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Dental or tooth wear is a physiological process in the life cycle of teeth. Loss of the occlusal surface may cause excessive tooth wear.
Several factors may contribute to tooth wear with different intensities and duration in the oral cavity. The oral cavity is generally
compared to a tribological system to determine the various types of wear between teeth and restorative materials and assess the
amount of dental wear. However, it is challenging to investigate in vitro and in vivo wear owing to the complexity of tooth
wear; thus, a clear correlation between in vitro and in vivo data could not be established. This review is aimed at providing an
insight into the etiology of tooth wear and tribological investigations in dentistry.

1. Introduction

The loss of hard tooth tissue is defined as tooth wear, which
depends on several complex mechanisms of wear, often
obscuring its origin. Therefore, this notion is often unclear
[1]. Physiological tooth wear does not generally cause subjec-
tive symptoms. With the progression of tooth wear, severe
pathological signs and symptoms may occur [2]. Based on
the differences in intensity, tooth wear describes all types of
noncarious loss of tooth substance, such as abrasion, attrition,
erosion, and abfraction. Abrasion is generated during contact
between the teeth and other substances, while attrition is pro-
duced by tooth-to-tooth interaction. Moreover, erosion affects
the tooth surface negatively owing to a chemical process.
Abfraction occurs due to abnormal mechanical and chemical
occlusal loading at the cervical enamel [3]. Thus, tooth wear
is a complex, multifactorial phenomenon.

Since dentists have the greatest control over the selection
of materials, many studies focused on improving the wear
properties of dental biomaterials and protecting teeth from
excessive wear. With the development of biomaterials, the
study of dental tribology has been paid much attention [4].
Numerous wear simulation devices have been developed.

The oral cavity is generally compared to a tribological sys-
tem. The system consists of four elements [5]:

(1) A solid body (a tooth)

(2) The counterbody, usually a solid (for example, an
object or an opposite tooth)

(3) The part between the first and second elements
called the interface element, which is usually a solid
(e.g., food pellet particles) and a liquid (saliva) that
acts as a lubricant

(4) Air

Biomaterials are important for dental restorations. Metals,
alloys, composites, and ceramics are widely used, but these
materials have various problems compared to human tooth
enamel. Therefore, to synthesize a material with properties
similar to the human tooth enamel, it is necessary to have a
deep understanding of tooth microstructure and its response
to wear resistance of different biomaterials [6].

A full understanding of the process of tooth wear and the
quantitative and qualitative assessment after tooth wear can
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help to comprehend the fundamental mechanisms underly-
ing this process and elucidate the heterogeneity of biomate-
rials [7]. In this review, we provided an insight into tooth
wear for scrutinizing wear investigations in dentistry,
including the problems with these investigations.

2. Type of Tooth Wear

Tooth wear is increasing in the general population in recent
decades, owing to the consumption of acidic beverages,
enamel hypoplasia, and symptoms of increased stress, such
as gastroesophageal reflux disease and bruxism [8]. Although
many studies have investigated tooth wear, our understanding
of its etiology and pathogenesis is still inadequate [9]. The four
types of tooth wear are described below in detail.

By considering the underlying mechanisms of tooth
wear, a tribological terminology for dental wear type has also
been suggested (Table 1).

2.1. Attrition. Attrition is the mechanical damage to hard tis-
sue due to the tooth-to-tooth contact [10], so it should, in
principle, be defined as two-body abrasion. However, mech-
anistically, it cannot be differentiated from three-body abra-
sion, since enamel debris between the contacting surfaces
during attrition can act as abrasive particles [11]. There are
several principal theories regarding the etiology of attrition.

The principal theories are the following.

2.1.1. Functional Theory. Kim et al. found that lateral move-
ment (e.g., grinding movement) had significantly greater
levels of tooth wear compared to vertical movement (e.g.,
chopping movement) [12].

2.1.2. Bruxism. Bruxism is mainly regulated centrally and
manifests as clenching or grinding and tooth surface loss
[13, 14]. It is divided into three types: sleep bruxism, awake
bruxism, and nonspecified bruxism [15]. Some medications
and addictive substances that induce or aggravate bruxism
are shown in Table 2. Bruxism is the most severe factor asso-
ciated with commonly occurring tooth wear, as the force
produced during bruxism is up to six times greater than that
during normal mastication [16].

2.1.3. Lack of Posterior Support. Missing posterior teeth can
result in a horizontal deviation to the masticatory side with
increased occlusal support, which is defined as masticatory
predominance [17]. Sustained mastication predominance
may cause abnormal tooth attrition, tooth fracture, and
facial deformities [18, 19].

