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Accurate estimation of gait parameters depends on the prediction of key gait events of heel strike (HS) and toe-off (TO).
Kinematics-based gait event estimation has shown potential in this regard, particularly using leg and foot velocity signals and
gyroscopic sensors. However, existing algorithms demonstrate a varying degree of accuracy for different populations.
Moreover, the literature lacks evidence for their validity for the amputee population. The purpose of this study is to evaluate
this paradigm to predict TO and HS instants and to propose a new algorithm for gait parameter estimation for the amputee
population. An open data set containing marker data of 12 subjects with unilateral transfemoral amputation during treadmill
walking was used, containing around 3400 gait cycles. Five deterministic algorithms detecting the landmarks (maxima,
minima, and zero-crossings [ZC]) in the foot, shank, and thigh angular velocity data indicating HS and TO events were
implemented and their results compared against the reference data. Two algorithms based on foot and shank velocity minima
performed exceptionally well for the HS prediction, with median accuracy in the range of 6–13ms. However, both these
algorithms produced inferior accuracy for the TO event with consistent early prediction. The peak in the thigh velocity
produced the best result for the TO prediction with <25ms median error. By combining the HS prediction using shank
velocity and TO prediction from the thigh velocity, the algorithm produced the best results for temporal gait parameters (step,
stride times, stance, and double support timings) with a median error of less than 25ms. In conclusion, combined shank and
thigh velocity-based prediction leads to improved gait parameter estimation than traditional algorithms for the amputee
population.

1. Introduction

Gait analysis is a valuable tool in assessing various patholo-
gies as well as in quantifying outcomes of an intervention. A
pre-requisite to effective gait analysis is the identification of
key gait events of heel strike (HS) and toe-off (TO), which
represent the moments the foot is placed and removed from
the ground, respectively [1]. Incorrect gait event detection
leads to inaccurate gait segmentation into stance and swing
phases, leading to erroneous spatio-temporal parameters.
Moreover, it is also important for objective evaluation of
clinical outcomes for amputees [2].

The gold standard for event prediction is the ground
reaction force (GRF) obtained from specialized force plat-

forms in research laboratories. However, due to high cost
and space constraints, this method is limited to research
studies. Moreover, it only detects events from a limited
number of steps (usually one or two) depending upon the
number of force platforms.

In the absence of reliable force data, algorithm-based
event detection methods using optoelectronic (marker) data
[4], [5] or inertial sensors are exploited. These methods rely
on leg or foot kinematics and rule-based algorithms to esti-
mate gait events. Many authors have validated this approach
for healthy subjects [5]–[12] as well as for subjects with gait
disorders [3], [13]–[16] with varying degrees of accuracy.

The kinematic methods require an algorithm to identify
observable features in the velocity/acceleration data of body
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segments. Several rule-based algorithms have also been
developed for this purpose. A popular choice is to use the
shank angular velocity for TO and HS estimation corre-
sponding to the minima in the sagittal plane angular velocity
signal [17]. Many researchers have exploited this signal over
the years for diverse subject populations [5], [6], [10], [15],
[18]–[22]. Though reasonable accuracy may be achieved
for the HS event (errors of less than 10ms), its validity
for the TO event has been subject to some debate. Larger
discrepancies (of the order of 80ms) were reported for TO
prediction using this algorithm by some studies [23], [24],
questioning its validity for different populations. Other
studies have explored the potential of the ZC point of the
signal to predict gait events and have shown better results
for certain populations [10], [16].

Although less frequently done, shank and foot
acceleration-based algorithms have also been exploited by
some researchers. However, it has been shown that
acceleration-based methods frequently present larger errors
[25] or contain multiple false positives which are difficult
to distinguish automatically (see discussion in [3]). Other
studies have advocated foot angular velocity be a better pre-
dictor of gait events than shank velocity [12], [26]. In all,
there is little consensus among researchers regarding the
best kinematic approach for automatic event detection, espe-
cially for the TO event.

