these units is inadvertently broken but the
experiment has not yet been terminated, this unit must be
removed from the life test, and the progressive censoring
methodology is the best method for this case. Complete fail-
ures of m units will be observed in Type-II progressive cen-
soring methods. When the first failure occurs, R1 of the n − 1
remaining units is chosen at random and removed from the
lifetime test. R2 of the n − R1 − 2 surviving units is randomly
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selected and eliminated at the second observed failure.
Finally, Rm surviving units are removed after the mth failure,
and the experiment comes to an end. We will denote the m
ordered failure times thus observed by Y1:m:n,⋯, Ym:m:n. It is
evident that n =m +∑m

k=1Rk.
The downsides of the Type-II progressive censoring sys-

tem are that if the units are highly reliable, the experiment
can take a long time. Therefore, Kundu and Joarder [7]
and Childs et al. [8] proposed a progressive hybrid censoring
scheme (PHCS) in which the life-testing experiment is
ended at time min fYm:m:n, Tg, with T ∈ ð0,∞Þ. For more
details, we refer our readers to Tomer and Panwar [9],
Panahi [10], Almarashi et al. [11], and Moihe El-Din et al.
[12, 13]. On the other hand, the disadvantage of the PHCS
is that it cannot be applied when only a few failures are likely
to occur before time T. For this reason, Cho et al. [14] pro-
posed a Type-I generalized PHCS in which the life-testing
experiment is terminated at the time min fmax ðT , Yk:m:nÞ,
Ym:m:ng for prefixed k <mf1, 2,⋯, ng. Moreover, Lee et al.
[15] proposed Type-II generalized PHCS, in which the life-
testing experiment is terminated at time min fmax ðT1,
Ym:m:nÞ, T2g for prefixed T1 < T2ð0,∞Þ. For recent work
on this topic, see, for example, Moihe El-Din and Nagy
[16], Nagy et al. [17, 18], and Nagy and Alrasheedi [19].

While generalized PHCS are superior to Type-I and
Type-II PHSC, they do have significant disadvantages.
Therefore, Górny and Cramer [20] developed a general type
of generalized PHCS, called Type-II unified PHCS to address
some of the shortcomings of these schemes. Under Type-II
unified PHCS, we can guarantee that the lifetime experiment
will be completed at no later than T2 with at least k number
of unit failures; this ensures that the statistical inference is
carried out with more efficiency. For recent work on the
Type-II unified PHCS, see, for example, Górny and Cramer
in [21] and Kim and Lee in [22].

The following is how the rest of the article is structured: Sec-
tion 2 provides an overview of the Type-II unified PHCS. Sec-
tion 3 determines the maximum likelihood estimates (ML) of
unknown parameters, while Section 4 derives the Bayesian esti-
mates for the unknown parameters with three loss functions.
Sections 5 and 6 calculate the point and interval Bayesian pre-
dictions for one- and two-sample Bayesian predictions, respec-
tively. Simulation studies are carried out in Section 7 to
compare the efficacy of the offered inference methodologies.
A real data is utilized to demonstrate the theoretical findings
in Section 8. Finally, the paper is concluded in Section 9.

2. The Type-II Unified PHCS and
Likelihood Function

Consider a life test in which n identical items are put on test.
Then, the Type-II unified PHCS may be described as follows.
Let T1, T2 ∈ ð0,∞Þ and integer k,m ∈ f1, 2,⋯, ng are pre-
fixed such that T1 < T2 and k <m with R = ðR1, R2,⋯, RmÞ
is also prefixed integers satisfying n =m + R1 +⋯ + Rm. At
the time of first failure, R1 of the remaining units are randomly
removed. Similarly, at the time of the second failure R2, of the
remaining units are removed and so on. If the kth failure

occurs before time T1, the experiment is terminated at min f
max ðYm:m:n, T1Þ, T2g. If the kth failure occurs between T1
and T2, the experiment is terminated at min ðYrm:m:n, T2Þ
and if the kth failure occurs after time T2, the experiment is ter-
minated at Yk:n. Under this censoring scheme, we can guaran-
tee that the experiment would be completed at most in timeT2
with at least k failure and if not, we can guarantee exactly k
failures. Let D1 and D2 denote the numbers of observed fail-
ures up to time T1 and T2, respectively. In addition, d1 and
d2 are the observed values of D1 and D2, respectively.

Under the UPHCS described above, we have one of the
following types of observations:

(1) If the kth failure occurs before time T1, the experi-
ment is terminated at min fmax ðYm:m:n, T1Þ, T2g
and then we have the following three subcases:

(a) If the mth failure occurs before T1, i.e., 0 < Yk:m:n <
Ym:m:n < T1 < T2, then instead of terminating the test
by withdrawing the remaining Rm items after themth

failure, we continue to observe failures (without any
further withdrawals) up to the experiment end at
time T∗ = T1. Therefore, the observed failure times
are fY1:m:n<⋯<Yk:m:n<⋯<Ym:m:n<⋯<Yd1:n

g
(b) If the mth failure occurs between T1 and T2, i.e., 0 <

Yk:m:n < T1 < Ym:m:n < T2, then the experiment will
end at T∗ = Ym:m:n and the observed failure times are
fY1:m:n<⋯<Yk:m:n<⋯<Yd1:m:n<⋯<Ym:m:ng

(c) If the mth failure occurs after T2, i.e., 0 < Yk:m:n <
T1 < T2 < Ym:m:n, then the experiment will end at
T∗ = T2 and the observed failure times are fY1:m:n<
⋯<Yk:m:n<⋯<Yd1:m:n<⋯<Yd2:m:ng

(2) If the time T1 pass before the kth, then the experi-
ment will end at min fmax ðYk:m:n, T2Þ, Ym:m:ng
and then we have the following three subcases:

(a) If T2 passes before the kth failure occurs, i.e., 0
< T1 < T2 < Yk:m:n < Ym:m:n, then the experiment
will end at T∗ = Yk:m:n and we will observe f
Y1:m:n<⋯<Yd1:m:n<⋯<Yd2:m:n<⋯<Yk:m:ng

(b) If the mth failure occurs before T2, i.e., 0 < T1 <
Yk:m:n < Ym:m:n < T2, then the experiment will
end at T∗ = Ym:m:n and we will observe fY1:m:n

<⋯<Yd1:m:n<⋯<Yk:m:n<⋯<Ym:m:ng
(c) If the time T2 between Yk:m:n and Ym:m:n, i.e., 0

< T1 < Yk:m:n < T2 < Ym:m:n, then the experiment
will end at T∗ = T2 and the observed failure
times are fY1:m:n<⋯<Yd1:m:n<⋯<Yk:m:n<⋯<
Yd2:m:ng
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Let Y be the Type-II unified progressive hybrid censored
sample from distribution with the probability density func-
tion (PDF) gðyÞ, and the cumulative distribution function
(CDF) GðyÞ, then, based on the Type-II unified PHCS, the
likelihood function is given by

LY Yð Þ =

Yd1
i=1

〠
m

j=1
~Rj + 1
� �" #Yd1

i=1
g yi:m:nð Þ �G yi:m:nð Þ� �~Ri �G T1ð Þ� �~Rt1 in Case 1a,

Ym
i=1

〠
m

j=1
~Rj + 1
� �" #Ym

i=1
g yi:m:nð Þ �G yi:m:nð Þ� �~Ri in Case 1b,

Yd2
i=1

〠
m

j=1
~Rj + 1
� �" #Yd2

i=1
g yi:m:nð Þ �G yi:m:nð Þ� �~Ri �G T2ð Þ� �~Rt2 in Case 1c,

Yk
i=1

〠
m

j=1
~Rj + 1
� �" #Yk

i=1
g yi:m:nð Þ �G yi:m:nð Þ� �~Ri in Case 2a,

Ym
i=1

〠
m

j=1
~Rj + 1
� �" #Ym

i=1
g yi:m:nð Þ �G yi:m:nð Þ� �~Ri in Case 2b,

Yd2
i=1

〠
m

j=1
~Rj + 1
� �" #Yd2

i=1
g yi:m:nð Þ �G yi:m:nð Þ� �~Ri �G T2ð Þ� �~Rt2 in Case 2c,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
ð1Þ