Besides dens evaginatus and developmental defects of
enamel (DDE) caused by developmental anomalies, poste-
rior crossbite and deep bite might increase the incidence
and severity of dental attrition [20–22].

2.2. Abrasion. Dental abrasion is defined as the wear of teeth
by any substance other than tooth substance, so it should, in
principle, be defined as three-body abrasion [23]. In tribol-
ogy, there are generally two types of abrasive wear with three
bodies. The first type of abrasive wear occurs when two
objects are far apart from each other so that the abrasive par-

ticles can move freely between surfaces like fluids. In
contrast, the second type of abrasive wear occurs when the
two objects are so close to each other that the abrasive par-
ticles are still trapped between the surfaces [24].

2.3. Abfraction. Abfraction, a new term coined by Grippo, is
a type of noncarious cervical lesion (NCCL) [25]. It describes
tooth tissue loss/damage along the gingival margin by flexure
and failure of tooth tissue owing to excessive occlusal loads
[26]. The lesions are not caused by a single factor but are the
result of the comprehensive action of many factors [27]. They
are typically wedge-shaped or V-shaped lesions, like abrasion
lesions. Moreover, bacterial plaque accumulates on these
lesions, causing tooth hypersensitivity and possibly affecting
the pulp vitality [27]. However, cervical abfractionmay extend
subgingivally, thereby differentiating it from abrasion [28].

2.4. Erosion. Dental erosion is the chemical loss of mineralized
tooth substances caused by exposure to acids not derived from
oral bacteria [29]. The loss of surface tissue due to simulta-
neous and/or subsequent exposure to mechanical forces is
known as erosive tooth wear (ETW) [29].

ETW can be due to extrinsic factors, intrinsic factors, or
a combination of both. Extrinsic factors are usually related
to dietary habits, unhealthy lifestyle, occupational hazards,
or acid and other medications [30–33]. Intrinsic factors,
including gastroesophageal reflux disease and eating disor-
ders, are risk factors causing the chemical demineralization
of the tooth tissues as a result of contact with the acidic con-
tents of the stomach [34, 35].

Table 1: A comparison of dental and tribological terminologies of
tooth wear [24, 36].

Dentistry Biotribology

Attrition
Delamination/fatigue wear

Two-body abrasion

Abrasion
Three-body abrasion

Adhesive wear

Erosion Corrosive/chemical wear

Abfraction Fatigue wear

Table 2: Medications and addictive substances [15].

Classes of medications

Phenethylamines

Selective serotonin reuptake inhibitors

Anticonvulsants

Addictive substances

Alcohol

Heroin

Methamphetamine

Methylenedioxymethamphetamine

Nicotine

Piperazines
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3. Tribological Testing

Different dental materials were used in experimental analy-
ses, and different authors developed various protocols for
testing tooth wear using tribometers [24]. In 2001, the Inter-
national Organization for Standardization (ISO) published a
technical specification on wear test guidelines describing
several methods for two- and/or three-body contact tests
(Tables 3 and 4). The two-body wear device refers to the
direct contact between the grinding material and the tested
sample and simulates the oral chewing movement in a cer-
tain circular motion mode to reveal the properties and tooth
wear mechanism of the material and the tooth [37]. Several
two-body wear simulators have been designed and used to
simulate tooth wear. The pin-on-disc tribometer is exten-
sively used to perform two-body wear tests [38]. The three-
body wear device adds food-simulating particles (artificial
saliva, rice grains, grain shells, etc.) between the grinding
materials to simulate chewing, to accurately reproduce the
chewing environment [39].

Different two-body and three-body test methods differ in
a few aspects, such as the load, the number of cycles, fre-
quency of cycles, and abrasive medium (see Tables 3 and
4) [40]. The Alabama, ACTA, OHSU, Zurich, and MTS wear
simulators have been used most frequently in studies. Some
scholars found that the force exerted by the MTS wear
simulator through the hydraulic actuator can be controlled
and adjusted, and only the expensive MTS wear simulator
is a qualified machine to test wear [7]. In contrast, the
Willytec wear simulator not only can satisfy the require-
ments of GLP and FDA but also is an adequate and cost-
effective tool to test wear [41].

4. Quantitative and Qualitative Evaluation

Quantitative assessment primarily depends on the depth and
volume of wear at the occlusal contact areas, while qualita-
tive assessment refers to the detailed topographic surface
analysis. Therefore, several methods and macroscopic and
microscopic techniques have been used to assess the loss/
damage of the teeth and dental materials in vitro and
in vivo. A comparison of all methods is shown in Table 5.