Even lesser evidence is available for the validity of this
approach for the amputee gait. Since lower-body amputa-
tions lead to gait deviations and compensatory movements,
existing kinematic methods may render erroneous results.
Only a handful of studies have focused on the amputee
population [27]–[30]. Researchers in [27] experimented
with only one amputee subject hence limiting the general-
ization of their results. Bastas and colleagues included a
group of 16 transfemoral (TF) amputees but only used
single Inertial Measurement Unit data mounted in the
lower-back region [28]. Researchers in [30] presented a
threshold-based algorithm using state machines for real-
time detection. The algorithm required training data for
optimized threshold calculation and constraining windows
increasing its complexity and computational cost. Lastly,
authors in [29] included seven TF amputees with a unilat-
eral amputation using a microprocessor-controlled knee.
They explored several velocity and acceleration-based algo-
rithms and obtained the best results with the one pro-
posed by Trojaniello and colleagues [31]. However, the
algorithm lacked accuracy when predicting some gait
parameters including the double support duration.

This study aims to compare the accuracy of some exist-
ing kinematic algorithms in predicting gait events for the
amputee population and propose a novel algorithm to
improve the accuracy of the temporal gait parameters. It
extends the previously published preliminary study by
authors [32], [33]. As demonstrated in the next sections,
the new algorithm greatly improves the accuracy of the TO
event resulting in improved gait parameter estimation at all
speeds. The velocity of the foot and leg segments is calcu-
lated from the marker data while the validation is done
against the force platform data.

This article is structured as follows: Section 2 details the
data set used in this study as well as the working of algo-
rithms. Results are presented in Section 3, while Section 4
concludes the article.

2. Materials and Methods

2.1. Data Set. In order to test various algorithms, a data set of
18 individuals with unilateral TF amputation from [34] is
used. All individuals in this study had a unilateral above-
knee amputation for at least one year. The participants wore
the prescribed prosthesis for a minimum of six months using
it at least three hours daily. These subjects and their data are
presented in Table 1. All individuals were inquired about
their experiences in the past of using a treadmill for walking.
Training was provided to individuals who had little or no
experience using a treadmill with a prosthesis.

It is the most comprehensive data set of prosthesis users
which provides force platform data for all steps taken during
a trial. According to the subjects’ preferred walking speed
and dependency on the handrails, the subjects were split into
two groups. On the Medicare functional categorization level,
they were classified as either K-level 2 or K-level 3. A person
was placed in the K2 group if they needed handrails to walk
at any speed more than 0.8m/s or if their top walking speed
was 0.8m/s. This group of subjects walked at five different
speeds of [0.4, 0.5, 0.6, 0.7, and 0.8m/s]. Similarly, if subjects
could walk at speeds up to 1.2m/s without using handrails,
they were assigned to the K3 group, and they walked at
speeds of [0.6, 0.8, 1.0, 1.2, and 1.4m/s].

The original study contained an equal number of sub-
jects in both groups. However, for this study, subjects/trials
using the handrails during walking were excluded. This
allowed a uniform protocol across all subjects for objective
inter-subject comparison. As a result, 270 walking trials
from 12 subjects were available for further analysis (includ-
ing three K-level 2 and nine K-level 3 subjects).

2.2. Estimation of Angular Velocity Signal from Marker Data.
The raw data consisted of 61 cutaneous reflective markers’
three-dimensional trajectories. The data contained the .c3d
files for the marker trajectories which were retrieved using
an open-source motion analyzer software Motion Kinematic
and Kinetic Analyzer [35]). The data for each trial was
exported to a .csv file and read in MATLAB to calculate
angular velocities from marker coordinates. Shank and thigh
velocities were calculated using two markers in line with the
bone axis (TIB and TIBI for shank, and THI and THII for
thigh, Figure 1) using the method described in [36]. Foot
velocity was calculated using heel and toe markers (marked
HEE and TOE, respectively).

The raw marker data was collected at 200Hz and it is
subject to a lot of noise due to soft tissue artifacts. To reduce
the noise in the resulting angular velocity signal, a low pass
filter was designed and implemented. For this purpose, the
frequency spectrum and the Nyquist frequency of the signal
for all subjects were analyzed. A cut-off frequency of 4Hz
wave was chosen which resulted in negligible loss of data
and time-shift of the signal.
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Figure 1: Representative thigh, shank, and foot angular velocity signals and the landmarks detected by the algorithms. The maxima/minima
are indicated by a box (□) while the zero-crossings are indicated by a circle (○).