Therefore, these cases can be combined and obtained as

L θ ∣ Yð Þ
Yd∗
i=1

〠
m

j=1
~Rj + 1
� �" #Yd∗

i=1
g yi:m:nð Þ �G yi:m:nð Þ� �~Ri �G T1ð Þ� �~Rt1 �G T2ð Þ� �~Rt2 ,

ð2Þ

where �G = 1 −G and

Y =

y1:m:n,⋯, yk:m:n,⋯, ym−1:m:n, ym:m:n,⋯, yd1:nð Þ in Case 1a,
y1:m:n,⋯, yk:m:n,⋯, yd1:m:n,⋯, ym:m:nð Þ in Case 1b,
y1:m:n,⋯, yk:m:n,⋯, yd1:m:n,⋯, yd2:m:nð Þ in Cases 1c,
y1:m:n,⋯, yd1:m:n,⋯, yd2:m:n,⋯, yk:m:nð Þ in Case 2a,

y1:m:n,⋯, yd1 ,⋯, yk:m:n,⋯, ym:m:n

� �
in Case 2b,

y1:m:n,⋯, yd1:m:n,⋯, yk:m:n,⋯, yd2:m:nð Þ in Cases 2c,

8>>>>>>>>>>>><>>>>>>>>>>>>:

d∗ =

d1 in Case 1a,
m in Cases 1b and 2b,
d2 in Cases 1c and 2c,
k in Case 2a,

8>>>>><>>>>>:

~R =

R1,⋯, Rk,⋯, Rm−1, 0,⋯, 0, Rt1

� �
in Case 1a,

R1,⋯, Rk,⋯, Rd1
,⋯, Rm

� �
in Case 1b,

R1,⋯, Rk,⋯, Rd1
,⋯, Rt2

� �
in Cases 1c,

R1,⋯, Rd1
,⋯, Rd2

,⋯, Rk∗
� �

in Case 2a,

R1,⋯, Rd1
,⋯, Rk,⋯, Rm

� �
in Case 2b,

R1,⋯, Rd1
,⋯, Rk,⋯, Rt2

� �
in Cases 2c,

ð3Þ

with ~Rk∗ = n − k −∑k−1
j=1 ~Rj,~Rt1

is the number of surviving
units that are eliminated at T1, given by

~Rt1
=

n − d1 − 〠
m−1

j=1
~Rj in Case 1a,

0 in all other cases,

8>><>>: ð4Þ

and ~Rt2
is the number of surviving units that are eliminated

at T2, given by

~Rt2
=

n − d2 − 〠
d2

j=1
~Rj in Cases 1c and 2c,

0 in all other cases:

8>><>>: ð5Þ

Special cases: The Type-II unified PHCS is a generaliza-
tion of many censoring schemes, for example:

(1) If Ri = 0 for all i <m and Rm = n −m, the Type-II
unified PHCS becomes unified HCS

(2) If T2 =∞, the Type-II unified PHCS becomes gener-
alized Type-I PHCS

(3) If k =m, the Type-II unified PHCS becomes general-
ized Type-II PHCS

(4) If T1 = 0 and k =m, the Type-II unified PHCS
becomes Type-I PHCS

(5) If T2 =∞ and k = 0, the Type-II unified PHCS
becomes Type-II PHCS

Note: In order for the experiment to be terminated at
time T1, Rm must be not equal to zero; if Rm is equal to zero
and the mth failure occurs before T1, then the experiment is
terminated at Ym:m:n.

3. The ML Estimation

In this section, we derive the ML inference of the unknown
parameters λ and θ for the Pareto distribution which was
introduced by Pareto [23] as a model for the distribution
of income, based on the Type-II unified PHCS. Using the
exponential form, Pareto distribution has the following den-
sity function (PDF) and distribution function (CDF), respec-
tively, given by

g y ∣ λ, θð Þ = λ

y
exp −λ ln y

θ

� �h i
, λ, θ > 0, y ≥ θ, ð6Þ

G y ∣ λ, θð Þ = 1 − exp −λ ln y%
θ

� 	
 �
, λ, θ > 0, y ≥ θ:%:

ð7Þ
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From (7), (6), and (2), the likelihood function of λ, θ
under the Type-II unified PHCS can be derived as

L λ, θ ∣ Yð Þ =
Yd∗
i=1

〠
m

j=i
~Rj + 1
� �" #

λd
∗

�
Yd∗

i=1

1
yi

 !
exp −λ η y

� �
+ ~Rt1

ln T1 + ~Rt2
ln T2 − n ln θ

h in o
,

ð8Þ

where ηðyÞ =∑d∗

i=1ð~Ri + 1Þ ln yi, and yi = yi:d∗:n for simplicity
of notation.

Since the likelihood function (8) is an increasing func-
tion in θ, but θ is the lower bound of yi for all yi ∈ Y, so its
maximum value will be attained at the maximum value y1
of θ. From (8), the log-likelihood function of ðλ, θÞ is given
by

ln L λ, θ ∣ Yð Þ½ �∝ d∗ ln λð Þ
− λ η% y

� �
+ ~Rt1

ln T1 + ~Rt2
ln T2 − n ln θð Þ

h i
:

ð9Þ

To maximize relative to λ, differentiate (9) with respect
to λ and solve the equation

∂ ln L λ, θ ∣ Yð Þ½ �
∂λ

= 0, ð10Þ

so the ML estimator bλML of λ is obtained as

bλML =
d∗

η y
� �

+ ~Rt1
ln T1 + ~Rt2

ln T2 − n ln y1:nð Þ
: ð11Þ

3.1. Approximate Confidence Intervals for λ and θ. For large
d∗, the observed Fisher information matrix of the parame-
ters λ and θ is given by

I bλ , bθ� �
=

−
∂2 ln L λ, θ ∣ Yð Þ

∂λ2
−
∂2 ln L λ, θ ∣ Yð Þ

∂λ∂θ

−
∂2 ln L λ, θ ∣ Yð Þ

∂θ∂λ
−
∂2 ln L λ, θ ∣ Yð Þ

∂θ2

26664
37775 bλML ,bθML

� �,

ð12Þ

where

∂2 ln L λ, θ ∣ Yð Þ
∂λ2

= −
d∗

λ2
,

∂2 ln L λ, θ ∣ Yð Þ
∂θ2

= −
nλ

θ2
,

∂2 ln L λ, θ ∣ Yð Þ
∂λ∂θ

= −
n
θ
,

ð13Þ

and a 100ð1 − αÞ% two-sided approximate confidence inter-
vals for the parameters λ and θ are then

bλ − zα/2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
V bλ� �r

, bλ + zα/2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
V bλ� �r� 	

,

bθ − zα/2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
V bθ� �r

, bθ + zα/2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
V bθ� �r� 	

,
ð14Þ

respectively, where VðbλÞ and VðbθÞ are the estimated

variances of bλML and bθML, which are given by the first

and the second diagonal element of I−1ðbλ , bθÞ, and zα/2
is the upper ðα/2Þ percentile of the standard normal
distribution.

4. Bayesian Estimation

In this study, we investigate three forms of loss functions for
Bayesian estimation. The first is the squared error loss func-
tion (SELF), which is a symmetric function that values over-
estimation and underestimation equally when estimating
parameters. The LINEX loss function (LLF), which is asym-
metric and offers different weights due to overestimation
and underestimation, is the second option. The generaliza-
tion of the entropy loss function is the third loss function
(GELF).