4.1. Three-Dimensional Optical Profilometer. Noncontact
laser profilometry (NCLP) is the gold standard for detecting
and quantifying the extent of surface wear in dental tribol-
ogy [49–51]. Optical profilometry is an accurate and rapid
technique that is used to provide qualitative and quantitative
nanoscale data during repeated measurements of the same
tooth area, irrespective of whether the surface is flat, curved,
stepped, rough, or smooth [52, 53]. The device is used by a
chromatic confocal sensor with a white light axial source
for measuring with a scanning velocity of 2m/s and a
refraction index of 10,000. After each experiment, the
measurement data were processed using the software for
superimposition of scans and subtraction analysis, enabling
absolute quantification of the surface [54] (Figure 1).

Yilmaz used a three-dimensional profilometer to
evaluate the mean volume loss and depth of the surface of
the specimen after tooth wear to investigate the two-body
wear mechanism between teeth and dental materials [55].
The accurate quantification of the mean total volume of
the wear surface is a prerequisite for informing the profes-
sional about the wear performance [56].

Table 3: Two-body wear methods and wear simulators.

Devices Medium Movement Loading Force Frequency Cycles

Zurich [42] Water Impact (+sliding) Electromagnetic 49N 1.7Hz
120,000, 240,000, 640,000,

and 1,200,000

BIOMAT [43] Water Impact (+sliding) Cam+weight 20MPa (225N) 2Hz 4,000

MTS [44] Water Sliding Hydraulic 13.35N —
120,000, 240,000, 640,000,

and 1,200,000

Willytec Munich and
Muc3 [45]

Water or other
Gnashing, slippage,

striking
Weight 50N

Range
(Hz)

120,000

Alabama localized [46] PMMA beads Impact+sliding Spring 75.6N 1.2Hz 100,000, 200,000, 400,000

Pin-on-disc [24] Water Impact (+sliding)
Pin-on-disc
machine

2-20N 2Hz 1-15,000

∗Based on [7].

Table 4: Three-body wear methods and wear simulators.

Devices Medium Movement Loading Force Frequency Cycles

ACTA [47]
Rice/millet seed
shell suspension

Sliding Spring 15N 1.0Hz 100,000–200,000

OHSU [48]
Poppy seeds/
PMMA beads

Impact+sliding Electromagnetic
Abrasion 20N
Attrition 70N

1.2Hz 50,000–100,000

Alabama generalized [46] PMMA beads Impact+sliding Spring 75.6N 1.2Hz 100,000, 200,000, 400,000
∗Based on [7].

3Applied Bionics and Biomechanics



4.2. Surface Hardness and Nanoindentation Techniques. Sur-
face hardness and nanoindentation techniques are the two
commonly used methods for measuring the hardness of
the tooth surface. Surface hardness or microindentation is
a relatively mature and traditional method, whereas nanoin-
dentation (also known as ultra-microindentation) is a new
technique that is suitable to assess the extent of tooth wear

[58]. Nanoindentation (NI) technology can be used to study
the local mechanical properties under different loading
states based on load-displacement data of indentations at a
submicron scale [59]. The hardness and the elastic modulus
of the enamel surface were measured using a diamond tip,
and the indentation of each sample was performed in the
continuous stiffness mode to investigate the dependence of

Table 5: A comparative analysis of macroscopic and microscopic techniques.

Techniques Advantage Limitation

3D optical profilometer
[94, 95]

3D optical profilometer can show surface roughness
and volume loss accurately and rapidly

3D optical profilometer could not detect and monitor
the progression of tooth loss over time

Nanoindentation
techniques [58, 96]

It is particularly useful when analyzing
inhomogeneous surface as different regions of the

surface can be
identified and indented

The elastic modulus and hardness of teeth tissues are
easily influenced by a large number of extrinsic
variables, such as the method of preparing the

specimen and its state of hydration

Scanning electron
microscopy [66]

Scanning electron microscopy (SEM) can be combined
with energy-dispersive X-ray spectroscopy (EDS) to

measure quantitative changes in elemental
composition on worn surfaces

Differences in the angulation of specimens in SEM
influence such measurements

Confocal laser scanning
microscopy [66, 71]

The advantages of CLSM are the high resolution (less
than 300 nm in the x and y directions and 20 nm in the

z direction) and fast recording of the surface
topography

As with the other microscopy techniques, CSLM fails
to record textural details

Atomic force
microscope [66, 71]

It is suitable for measuring the early stage of enamel
demineralization

It is very time-consuming

Quantitative light-induced
fluorescence [58, 97]

The major strengths of the fluorescence techniques are
that they are nondestructive (and therefore, surfaces
can be monitored over time, in vivo or in vitro)

The exact mechanisms by which QLF measures
erosion are unclear

Optical coherence
tomography [66, 71]

It can therefore penetrate significantly deeper into
samples than other subsurface techniques, providing

an extremely high-quality 3D image that is
nondestructive to the sample surface

In vivo accessibility and positioning of the probe
are problematic
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Figure 1: High-resolution images were obtained at the nanometer scale by scanning across a changed pit in an enamel surface. The scale is
in μm [57].
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the mechanical properties on depth and determine the hard-
ening depth [60] (Figure 2).