Table 1: List of subjects for whom the walking data are used in this study.

Subjects Age Gender
Mass
(kg)

Height
(m)

Etiology
Age of

amputation
(years)

K-level
Prescribed prosthesis

Number
of trialsKnee Ankle

TF01 26 Male 64.9 1.78 Traumatic 5 K3 Plie FI AllPro FI 21

TF05 72 Male 79.4 1.65 Traumatic 4 K2
C-Leg
Obk

Triton Low Profile
Obk

25

TF07 49 Male 102.1 1.91 Traumatic 10 K3
C-Leg
Obk

Triton Obk 22

TF08 42 Male 95.3 1.85 Traumatic 6 K3 Rheo Os AllPro FI 25

TF09 65 Male 69.4 1.70 Traumatic 2 K2
C-Leg
Obk

Trias Obk 25

TF11 51 Male 70.3 1.68 Traumatic 33 K3
C-Leg
Obk

Trias Obk 23

TF12 59 Male 99.8 1.83 Traumatic 16 K2
C-Leg
Obk

Trias Obk 23

TF13 61 Male 88.5 1.88 Traumatic 3 K3 Rheo Os Proflex XC Os 20

TF15 23 Female 68.0 1.75 Traumatic 5 K3 Plie FI Proflex XC Os 11

TF16 36 Male 100.2 1.80 Traumatic 8 K3
C-Leg
Obk

AllPro FI 25

TF17 38 Male 104.3 1.91 Traumatic 33 K3 Plie FI Soleus ClgPk 25

TF19 30 Female 59.0 1.60 Traumatic 10 K3
3R80
Obk

AllPro FI 25

Mean
(SD)

46.0
(15.4)

83.4
(16.0)

1.8 (0.1) 11.3 (10.4)

Complete details on amputation can be found in [34].
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2.3. Algorithms. A total of five algorithms based on the sag-
ittal plane angular velocities of three segments (foot, shank,
and thigh) are developed in MATLAB. Representative veloc-
ity signals, calculated from the reflexive marker data
(detailed in the next section), are shown in Figure 1.

For the foot and shank velocities, a dual-minima (DM)
algorithm similar to the one presented in [22] is imple-
mented (termed S-DM and F-DM algorithms). It starts with
the detection of all the positive peaks (maxima) of the signal.

These positive peaks are associated with the midswing (MS).
Each positive peak is accompanied by two negative peaks (or
minima) on either side which indicate the reversal of leg
velocity direction. The negative peak (NP) preceding the
MS is identified as the TO event while the NP after the MS
is marked as a HS.

In addition, the ZC of the velocity in the same signal are
also identified and marked as the potential predictors of gait
events as proposed by some authors [10], [16]. These are
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Figure 2: Plots of heel strike (a) and toe-off (b) errors for all five algorithms. The box indicates the lower and upper quartiles with the central
line showing the median. The top and bottom lines of the box represent, respectively, the medians for the upper and lower halves of the data
and the whiskers represent the highest and lowest values of the distribution, excluding outliers. Outliers are also presented as black dots.
Boxplots are superimposed with violin plots (in grey) indicating error distribution. A hollow circle inside the box indicates the mean
value. The plots are further separated by the leg side (sound vs. prosthetic). In addition, a green rectangle on each plot shows the
acceptable median error range.
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termed S-ZC and F-ZC algorithms for shank and foot seg-
ments, respectively.

Lastly, a novel algorithm is developed which uses the
thigh angular velocity signal as the input. The positive peaks
in the signal are marked as the TO instants while the nega-
tive peaks right after the positive peaks are marked as HS
(cf. Figure 1). This is referred to as T-MM (thigh min–
max) algorithm in this article.

Velocity signal for a complete gait trial comprising of
12–15 gait cycles is fed to the algorithm. All algorithms
begin by identifying the positive peaks in the signal. To dis-
criminate between the valid and false peaks, only the peaks
above a certain threshold are detected. This threshold is cal-
culated by taking the absolute mean of all data points in the
signal. Reference HS and TO events were identified using a
10N threshold on the GRF data.