Under the assumption that both parameters λ and θ are
unknown, we can use the joint prior density function of λ
and θ proposed by Lwin [24] and generalized by Arnold
and Press [25] for Bayesian Estimations. The generalized
Lwin prior is given by

π λ, θð Þ∝ λa1

θ
exp −λ ln a2 − b1 ln θð Þ½ �, λ > 0, 0 < θ < d,

ð15Þ

where a1, b1, a2, b2 are positive constants and bb12 < a2.
Upon combining (8) and (15), given UPHCS, the poste-

rior density function of λ, θ is obtained as

π∗ λ, θ ∣ Yð Þ = L λ, θ ∣ Yð Þπ λ, θð ÞÐ∞
0 L λ, θ ∣ Yð Þπ λ, θð Þdλdθ

= I−1λd
∗+a1θ−1 exp −λη y

� �
+ ~Rt1

ln T1
hn

+ ~Rt2
ln T2 − n + b1ð Þ ln θ + ln a2

io
,

ð16Þ
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where

I =
ðδ
0

ð∞
0
λd

∗+a1θ−1 exp −λ η y
� �

+ ~Rt1
ln T1

hn
+ ~Rt2

ln T2 − n + b1ð Þ ln θ + ln a2
io

dλdθ

= Γ d∗ + a1ð Þ
n + b1

η y
� �

+ ~Rt1
ln T1 + ~Rt2

ln T2
h

− n + b1ð Þ ln δ + ln a2
i− d∗+a1ð Þ

,

ð17Þ

with δ =min ðy1:n, b2Þ.
4.1. The Bayesian Estimation under SELF. A commonly used
loss function is the squared error loss function (SELF)
defined as follows:

LBS bβ , β� �
∝ bβ − β
� �2 ð18Þ

The Bayesian estimate bβBS for the unknown parameter β

, relative to the squared error loss function, is given by

bβBS = Eπ∗ β½ � ð19Þ

By using (16), the Bayesian estimator of λ under the
squared error loss function is the mean of the posterior den-
sity function, given by

bλBS =
ðδ
0

ð∞
0
λπ∗ λ, θ ∣ Yð Þdλdθ: ð20Þ

Hence, the Bayesian estimator of λ under the squared
error loss function is obtained as

bλBS =
d∗ + a1

η y
� �

+ ~Rt1
ln T1 + ~Rt2

ln T2 − n + b1ð Þ ln δ + ln a2
,

ð21Þ

and the Bayesian estimator of θ under the squared error loss
function is obtained as

where

Φ y, yð Þ =
ð∞
0

tye−t

t + y
dt: ð23Þ

A partial tabulation of ψðy, yÞ = ðy/ΓðyÞÞΦðy − 1, yÞ has
been provided by Arnold and Press in [25].

4.2. The Bayesian Estimation under GELF. Another com-
monly used asymmetric loss function is the general entropy
(GE) loss function given by

LBE bβ , β� �
∝

bβ
β

 !ω

− ω ln
bβ
β

 !
− 1: ð24Þ

For ω > 0, a positive error has a more serious effect than
a negative error, and for ω < 0, a negative error has a more
serious effect than a positive error. In this case, the Bayesian

estimate bβBE relative to the GE loss function is given by

bθBE = Eπ∗ β½ �−ωf g−1
ω , ð25Þ

provided that the involved expectation Eπ∗ ½β�−ω is finite. It
can be shown that, when ω = 1, the Bayesian estimate in
Eq. (25) coincides with the Bayesian estimate under the
weighted squared error loss function. Similarly, when ω = −
1, the Bayesian estimate in Eq. (25) coincides with the Bayes-
ian estimate under the SE loss function.

bθBS = ðδ
0

ð∞
0
θπ∗ λ, θ ∣ Yð Þdλdθ = I−1δ

ð∞
0

λd
∗+a1

λ n + b1ð Þ + 1 exp −λ η y
� �

+ ~Rt1
ln T1 + ~Rt2

ln T2 − n + b1ð Þ ln δ + ln a2
h in o

dλ

= I−1δ
n + b1ð Þ η y

� �
+ ~Rt1

ln T1 + ~Rt2
ln T2 − n + b1ð Þ ln δ + ln a2

h i− d∗+a1ð Þ

×
ð∞
0

td
∗+a1e−t

t + η y
� �

+ ~Rt1
ln T1 + ~Rt2

ln T2 − n + b1ð Þ ln δ + ln a2
h i

/ n + b1ð Þ
dt

= δ

Γ d∗ + a1ð ÞΦ d∗ + a1,
η y
� �

+ ~Rt1
ln T1 + ~Rt2

ln T2 − n + b1ð Þ ln δ + ln a2
h i

n + b1ð Þ

0@ 1A,

ð22Þ
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By using (16), the Bayesian estimator of λ under GELF is
given by

and the Bayesian estimator of θ under GEF is obtained as

4.3. The Bayesian Estimation under LLF. Under the assump-

tion that the minimal loss occurs at bβ = β, the LINEX loss
function can be expressed as

LBL bβ , β� �
= exp ε bβ − β

� �h i
− ε bβ − β
� �

− 1 ð28Þ

where ε ≠ 0. The sign and magnitude of the shape parameter
v represent the direction and degree of asymmetry, respec-
tively. It is easily seen the (unique) Bayesian estimator of θ,
denoted by θ̂Lunder the LINEX loss function, and the

valuebβLwhich minimizesEπ∗ ½LLðbβ , βÞ�is given by

bβBL =
−1
ε

ln Eπ∗ exp −υβð Þ½ �f g, ð29Þ

provided that the involved expectation Eπ∗ ½exp ð−υβÞ� is
finite.

By using (16), the Bayesian estimator of λ under LLF is
given by

and the Bayesian estimator of θ under LLF is obtained as

bλBE =
ðδ
0

ð∞
0
λ−ωπ∗ λ, θ ∣ Yð Þdλdθ

 �−1
ω

=
Γ d∗ + a1 − ωð Þ η y

� �
+ ~Rt1

ln T1 + ~Rt2
ln T2 − n + b1ð Þ ln δð Þ + ln a2ð Þ

h i d∗+a1ð Þ

Γ d∗ + a1ð Þ η y
� �

+ ~Rt1
ln T1 + ~Rt2

ln T2 − n + b1ð Þ ln δð Þ + ln a2ð Þ + ε
h i d∗+a1−ωð Þ

8><>:
9>=>;

−1
ω ð26Þ

bθBE =
ðδ
0

ð∞
0
θ−ωπ∗ λ, θ ∣ Yð Þdλdθ

 �−1
ω

= I−1
ðδ
0

Γ d∗ + a1 + 1ð Þ
θ1−ω

η y
� �

+ ~Rt1
ln T1 + ~Rt2

ln T2 − n + b1ð Þ ln θð Þ + ln a2ð Þ
h i d∗+a1+1ð Þ

dθ
 �

:

ð27Þ

bλBL =
−1
ε

ln
ðδ
0

ð∞
0

exp −υλð Þπ∗ λ, θ ∣ Yð Þdλdθ
 �

= −1
ε

ln
η y
� �

+ ~Rt1
ln T1 + ~Rt2

ln T2 − n + b1ð Þ ln δð Þ + ln a2ð Þ
h i d∗+a1ð Þ

η y
� �

+ ~Rt1
ln T1 + ~Rt2

ln T2 − n + b1ð Þ ln δð Þ + ln a2ð Þ + ε
h i d∗+a1ð Þ

8><>:
9>=>;,

ð30Þ

bθBL =
−1
ε

ln
ðδ
0

ð∞
0

exp −υθð Þπ∗ λ, θ ∣ Yð Þdλdθ
 �

= −1
ε

ln I−1
ðδ
0

Γ d∗ + a1 + 1ð Þ
θ

exp −υθð Þ


× η y
� �

+ ~Rt1
ln T1 + ~Rt2

ln T2 − n + b1ð Þ ln θð Þ + ln a2ð Þ
h i d∗+a1+1ð Þ

dθ
�
:

ð31Þ
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5. One-Sample Bayesian Prediction

For q = 1, 2,⋯, ~Rj, let Yq:~Rj
denote the qth order statistic out

of ~Rj removed units at stage j. Then, the conditional density
function of Yq:~Rj

, given the observed Type-II unified PHCS,

is given, see Basak et al. [26], by

g Yq:~Rj
∣ Y

� �
= g y ∣ Yð Þ

=
~Rj!

q − 1ð Þ! ~Rj − q
� �

!