Peng et al. used impact treatment and nanoindentation/
scratch techniques to study the surface hardening b ehavior
of tooth enamel under chewing load in vitro and to investi-
gate its mechanism and antiwear effects [60]. Using this
technique to measure mechanical properties at multiple
locations of the same enamel sample is suitable because it
can accurately measure mechanical properties of very small
volumes, has a good spatial resolution, and is highly sensi-
tive to changes that affect their values [61].

4.3. Microscopy Techniques

4.3.1. Scanning Electron Microscopy (SEM). Scanning elec-
tron microscopy (SEM) is ideal for studying the structure
of tooth enamel because it can provide high-resolution
images of hard surfaces [62]. SEM helps to analyze the sam-
ple surface by checking dimensional topography and distri-
bution of exposed features due to the high-resolution
power and large depth of focus of SEM; the image appears
three-dimensional [63, 64] (Figure 3). Specimen preparation
for SEM is complex. For analyzing samples with common
scanning electron microscopes, moisture loss of specimens
due to the necessary steps for preparing the specimens may
lead to additional alterations of the eroded surface. To avoid
the collapse of the fragile eroded enamel surface structure,
freeze-drying of samples was suggested [65]. SEM investiga-
tions can be performed on both polished and unpolished
native surfaces after gold sputtering. SEM can be coupled
with energy-dispersive X-ray spectroscopy, which provides
information about the composition of a specimen based on
the characteristic X-rays emitted under electron bombard-
ment. Energy-dispersive X-ray spectroscopy can be used to
determine quantitative changes in elemental composition
from eroded surfaces and cross-sections [66].

Levrini et al. conducted a study using SEM and analyzed
several extracted human teeth. The study provided an over-

view of the distinctive morphological features and the
microwear features of dental wear lesions, thus clarifying
their clinical and diagnostic presentations and possible sig-
nificance [67]. SEM is a powerful research tool, but since it
requires high vacuum conditions and complex sample prep-
aration, the application of SEM is limited. Environmental
scanning electron microscopy is a better version of SEM. It
can work in a gaseous environment and provides a new
method for biological research [68].

4.3.2. Confocal Laser Scanning Microscopy (CLSM). CLSM is
a nondestructive technique that can quantify and visualize
erosive lesions [70]. The technology combines laser scanning
with the capture of traditional visible light microscope
images to produce a detailed 3D image of the surface [51]
(Figure 4). Moreover, from the image, stack measurements
of the differences in the height between the eroded and
undamaged areas can be performed along with a qualitative
assessment of the surface finish of the samples. Recent stud-
ies on early erosion wear have suggested that characteriza-
tion of the enamel surface texture may be an appropriate
target for therapeutic oral care products [71].
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hardness and (b) elastic modulus [60].
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Austin et al. used CLSM to determine the optimal scale
at which enamel surface textural changes from citric acid
demineralization and salivary remineralization in vitro
[72]. Faraoni et al. analyzed the morphology, surface rough-
ness, and the step formed on the dental enamel using CLSM
to study the effects of the stomach and duodenal fluid on
dental enamel surfaces [73]. Early enamel erosion lesions
can be effectively characterized by high-resolution optical
surface measurement instrumentation and optimized sur-
face texture analysis techniques [72]. With the development
of microtechnology, CLSM is considered to be the most sen-
sitive qualitative evaluation technique [74].

4.3.3. Atomic Force Microscopy. As an important member of
the scanning probe microscopy family, atomic force micros-
copy (AFM) has provided additional insights into the sur-
face morphology of dental material and/or tooth surfaces
[75]. The 3D data obtained from AFM measurements were
evaluated visually and numerically [76]. This approach has
many advantages; the most important is the ability to collect
data for 3D surface analysis and phase type of data, as well as
numeric data of surface properties or histogram analysis
data [77] (Figure 5). Despite their complexities and irregu-
larities, the three-dimensional morphology of biological
structures can reveal fine anatomical details. The force curve
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Figure 4: The surface texture image analysis workflow based on the results of the area-scale analysis correlated with microhardness [72].
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reveals the relationship between the atomic force and the
sample-tip distance; the slope of the force curve directly
reflects the elasticity of the samples [78].