2.4. Statistical Analysis. For each walking cycle, the timings
for the TO and HS events obtained by this algorithm were
compared against the force platform-based timings as the
reference. The errors (eTO and eHS) were calculated by tak-
ing the difference between the corresponding predicted and
reference events.

Error eHS/eTOð Þ = treference − tpredicted, ð1Þ

where the actual events refer to the ones marked using the
force platform. The error is positive when the predicted
event precedes the actual event and vice versa. A 5-number
summary statistic (involving the median, lower and upper
quartiles, minimum, and maximum values) was selected

for further descriptive analysis. Descriptive statistics of mean
error (ME) and mean absolute error (MAE) are also
reported. Only complete gait cycles (defined as HS-HS for
the same leg) were analyzed while the half-cycles at the start
and end of the trials were discarded. Statistical tests of
significance were performed at p = 0:05 level for group dif-
ferences. Temporal gait parameters including step and stride
times, stance, and swing phase durations were also com-
puted. Results were exported to R statistical tool [37] for
plotting and statistical testing.

A variety of accuracy thresholds are used in the literature
to accept or reject an algorithm ranging from 18 to 40ms
(e.g., [3] and [29]). To the best of the authors’ knowledge,
a universal criterion for the acceptance or rejection of an
algorithm based on error magnitude does not exist. In this
study, an accuracy threshold of ±25ms on median error
was set. When normalized, this threshold translates to
<2.5% of the cycle/stride time at most walking speeds. Algo-
rithms with greater errors than this band were considered
inaccurate.

3. Results

TO and HS events for a total of 3398 walking cycles from
270 trials were compared. Results for the HS event from all
algorithms are summarized in Figure 2(a). The DM algo-
rithm on the shank velocity (S-DM) appeared to provide
the best median estimate of HS (median error: −3 and
−14ms for sound and prosthetic sides, respectively). The
DM algorithm based on foot velocity (F-DM) also provided
reasonable accuracy for the HS event, though it provided a

Table 2: Mean absolute error values for HS and TO from the five algorithms (CI: confidence interval).

Events Algorithm Mean absolute error (±SD) [95% CI] Leg side Mean absolute error (±SD)

Heel strike (HS)

T-MM 112.2 (±46.5) Sound 85.67 (±16.0)
[108.5, 115.2] Prosthetic 138.60 (±51.6)

S-DM 28.17 (±20.3) Sound 16.72 (±13.5)
[26.5, 29.8] Prosthetic 39.61 (±19.4)

S-ZC 49.25 (±32.9) Sound 29.62 (±11.2)
[47.1, 51.3] Prosthetic 68.88 (±35.6)

F-DM 18.27 (±12.9) Sound 28.87 (9.5)

[17.6, 19] Prosthetic 7.68 (±4.2)
F-ZC 48.25 (±33.4) Sound 28.08 (±9.1)

[47.3, 62.4] Prosthetic 68.42 (±36.5)

Toe-off (TO)

T-MM 35.07 (±17.5) Sound 36.22 (±15.4)
[33.5, 36.4] Prosthetic 33.92 (±19.3)

S-DM 58.70 (±28.6) Sound 82.05 (±20.8)
[57.2, 60.2] Prosthetic 35.36 (±10.7)

S-ZC 40.86 (±14.5) Sound 31.65 (±10.6)
[39.8, 41.9] Prosthetic 50.06 (±11.8)

F-DM 45.96 (±9.3) Sound 48.28 (±7.5)
[42.2, 46.7] Prosthetic 43.64 (±10.3)

F-ZC 29.92 (±20.8) Sound 11.63 (±6.6)
[29.1, 30.7] Prosthetic 48.21 (±12.3)
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slightly larger-than-acceptable median error on the sound
side (−27ms). ZC algorithms as well as the thigh-based HS
prediction provided inferior accuracy.

TO prediction results are shown in Figure 2(b). The
median errors were larger than the threshold of ±25ms for
foot and shank-based methods. Only the thigh velocity algo-
rithm provided the requisite accuracy with a median error of
only 19 and −14ms on sound and prosthetic sides,
respectively.

The accompanying violin plots in Figure 2 show the dis-
tribution of error values. The plots did not present large
skewness in most cases.

3.1. Mean Absolute Errors. Table 2 shows the MAE for both
events from all five algorithms. The errors are further sepa-
rated by leg side (sound vs. prosthetic).