G yð Þ − G yj
� �h iq−1

1 − G yð Þ½ �~Rj−qg yð Þ

1 −G yj
� �h i~Rj

, y > yj,

ð32Þ

where

j =

1,⋯, k,⋯,m − 1, t1 in Case 1a,
1,⋯, k,⋯, d1,⋯,m in Case 1b,
1,⋯, k,⋯, d1,⋯, t2 in Cases 1c,
1,⋯, d1,⋯, d1,⋯, k∗ in Case 2a,
1,⋯, d1,⋯, k,⋯,m in Case 2b,
1,⋯, d1,⋯, k,⋯, t2 in Cases 2c,

8>>>>>>>>>>><>>>>>>>>>>>:
ð33Þ

with yt1 = T1 and yt2 = T2.
By using (6) and (7) in (32), given Type-II unified PHCS,

the conditional density function of Yq:~Rj
is then given as fol-

lows:

g y ∣ Yð Þ = 〠
q−1

h=0
Ch

λ

y
exp −λ ϖh ln y − ln yj

� �h in o
, y > yj,

ð34Þ

where Ch = ð−1Þh q − 1
h

 !
~Rj!/ðq − 1Þ!ð~Rj − qÞ! and ϖh = h

+ ~Rj − q + 1 for h = 0,⋯, q − 1:.
Upon combining (16) and (34), the Bayesian predictive

density function of Yq:~Rj
, given UPHCS, is obtained as

y ∣ Yð Þ = I−1 〠
q−1

h=0
Ch

ðδ
0

ð∞
0

λd
∗+a1+1

θy
exp

� −λ η y
� �

+ ~Rt1
ln T1 + ~Rt2

ln T2 − n + b1ð Þ ln θ + ln a2
h in o

× exp −λ ϖh ln y − ln yj
� �h in o

dλdθ

= I−1Γ d∗ + a1 + 1ð Þ
n + b1ð Þ 〠

q−1

h=0

Ch

y
η y
� �

+ ~Rt1
ln T1 + ~Rt2

ln T2
h

− n + b1ð Þ ln δ + ln a2 + ϖh ln y − ln yj
� �i− d∗+a1+1ð Þ

:

ð35Þ

The Bayesian predictive survival function of Yq:~Rj
, given

Type-II unified PHCS, is given as

�G∗ t ∣ Yð Þ =
ð∞
t
g∗ y ∣ Yð Þdy = I−1Γ d∗ + a1ð Þ

n + b1ð Þ 〠
q−1

h=0

Ch

ϖh

� η y
� �

+ ~Rt1
ln T1 + ~Rt2

ln T2
h
− n + b1ð Þ ln δ + ln a2 + ϖh ln t − ln yj

� �i− d∗+a1ð Þ
:

ð36Þ

The Bayesian point predictor of Y under the squared
error loss function is the mean of the predictive density,
given by

Ŷq:~Rj
=
ð∞
0
yf ∗ y ∣ Yð Þdy, ð37Þ

where g∗ðy ∣ YÞ is given as in (35). The Bayesian predictive
bounds of 100ð1 − αÞ% two-sided equi-tailed (ET) interval
for Ys:n can be obtained by solving the following two equa-
tions:

�G∗ LET ∣ Yð Þ = α

2 and �G∗ UET ∣ Yð Þ = 1 − α

2 , ð38Þ

where �G∗ðt ∣ YÞ is given as in (36), and LET and UET denote
the lower and upper bounds, respectively.

6. Two-Sample Bayesian Prediction

Let Y1:ℓ:m ≤ Y2:ℓ:N ≤⋯≤ Yℓ:ℓ:N be a future independent pro-
gressive Type-II censored sample from the same population
with censoring scheme S = ðS1,⋯, SℓÞ. In this section, we
develop a general procedure for deriving the point and inter-
val predictions for Ys:ℓ:N , 1 ≤ s ≤ ℓ, based on the observed
UPHCS. The marginal density function of Ys:ℓ:N is given
by Balakrishnan et al. [27] as

gYs:ℓ:N
ys ∣ θð Þ = CN ,s 〠

s−1

h=0
ch,s−1 1 −G ysð Þ½ �Wh,s−1g ysð Þ, ð39Þ

where 1 ≤ s ≤ q,

CN ,s =NðN − S1 − 1Þ⋯ ðN − S1 ⋯−Ss−1 + 1Þ,Wh,s =N − S1
−⋯− Ss−h−1 − s + h + 1,and ch,s−1 = ð−1Þh
f½Qh

u=1∑
s−h+u−1
%ε=s−h ðSε + 1Þ�½Qs−h−1

u=1 ∑s−h−1
ε=u ðSε + 1Þ�g−1:.

Upon substituting (7) and (6) in (39), the marginal den-
sity function of Ys:ℓ:N is then obtained as

gYs:ℓ:N
ys ∣ θð Þ = CN ,s 〠

s−1

h=0
ch,s−1

λ

ys
exp −λ Wh,s ln

ys
%θ

� �h in o
,

ys > 0:
ð40Þ
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Table 1: The values of MSE and EB of ML and Bayesian estimates for λ based on the different Type-II unified PHCSs.

n,m, kð Þ Sch. T1, T2ð Þ bλML

bλBbλBS
bλBE

bλBL
IP NIP IP NIP IP NIP

MSE

(50,20,10)
1

(5,10)

0.2637 0.2075 0.2341 0.1954 0.2191 0.1999 0.2247

2 0.2823 0.2215 0.2516 0.2083 0.2353 0.2133 0.2414

(50,30,15)
1 0.2192 0.1891 0.2053 0.1837 0.1989 0.1851 0.2006

2 0.2193 0.1899 0.2064 0.1854 0.2010 0.1861 0.2020

(50,40,20)
1 0.2009 0.1794 0.1920 0.1768 0.1889 0.1768 0.1890

2 0.1996 0.1782 0.1904 0.1751 0.1869 0.1755 0.1873

(50,20,10)
1

(10,20)

0.2382 0.1868 0.2107 0.1759 0.1972 0.1799 0.2022

2 0.1949 0.2158 0.2333 0.1875 0.2118 0.1920 0.2406

(50,30,15)
1 0.1503 0.1331 0.1420 0.1326 0.1412 0.1314 0.1400

2 0.1672 0.1452 0.1555 0.1419 0.1516 0.1425 0.1523

(50,40,20)
1 0.1672 0.1452 0.1555 0.1419 0.1516 0.1425 0.1523

2 0.1877 0.1676 0.1779 0.1633 0.1732 0.1647 0.1747

(50,20,10)
1

(15,30)

0.2144 0.2300 0.2474 0.2531 0.2724 0.2356 0.2534

2 0.1754 0.1942 0.2100 0.2186 0.2363 0.2005 0.2165

(50,30,15)
1 0.1208 0.1320 0.1396 0.1193 0.1271 0.1183 0.1260

2 0.1098 0.1173 0.1241 0.1311 0.1387 0.1208 0.1278

(50,40,20)
1 0.1505 0.1307 0.1400 0.1277 0.1364 0.1283 0.1371

2 0.1770 0.1581 0.1674 0.1539 0.1627 0.1554 0.1643

EB

(50,20,10)
1

(5,10)

0.1102 0.0459 0.0547 0.0086 0.0131 0.0326 0.0397

2 0.1178 0.0516 0.0618 0.0141 0.0199 0.0382 0.0465

(50,30,15)
1 0.0669 0.0265 0.0299 0.0006 0.0021 0.0175 0.0202

2 0.0642 0.0232 0.0261 0.0033 0.0024 0.0140 0.0162

(50,40,20)
1 0.0515 0.0167 0.0184 0.0065 0.0064 0.0088 0.0099

2 0.0527 0.0187 0.0205 0.0039 0.0036 0.0110 0.0122

(50,20,10)
1

(10,20)

0.0992 0.0413 0.0492 0.0077 0.0118 0.0293 0.0357

2 0.1060 0.0464 0.0556 0.0127 0.0179 0.0344 0.0419

(50,30,15)
1 0.0319 0.0030 0.0025 0.0005 0.0019 0.0111 0.0111

2 0.0480 0.0113 0.0130 0.0030 0.0022 0.0030 0.0041

(50,40,20)
1 0.0464 0.0150 0.0166 0.0051 0.0061 0.0079 0.0089

2 0.0474 0.0168 0.0185 0.0035 0.0032 0.0099 0.0110

(50,20,10)
1

(15,30)

0.2071 0.2243 0.2417 0.2484 0.2677 0.2303 0.2480

2 0.1674 0.1884 0.2040 0.2138 0.2314 0.1950 0.2111

(50,30,15)
1 0.0287 0.0027 0.0023 0.0244 0.0254 0.0100 0.0100

2 0.0470 0.0102 0.0117 0.0119 0.0119 0.0027 0.0037

(50,40,20)
1 0.0520 0.0233 0.0254 0.0044 0.0054 0.0168 0.0184

2 0.0510 0.0225 0.0245 0.0036 0.0046 0.0160 0.0176
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Table 2: The values of MSE and EB of ML and Bayesian estimates for θ based on the different Type-II unified UHCSs.