Mao et al. found differences between DGI-II and the
normal dentin microstructure by AFM, which was used to
indicate the wear behavior of DGI-II dentin [79]. Sample
preparation for AFM is simpler than that for SEM. AFM
can measure biological samples in the air, vacuum, or liquids
at a high spatial resolution [80]. Therefore, the rough sample
preparation technique does not damage the fragile samples
[58]. The combination of atomic force microscopy and
superresolution optics can provide simultaneous images
with super time and spatial resolution in biological studies
[78]. Due to improvements in its performance and function,
AFM has played an important role in biological studies [78].

4.4. Quantitative Light-Induced Fluorescence (QLF). Quanti-
tative light-induced fluorescence (QLF) is a technique that is

mainly used for the noninvasive detection of depth or pro-
gression of early caries [82–84]. In QLF, blue fluorescent
light (405 nm; near-ultraviolet light) is reflected on the tooth
surface using a long-pass filter (>520nm) [85]. In QLF
images, fluorescence is absent where minerals have been lost,
for example, in dental hard tissues. Therefore, QLF can be
used to quantify natural tooth wear by the difference in fluo-
rescence intensity [85] (Figure 6).

Lee et al. found that enamel autofluorescence in QLF was
related to the chemical composition of the enamel, particularly
the inorganic-organic interface. Although the chemical com-
position of tooth enamel can only be detected in the labora-
tory, the fluorescence of tooth enamel detected by QLF can
be evaluated in the dental clinic, and thus, it has implications
in the field of tooth bleaching or esthetic restorative materials
[86]. The rate of fluorescence loss measured using QLF is
highly valuable for developing a nondestructive and longitudi-
nal tool for in vitro, in situ, and in vivo applications [87].
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Figure 6: The quantitative light-induced fluorescence (QLF) image analysis process. (a) A representative fluorescence image of occlusal
tooth wear. (b) A designed patch area around the wear. (c) A reconstructed image based on the fluorescence of the sound area. The blue
line indicates the sound reference area, while the red line indicates the deactivated area. (d) The difference in the fluorescence between
the original and reconstructed images. (e) The results of the analysis of the tooth wear area [88].
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4.5. Optical Coherence Tomography (OCT). OCT is a
noninvasive imaging method that uses light and eliminates
the risk of radiation exposure [89]. Among the currently used
methods, optical coherence tomography (OCT) has a signifi-
cant advantage because it allows quantitative analysis of
enamel thickness to be performed at the chairside [90]
(Figure 7). Additionally, OCT can be used noninvasively to
perform tomography scans and reconstruct enamel images
in three dimensions without X-ray ionizing radiation [91–93].

Alghilan et al. found that CP-OCT and micro-CT demon-
strated excellent comparability regarding enamel thickness
measurements of the worn surfaces and verified that CP-
OCT is a viable alternative for longitudinal evaluation of tooth
wear in high-risk patients [90]. Notably, wear depth measure-
ments using CP-OCT showed lower variability compared to
micro-CT, which suggested that CP-OCT is better at estimat-
ing wear depth [90]. Scanning source OCT (SS-OCT) is the
latest version of OCT, in which the light source is a tunable
laser that scans light at near-infrared wavelengths for real-
time imaging [89] (Figure 8). OCT can generate cross-
sectional images of translucent or semitranslucent biological
structures with microscopic level resolution. In dentistry,
OCT imaging can be performed to effectively diagnose dental
caries, NCCL, occlusal tooth wear, and other age-related
changes in the tooth structure [89].

5. Conclusion

Tooth wear has multiple effects, involving the interaction of
mechanical, chemical, and biological factors. As a clinical

challenge, tooth wear should be identified rapidly and
managed appropriately. Several devices and methods have
been established to simulate the tooth wear environment;
however, the process is extremely complex. Zhou and Jin
suggested that future dental research should focus on the
following aspects [4]:

(1) More in vitro studies are needed to demonstrate the
mechanisms of tooth wear, such as the correlations
of tooth evolution, microstructure, dietary habit,
dental tribological behavior, and the influence of
complex salivary components

(2) It is necessary to further investigate the application
of oral wear resistance mechanisms in oral rehabili-
tation, such as new oral materials and oral care prod-
ucts, and improve wear resistance

Lanza et al. concluded that the keyword “tribology” or
“biotribology” has limited use in dentistry; however, when
used more extensively, it can benefit biotribology with the
enhanced clarity in this area of research [5]. Therefore, the
association between tribology and dentistry might become
stronger in the future.
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