n,m, kð Þ Sch. T1, T2ð Þ bθML

bθBbθBS
bθBE

bθBL
IP NIP IP NIP IP NIP

MSE

(50,20,10)
1

(5,10)

0.0820 0.0604 0.0673 0.0671 0.0674 0.0544 0.0598

2 0.0911 0.0671 0.0674 0.0672 0.0675 0.0604 0.0664

(50,30,15)
1 0.0771 0.0569 0.0634 0.0570 0.0572 0.0512 0.0563

2 0.0857 0.0632 0.0635 0.0633 0.0636 0.0569 0.0626

(50,40,20)
1 0.0758 0.0602 0.0604 0.0603 0.0605 0.0542 0.0596

2 0.0842 0.0601 0.0603 0.0602 0.0604 0.0541 0.0595

(50,20,10)
1

(10,20)

0.0738 0.0544 0.0606 0.0604 0.0607 0.0489 0.0538

2 0.0820 0.0604 0.0607 0.0605 0.0608 0.0544 0.0598

(50,30,15)
1 0.0694 0.0512 0.0631 0.0513 0.0515 0.0461 0.0507

2 0.0771 0.0630 0.0631 0.0631 0.0633 0.0567 0.0623

(50,40,20)
1 0.0682 0.0600 0.0601 0.0601 0.0602 0.0540 0.0594

2 0.0758 0.0600 0.0601 0.0600 0.0602 0.0540 0.0594

(50,20,10)
1

(15,30)

0.0664 0.0489 0.0545 0.0544 0.0546 0.0440 0.0484

2 0.0738 0.0544 0.0546 0.0544 0.0547 0.0489 0.0538

(50,30,15)
1 0.0625 0.0461 0.0568 0.0461 0.0464 0.0415 0.0456

2 0.0694 0.0567 0.0568 0.0568 0.0570 0.0510 0.0561

(50,40,20)
1 0.0614 0.0540 0.0541 0.0600 0.0542 0.0486 0.0535

2 0.0682 0.0599 0.0600 0.0540 0.0601 0.0486 0.0593

EB

(50,20,10)
1

(5,10)

0.0555 0.0005 0.0010 0.0006 0.0021 0.0004 0.0005

2 0.0617 0.0006 0.0009 0.0005 0.0020 0.0005 0.0006

(50,30,15)
1 0.0519 0.0034 0.0048 0.0045 0.0059 0.0031 0.0034

2 0.0577 0.0037 0.0052 0.0048 0.0063 0.0034 0.0037

(50,40,20)
1 0.0526 0.0031 0.0045 0.0041 0.0056 0.0028 0.0030

2 0.0584 0.0029 0.0043 0.0039 0.0053 0.0026 0.0028

(50,20,10)
1

(10,20)

0.0500 0.0005 0.0009 0.0005 0.0019 0.0004 0.0005

2 0.0555 0.0005 0.0008 0.0005 0.0018 0.0005 0.0005

(50,30,15)
1 0.0467 0.0031 0.0043 0.0041 0.0053 0.0028 0.0031

2 0.0519 0.0036 0.0049 0.0046 0.0060 0.0032 0.0035

(50,40,20)
1 0.0473 0.0020 0.0033 0.0030 0.0043 0.0018 0.0020

2 0.0526 0.0019 0.0032 0.0029 0.0042 0.0017 0.0019

(50,20,10)
1

(15,30)

0.0450 0.0004 0.0008 0.0005 0.0017 0.0003 0.0004

2 0.0500 0.0005 0.0007 0.0004 0.0016 0.0004 0.0005

(50,30,15)
1 0.0421 0.0028 0.0039 0.0036 0.0048 0.0025 0.0028

2 0.0467 0.0032 0.0044 0.0041 0.0054 0.0029 0.0032

(50,40,20)
1 0.0426 0.0019 0.0031 0.0029 0.0041 0.0017 0.0019

2 0.0473 0.0017 0.0031 0.0026 0.0038 0.0015 0.0017
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Table 3: The ACL of 95% and 99% confidence intervals and corresponding CP for bλML and bλB at the different priors and Type-II unified
PHCSs.

n,m, kð Þ Sch:

95% 99%bλML

bλB bλML

bλB
IP NIP IP NIP

T1, T2ð Þ ACL CP ACL CP ACL CP ACL CP ACL CP ACL CP

(50,20,10)
1

(5,10)

0.988 0.985 0.940 0.979 0.968 0.996 1.391 0.990 1.240 0.979 1.257 1.000

2 0.988 0.977 0.940 0.971 0.968 0.993 1.391 0.986 1.240 0.977 1.253 0.989

(50,30,15)
1 0.800 0.981 0.761 0.973 0.786 0.981 1.134 0.991 1.003 0.988 1.089 0.983

2 0.682 0.985 0.650 0.981 0.654 0.997 0.924 0.986 0.820 0.982 0.869 0.975

(50,40,20)
1 0.532 1.000 0.506 0.979 0.513 0.978 0.758 0.995 0.672 1.000 0.716 0.989

2 0.410 0.986 0.384 0.977 0.509 1.000 0.752 1.000 0.667 1.000 0.711 1.000

(50,20,10)
1

(10,20)

0.677 0.991 0.643 0.988 0.675 0.995 0.954 0.976 0.849 0.980 0.875 0.985

2 0.711 0.986 0.675 0.982 0.707 0.989 1.001 0.977 0.891 1.000 0.917 0.978

(50,30,15)
1 0.789 0.995 0.750 1.000 0.775 0.983 1.109 0.984 0.989 0.974 1.004 0.989

2 0.800 1.000 0.761 1.000 0.786 0.975 1.125 0.986 1.003 0.982 1.018 0.984

(50,40,20)
1 0.601 0.976 0.572 0.980 0.583 0.989 0.813 0.984 0.726 0.979 0.727 0.990

2 0.793 0.977 0.754 0.997 0.777 0.972 1.114 1.000 0.993 0.974 1.006 1.000

(50,20,10)
1

(15,30)

0.541 0.984 0.514 0.974 0.544 0.985 0.764 0.983 0.678 0.974 0.710 0.971

2 0.563 0.986 0.534 0.982 0.564 0.978 0.794 0.991 0.705 0.987 0.737 0.994

(50,30,15)
1 0.681 0.984 0.648 0.979 0.673 0.989 0.938 1.000 0.854 0.988 0.703 1.000

2 0.702 1.000 0.667 0.974 0.692 0.984 0.969 0.978 0.879 0.986 0.751 0.995

(50,40,20)
1 0.793 0.983 0.754 0.974 0.777 0.990 1.114 0.992 0.993 0.992 1.003 0.984

2 0.793 0.991 0.754 0.987 0.777 1.000 1.117 0.975 0.993 1.000 1.032 0.986

Table 4: The ACL of 95% and 99% confidence intervals and corresponding CP for bθML and bθB at the different priors and Type-II unified
PHCSs.

n,m, kð Þ Sch:

95% 99%
bθML

bθB bθB
IP NIP bθML IP NIP

T1, T2ð Þ ACL CP ACL CP ACL CP ACL CP ACL CP ACL CP

(50,20,10)
1

(5,10)

0.269 0.963 0.249 0.943 0.263 0.945 0.405 0.992 0.354 0.990 0.375 0.990

2 0.370 0.963 0.351 0.944 0.354 0.945 0.512 0.991 0.456 0.990 0.466 0.989

(50,30,15)
1 2.447 0.969 2.379 0.950 2.282 0.950 2.699 0.983 2.478 0.983 2.385 0.980

2 2.757 0.953 2.749 0.945 2.503 0.923 3.019 0.965 2.845 0.976 2.595 0.951

(50,40,20)
1 4.188 0.973 4.073 0.955 3.904 0.953 4.536 0.982 4.170 0.982 4.004 0.978

2 4.276 0.978 4.151 0.957 3.994 0.960 4.629 0.984 4.246 0.984 4.093 0.980

(50,20,10)
1

(10,20)

0.326 0.986 0.298 0.965 0.322 0.968 0.505 0.995 0.437 0.993 0.473 0.993

2 0.309 0.982 0.283 0.962 0.305 0.964 0.480 0.995 0.416 0.994 0.449 0.993

(50,30,15)
1 0.294 0.964 0.276 0.942 0.285 0.948 0.428 0.988 0.378 0.986 0.392 0.987

2 0.437 0.962 0.414 0.942 0.418 0.945 0.577 0.988 0.515 0.986 0.525 0.987

(50,40,20)
1 4.574 0.984 4.469 0.963 4.244 0.966 4.944 0.993 4.565 0.991 4.344 0.991

2 4.564 0.987 4.523 0.966 4.169 0.969 4.933 0.996 4.619 0.994 4.269 0.994

(50,20,10)
1

(15,30)

0.395 0.983 0.361 0.965 0.392 0.963 0.609 0.995 0.526 0.994 0.572 0.993

2 0.378 0.985 0.346 0.967 0.375 0.965 0.584 0.995 0.504 0.993 0.548 0.994

(50,30,15)
1 0.280 0.968 0.261 0.948 0.273 0.950 0.423 0.990 0.372 0.988 0.390 0.988

2 0.287 0.967 0.268 0.949 0.279 0.948 0.427 0.990 0.377 0.989 0.393 0.988

(50,40,20)
1 2.774 0.976 2.940 0.956 2.343 0.957 3.041 0.991 3.037 0.989 2.443 0.990

2 2.402 0.973 2.644 0.953 1.931 0.955 2.648 0.991 2.741 0.989 2.031 0.990
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Upon combining (16) and (39), given UPHCS, the
Bayesian predictive density function of Ys:ℓ:N is obtained as

g∗Ys:ℓ:N
ys ∣ Yð Þ =

g∗
1Ys:ℓ:N

ys ∣ Yð Þ, 0 < ys ≤ δ,

g∗
2Ys:ℓ:N

ys ∣ Yð Þ, ys > δ,

(
ð41Þ

where

g∗
1Ys:ℓ:N

ys ∣ Yð Þ =
ðys
0

ð∞
0
gYs:ℓ:N

ys ∣ Yð Þπ∗ λ, θ ∣ Yð Þdλdθ

= I−1Γ d∗ + a1 + 1ð ÞCN ,s 〠
s−1

h=0

ch,s−1
% n + b1 +Wh,sð Þys

× η y
� �

+ ~Rt1
ln T1 + ~Rt2

ln T2

h
− n + b1ð Þ ln ys + ln a2

i− d∗+a1+1ð Þ
,

g∗2Ys:ℓ:N
ys ∣ Yð Þ =

ðδ
0

ð∞
0
gYs:ℓ:N

ys ∣ Yð Þπ∗ λ, θ ∣ Yð Þdλdθ

= I−1Γ d∗ + a1 + 1ð ÞCN ,s 〠
q−1

h=0

ch,s−1
n + b1 +Wh,sð Þys

× η y
� �

+ ~Rt1
ln T1 + ~Rt2

ln T2
h

− n + b1 +Wh,sð Þ ln δ +Wh,s ln ys + ln a2�− d∗+a1+1ð Þ:

ð42Þ

From (41), we simply obtain the predictive survival func-
tion of Ys:ℓ:N , given UPHCS, as

�G∗
Ys:ℓ:N

t ∣ Yð Þ =
ð∞
t
g∗ ys ∣ Yð Þdys =

�G∗
1Ys:ℓ:N

t ∣ Yð Þ, 0 < t ≤ δ,
�G∗
2Ys:ℓ:N

t ∣ Yð Þ, t > δ,

8<:
ð43Þ

where

�G∗
1Ys:ℓ:N

t ∣ Yð Þ =
ðδ∞
0t
g∗1Ys:ℓ:N

ys ∣ Yð Þdys +
ð∞∞

0δ
g∗2Ys:ℓ:N

ys ∣ Yð Þdys

= I−1Γ d∗ + a1ð ÞCN ,s 〠
s−1

h=0

ch,s−1
n + b1ð Þ n + b1 +Wh,sð ÞWh,s

× n + b1 +Wh,sð Þ η y
� �

+ ~Rt1
ln T1 + ~Rt2

ln T2
hn

− n + b1ð Þ ln δ + ln a2
i− d∗+a1ð Þ

−Wh,s η y
� �

+ ~Rt1
ln T1 + ~Rt2

ln T2
h

− n + b1ð Þ ln t + ln a2
i− d∗+a1ð Þ�

�G∗
2Ys:ℓ:N

t ∣ Yð Þ =
ð∞∞

0t
g∗2Ys:ℓ:N

ys ∣ Yð Þdys

= I−1Γ d∗ + a1ð ÞCN ,s 〠
s−1

h=0

ch,s−1
Wh,s n + b1 +Wh,sð Þ

× η y
� �

+ ~Rt1
ln T1 + ~Rt2

ln T2
h

− n + b1 +Wh,sð Þ ln δ +Wh,s ln t + ln a2�− d∗+a1ð Þ:

ð44Þ

The Bayesian point predictor of Ys:ℓ:N , 1 ≤ s ≤m, under
the squared error loss function is the mean of the predictive
density, given by

Ŷ s:ℓ:N =
ð∞
0
ysg

∗
Ysℓ:N

ys ∣ Yð Þdys, ð45Þ

where g∗Ys:ℓ:N
ðys ∣ YÞ is given as in (41).

The Bayesian predictive bounds of 100ð1 − αÞ% ET
interval for Ys:ℓ:N , 1 ≤ s ≤m, can be obtained by solving the
following two equations:

�G∗
Ys:ℓ:N

LET ∣ Yð Þ = α

2 and �G∗
Ys:ℓ:N

UET ∣ Yð Þ = 1 − α

2 , ð46Þ

where �G∗
Ys:ℓ:N

ðt ∣ YÞ is given as in (43), and LET and UET

denote the lower and upper bounds, respectively.

7. Simulation Study

In this section, we present a simulation study to compare the
performance of the classical ML and Bayesian estimation
procedures under different Type-II unified PHCS. Extensive
computations were performed using the statistical software
maple.

Firstly, we show how we generate Type-II unified PHC
data from Pareto distribution. For given values of n, m, T1,
T2, and R = ðR1,⋯, RmÞ. We will use the transformation
which was suggested by Balakrishnan and Aggarwala in
[28] to generate Type-II progressive censored data from
Pareto distribution. Let the generated Type-II PC data is ð
y1,m,n, y2,m,n,⋯, ym,m,nÞ, if ym,mn < T1, we set Rm = 0 and use
the transformation which was suggested by Ng et al. in
[29] to generate Rm order statistics from left truncated
Pareto distribution with truncated value ym,m,n. Now, we m
Type-II progressive censored data and Rm order statistics
as the following ðy1,m,n, y2,m,n,⋯, ym,m,n, ym+1,n, ym+Rm ,nÞ.
Then, we determined the termination time of the experi-
ment and the corresponding observed Type-II unified PHC
data as shown in Section 2.

Table 5: The real data.

1.2 2.1 2.6 2.7 2.9 2.9 4.8 5.7 5.9 7.0 7.4 15.3 32.6 38.6 50.2
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We simulate Type-II unified PHCS for different combi-
nations for a sample of size n = 50, with different values of
m = 2k, and T2 = 2T1 from the Pareto distribution. For con-
venience, we consider the true values of the unknown
parameters as λ = 1 and θ = 3.

For the point estimate, we computed the ML estimate
and Bayesian estimates of λ and θ, under SELF, LLF
(with ε = 0:5), and GELF (with ω = 0:5) using informative
prior (IP) and non-informative priors (NIP) values for
the mean square error (MSE) and the estimated bias

Table 7: The ML and Bayesian estimates of λ based on the different Type-II unified PHCSs from real data.

Sch: bλML

bλBbλBS
bλBE

bλBL
IP NIP IP NIP IP NIP

1 0.3831 0.3504 0.3192 0.3108 0.2718 0.3458 0.3142

2 0.4320 0.3964 0.3780 0.3620 0.3378 0.3919 0.3730

3 0.5140 0.4641 0.4569 0.4280 0.4143 0.4586 0.4505

4 0.4898 0.4493 0.4408 0.4177 0.4043 0.4446 0.4355

Table 6: The different Type-II unified HPCS with ðm, kÞ = ð9, 6Þ and different choices of T1 and T2.

Scheme1

t1, t2ð Þ = 2, 4ð Þ
T∗ = Xk:m:n

d∗ = 6
Y = 1:2,2:1,2:6,2:7,2:9,4:8ð Þ

~R = 0,0,2,0,0,7ð Þ
~Rt1

, ~Rt2

� �
= 0, 0ð Þ

Scheme2

t1, t2ð Þ = 3, 6ð Þ
T∗ = t2
d∗ = 7

Y = 1:2,2:1,2:6,2:7,2:9,4:8,5:7ð Þ
~R = 0,0,2,0,0,2,0ð Þ
~Rt1

, ~Rt2

� �
= 0, 4ð Þ

Scheme3

t1, t2ð Þ = 6, 12ð Þ
T∗ = Xm:m:n

d∗ = 9
Y = 1:2,2:1,2:6,2:7,2:9,4:8,5:7,7:0,7:4ð Þ

~R = 0,0,2,0,0,2,0,0,2ð Þ
~Rt1

, ~Rt2

� �
= 0, 0ð Þ

Scheme4

t1, t2ð Þ = 10, 20ð Þ
T∗ = t1
d∗ = 9

Y = 1:2,2:1,2:6,2:7,2:9,4:8,5:7,7:0,7:4ð Þ
~R = 0,0,2,0,0,2,0,0,0ð Þ

~Rt1
, ~Rt2

� �
= 2, 0ð Þ
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(EB) for each estimate. We construct also the average
confidence length (ACL) and the coverage probabilities
(CP) of the 90% and 95% asymptotic confidence intervals
and Bayesian credible intervals for λb and θb, using 1,000
simulations.

We take the different censoring schemes as follows:

(1) Scheme 1 Rm = Rk = n −m/2, Ri = 0 for all i ≠ k,m.

(2) Scheme 2 R1 = Rm = n −m/2, Ri = 0 for all i ≠ 1,m..

The average estimates, MSE and EB for ML and Bayesian
estimates of λ and θ, have been reported in Tables 1 and 2,
respectively, also, Tables 3 and 4 are present the ACL of 90
% and 95% confidence intervals with corresponding CP forbλ and bθ , respectively.

8. Numerical Example

In this section, we use the real data set to show the perfor-
mance of the inferential results established for the Pareto
distribution based on the Type-II unified PHSC, in addi-
tion to comparing ML and Bayesian estimates through
Monte Carlo simulations. This real data set contains the
failure times (in hours) of one plane’s ac system from a
pair of real data sets collected by Bain and Engelhardt
[30]. Moreover, Guo and Gui [31] demonstrated that these
data sets closely matched the inverse Pareto distribution.
For further proceeding, before using these data, we ran
Kolmogorov-Smirnov (KS) goodness of fit tests to see if
they followed the Pareto distribution or not. For these data
sets, the KS test statistics with their related p-values are

Table 10: The 95% and 99% confidence intervals estimates of θ based on the different Type-II unified PHCSs from real data.

Sch:

95% 99%bθML

bθB bθML

bθB
IP NIP IP NIP

LB UB LB UB LB UB LB UB LB UB LB UB
1 0.4985 1.3143 0.5297 1.1950 0.3840 1.1937 0.3126 1.3189 0.3126 1.1990 0.1676 1.1987

2 0.4985 1.3143 0.5297 1.1950 0.3840 1.1937 0.3126 1.3189 0.3126 1.1990 0.1676 1.1987

3 0.6346 1.3158 0.6842 1.1962 0.6056 1.1956 0.4961 1.3192 0.4961 1.1992 0.4009 1.1991

4 0.6297 1.3156 0.6792 1.1961 0.6022 1.1954 0.4944 1.3191 0.4944 1.1992 0.4030 1.1991

Table 9: The ML and Bayesian estimates of θ based on the different Type-II unified PHCSs from real data.

Sch: bθML

bθBbθBS
bθBE

bθBL
IP NIP IP NIP IP NIP

1 1.2000 1.0093 0.9623 0.9092 0.8674 1.0009 0.9499

2 1.2000 1.0093 0.9623 0.9092 0.8674 1.0009 0.9499

3 1.2000 1.0551 1.0317 0.9501 0.9292 1.0501 1.0251

4 1.2000 1.0522 1.0284 0.9475 0.9262 1.0471 1.0217

Table 8: The 95% and 99% confidence intervals estimates of λ based on the different Type-II unified PHCSs from real data.

Sch:

95% 99%
bλML

bλB
bλB

IP NIP bλML IP NIP
LB UB LB UB LB UB LB UB LB UB UB

1 0.2494 0.7597 0.1362 0.6639 0.1037 0.6539 0.1474 0.8618 0.0973 0.7995 0.0688 0.8041

2 0.3453 0.9182 0.1774 0.7020 0.1520 0.7052 0.2308 1.0328 0.1339 0.8299 0.1100 0.8456

3 0.3453 0.9182 0.2186 0.8005 0.1972 0.8237 0.2308 1.0328 0.1683 0.9395 0.1468 0.9785

4 0.3113 0.7802 0.2209 0.7575 0.2016 0.7721 0.2175 0.8740 0.1728 0.8834 0.1534 0.9100
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more than 0.05, so we can assume that these data sets fol-
low Pareto distribution at a 0.05% level of significance.
This real data are ordered in Table 5.

We will use these data to generate the Type-II unified
PHCS, suppose m = 9, k = 6, Ri = 2 for i = 3,6,9, and Ri = 0
otherwise with different values of T1 and T2 with T2 = 2T1.
Table 6 shows different Type-II unified PHCSs.

After generating the Type-II unified PHC data with the
different unified PHCS, we ran KS goodness of fit tests for all
Type-II unified PHC data to see if they followed the Pareto
distribution or not. For all these Type-II unified PHC data sets,
the KS test statistics with their related p-values are more than
0.05, so we can assume that these data and all generated Type-

II unified PHC data sets from it follow Pareto distribution at a
0.05% level of significance.

Based on the Type-II unified PHCS and two different
choices IP and NIP priors, the ML and Bayesian estimates
for the unknown parameters λ and θ are presented in
Tables 7 and 8. Moreover, the 95% and 99% asymptotic con-
fidence intervals and the credible intervals are presented in
Tables 9 and 10. Finally, Tables 11 and 12 present the point
predictor with 95% and 99% Bayesian prediction bounds of
Ys:ℓ:N from the future progressively censored sample of size
ℓ = 10 from a sample of size N = 20 with progressive censor-
ing scheme S = ð0,2,0,2,0,2,0,2,0,2Þ for four different choices
of censoring schemes.

Table 11: Bayesian point predictor with 95% and 99% ET prediction intervals for Yq:~Rj
for q = 1,⋯, ~Rj, with j = 1,⋯, d∗,~Rt1

, and ~Rt2
.

Sch: j q
95% 99%

X̂q:R∗
j

IP NIP
X̂q:R∗

j

IP NIP
LB UB LB UB LB UB LB UB

1

3 1 5.22 1.883 8.561 1.695 9.417 7.830 3.305 12.354 2.975 13.590

2 7.61 4.271 10.948 3.843 12.043 10.217 5.692 14.741 5.123 16.215

6 1 8.33 4.993 11.671 4.494 12.838 10.939 6.415 15.464 5.773 17.010

2 12.19 8.851 15.529 7.966 17.082 14.798 10.273 19.322 9.246 21.255

3 18.09 14.750 21.427 13.275 23.570 20.696 16.172 25.221 14.555 27.743

4 22.24 18.903 25.581 17.013 28.139 24.849 20.325 29.374 18.292 32.311

5 26.79 23.449 30.127 21.104 33.139 29.396 24.871 33.920 22.384 37.312

6 33.63 30.295 36.972 27.265 40.669 36.241 31.716 40.765 28.545 44.842

7 62.51 59.169 65.847 53.252 72.431 65.116 60.591 69.640 54.532 76.604

2

3 1 7.39 4.046 10.724 3.642 11.796 9.993 5.468 14.517 4.921 15.969

2 10.90 7.557 14.234 6.801 15.658 13.503 8.979 18.028 8.081 19.830

6 1 12.58 9.242 15.920 8.318 17.512 15.189 10.664 19.713 9.598 21.684

2 18.88 15.546 22.224 13.992 24.446 21.493 16.968 26.017 15.271 28.619

t2 1 11.78 8.444 15.122 7.600 16.634 14.391 9.866 18.915 8.880 20.807

2 17.16 13.822 20.499 12.440 22.549 19.768 15.244 24.293 13.719 26.722

3 23.07 19.726 26.404 17.754 29.044 25.673 21.148 30.197 19.033 33.217

4 30.68 27.337 34.014 24.603 37.416 33.283 28.759 37.808 25.883 41.589

3

3 1 9.04 5.706 12.384 5.136 13.622 11.653 7.128 16.177 6.415 17.795

2 14.43 11.093 17.770 9.983 19.547 17.039 12.514 21.563 11.263 23.720

6 1 10.44 7.105 13.783 6.395 15.161 13.052 8.527 17.576 7.675 19.334

2 15.41 12.070 18.747 10.863 20.622 18.016 13.492 22.541 12.142 24.795

9 1 16.66 13.325 20.002 11.993 22.003 19.271 14.747 23.796 13.272 26.175

2 26.15 22.815 29.492 20.533 32.441 28.761 24.236 33.286 21.813 36.614

4

3 1 23.13 19.791 26.468 17.811 29.115 25.737 21.212 30.261 19.091 33.287

2 38.14 34.798 41.475 31.318 45.623 40.744 36.220 45.269 32.598 49.796

6 1 17.79 14.453 21.131 13.008 23.244 20.400 15.875 24.924 14.288 27.417

2 26.71 23.369 30.046 21.032 33.051 29.315 24.790 33.839 22.311 37.223

t1 1 31.14 27.800 34.477 25.020 37.925 33.746 29.222 38.271 26.299 42.098

2 36.99 33.648 40.325 30.283 44.358 39.594 35.070 44.119 31.563 48.530
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Table 12: Bayesian point predictor with 95% and 99% ET prediction intervals for Ys:10 for s = 1,⋯, 10.

Sch: s
95% 99%

Ŷs:10
IP NIP

Ŷ s:10
IP NIP

LB UB LB UB LB UB LB UB

1

1 1.225 0.629 2.026 0.389 3.037 1.343 0.484 2.185 0.231 3.694

2 1.573 0.740 3.088 0.479 5.541 2.532 0.600 3.665 0.310 8.146

3 2.438 0.873 5.082 0.591 11.350 7.103 0.744 6.832 0.417 21.238

4 4.613 1.018 8.538 0.720 23.780 19.710 0.906 13.182 0.548 57.920

5 12.188 1.193 16.670 0.881 62.358 59.551 1.105 30.852 0.720 214.386

6 32.653 1.382 34.263 1.062 174.841 151.749 1.320 77.551 0.921 878.949

7 111.072 1.633 96.664 1.290 789.276 431.175 1.595 290.979 1.181 6816.226

8 322.752 1.956 311.634 1.536 4.3E+03 1.0E+03 1.940 1.3E+03 1.467 6.9E+04

9 1.4E+03 2.547 2.9E+03 1.856 4.4E+03 3.3E+03 2.570 2.2E+04 1.839 6.0E+06

10 4.8E+03 3.582 5.6E+04 2.504 5.7E+04 8.6E+03 3.683 9.3E+05 2.497 6.2E+06

2

1 1.206 0.700 1.860 0.484 2.545 1.187 0.598 1.908 0.363 2.732

2 1.431 0.797 2.612 0.566 4.036 1.454 0.698 2.782 0.441 4.653

3 1.793 0.913 3.885 0.667 6.960 1.995 0.819 4.345 0.539 8.782

4 2.373 1.040 5.853 0.780 12.137 3.163 0.954 6.914 0.653 16.897

5 3.790 1.194 9.924 0.921 25.074 6.966 1.120 12.597 0.799 39.717

6 7.234 1.362 17.479 1.079 54.221 17.287 1.302 24.036 0.966 99.035

7 21.806 1.586 39.621 1.279 168.944 59.018 1.538 61.060 1.184 378.186

8 69.039 1.873 99.508 1.502 599.893 179.077 1.833 174.902 1.430 1.7E+03

9 427.945 2.388 591.669 1.803 7.7E+03 881.013 2.358 1.3E+03 1.766 3.3E+04

10 2.0E+03 3.269 6.2E+03 2.135 8.0E+03 3.3E+03 3.257 1.9E+04 2.139 3.5E+04

3

1 1.200 0.764 1.733 0.565 2.238 1.180 0.686 1.743 0.467 2.303

2 1.379 0.851 2.295 0.642 3.258 1.367 0.775 2.348 0.542 3.471

3 1.641 0.953 3.184 0.734 5.067 1.656 0.880 3.334 0.633 5.649

4 2.000 1.063 4.458 0.835 7.939 2.094 0.995 4.793 0.735 9.305

5 2.660 1.195 6.877 0.959 14.269 3.082 1.133 7.660 0.863 17.860

6 3.871 1.338 10.937 1.096 26.567 5.320 0.261 12.676 0.261 35.781

7 7.978 1.526 21.416 1.268 66.594 14.177 0.388 26.261 0.328 99.524

8 20.791 1.762 45.575 1.457 185.146 41.922 0.262 59.676 0.262 312.094

9 135.939 2.175 198.062 1.710 1.5E+03 250.632 2.118 291.317 8.937 3.1E+03

10 7.5E+02 2.857 1.4E+03 1.992 1.5E+03 1.2E+03 2.783 2.4E+03 1.970 3.2E+03

4

1 1.200 0.758 1.744 0.562 2.250 1.179 0.681 1.753 0.467 2.306

2 1.383 0.845 2.314 0.637 3.266 1.369 0.769 2.361 0.540 3.449

3 1.650 0.947 3.213 0.728 5.058 1.654 0.874 3.347 0.629 5.550

4 2.010 1.059 4.500 0.830 7.878 2.063 0.989 4.797 0.730 9.016

5 2.651 1.195 6.943 0.954 14.051 2.896 1.131 7.634 0.857 16.999

6 3.762 1.343 11.034 1.093 25.919 4.621 1.288 12.564 1.000 33.356

7 3.762 1.343 11.034 1.093 25.919 11.211 1.491 25.852 1.186 90.282

8 18.076 1.791 45.946 1.468 176.052 32.499 1.742 58.240 1.398 273.941

9 121.989 2.232 200.630 1.740 1.4E+03 212.132 2.180 281.921 1.694 2.6E+03

10 7.2E+02 2.969 1.4E+03 2.051 1.4E+03 1.1E+03 2.906 2.2E+03 2.035 2.7E+03
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Since R1 = 0, then y1 = 1:2 is not removed from censored

data in all Type-II unified PHCS, and since bθML = y1 so thatbθML = 1:2 in all four Type-II unified PHCS.

9. Conclusions and Discussion

From Tables 1 and 2, we observe that the MSEs of the Bayes-
ian estimates based on the LINEX, GE, and SE loss functions
are smaller than those of the ML estimates. Furthermore, the
MSEs and EBs of all estimates decrease with increasing m
and k when T1 and T2 are fixed. Also, the MSEs and EBs
of all estimates decrease with increasing T1 and T2 when
m and k are fixed. Moreover, a comparison of the results
for the informative priors with the corresponding ones for
non-informative priors reveals that the former produces
more precise results.

From the results in Tables 10 and 11, we notice that the
point predictor of mean is between the upper and lower
bounds of the prediction intervals. Additionally, as we would
expect, a comparison of the results for the informative prior
with the corresponding ones for non-informative prior
reveals that the former produces more precise results,
because the interval length in the informative prior case is
short than in non-informative case. Moreover, the 95% pre-
diction intervals seem to be more precise than the 99% pre-
diction intervals, Finally when we use the same value of T1
and T2 but increasing k and m. , the Bayesian prediction
bounds become tighter as expected since the duration of
the life-testing experiment is longer in this case.
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