For HS, the F-DM method produced the best result with
an absolute ME of 18.2ms (SD=12.9). The error was partic-
ularly low on the prosthetic side (~8ms) and a small disper-
sion around the mean. S-DM algorithm also provided
reasonable accuracy (~28ms) and could be a potential can-
didate for HS prediction.

For the TO event, the T-MM gave an absolute error of
~35ms. Moreover, it provided similar accuracy for both
sound and prosthetic legs. The F-ZC algorithm based on
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Figure 3: Error plots of four gait parameters deduced from two conventional (panels 1 and 2) and two hybrid (panels 3 and 4) algorithms.
The latter, with the inclusion of thigh-based TO estimation, result in improved prediction accuracy of the gait parameters. (Outliers are
represented by dots, while mean value is indicated by a hollow circle).
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foot velocity had a smaller overall error value (~30ms) but it
performed poorly on the prosthetic side with an absolute
mean of ~48ms.

3.2. Estimation of Gait Parameters. A key objective of gait
event detection is to determine temporal gait parameters
which depend upon the accuracy with which the events are
detected in the first place. From the analysis of the above
results, it can be deduced that no single algorithm can accu-
rately predict both events, especially for both legs. This leads
us to propose a hybrid approach that combines the strengths
of multiple algorithms for the determination of gait
parameters.

Two combination algorithms are proposed in this
regard. Both algorithms utilize the same TO prediction from
the thigh-based T-MM algorithm due to its small error and

robustness against the leg side. However, they differ in the
HS prediction. In the first algorithm (termed hybrid
shank–thigh or h-ST algorithm), the HS prediction from
the S-DM method is used, while in the second hybrid algo-
rithm, the HS prediction from F-DM is used (hence termed
as h-FT algorithm). Box and whisker plots for errors in four
gait parameters are plotted in Figure 3. Mean errors are also
indicated by a circle. For comparison, errors from two tradi-
tional algorithms (S-DM and F-DM) are also plotted while
the corresponding zero-crossing algorithms (S-ZC and F-
ZC) are left out due to large HS median errors and several
outliers especially on the prosthetic side (cf. Figure 2).

Stride and step times, which depend solely on the HS
estimation, are estimated rather accurately by all algorithms.
However, the hybrid h-ST and h-FT algorithms outper-
formed the traditional algorithms for the stance and double
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Figure 4: Error plots for gait parameters using the h-ST algorithm. The x-axis shows the gait speed from 0.4 to 1.4 m/s while the y-axis
represents error in terms of percentage of stride time. The blue dots indicate individual trial means.
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support time estimation. Of the two hybrid algorithms, the
h-ST algorithm produced better results with median errors
within ±25ms range threshold in all cases.

The h-ST algorithm was further analyzed for its robust-
ness against gait speed (0.4–1.4m/s) and subjects’ K-level.
Figure 4 summarizes the error results of the four gait param-
eters normalized by stride time. Median error values
remained well within 5% of stride time for all gait parameters.

Furthermore, correlation and Bland–Altman plots are also
provided in the Appendix (see Figures 5 and 6).

4. Discussion and Conclusions

This study aimed at exploring different kinematic algorithms
for the estimation of gait events and parameters for the
amputee population. Among the velocity-based algorithm
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implemented, foot velocity provided the best estimate of the
HS event, while a novel thigh velocity-based algorithm
resulted in the best TO estimation. When combined, the
hybrid h-ST algorithm provided the best results for key tem-
poral gait parameters.

4.1. Accuracy of Gait Event Prediction. Prediction of gait
events from kinematics has been a subject of many studies.
Numerous studies have favored the shank-based DM
method. While the literature agrees that this method is valid
for HS prediction, recent studies have reported consistent
early TO prediction [24]. Our results confirm this finding
for the amputee population in this data set (cf. Figure 3(b),

panel labeled S-DM). On the other hand, some studies have
advocated the use of ZC as a potential TO indicator [10],
[16]. This proposition is not supported by our results as it
resulted in the consistent late prediction (Figure 2, panel S-
ZC). The same is true for the foot-based DM and ZC
methods, albeit with smaller absolute error values (cf.
Table 2). In this regard, a major contribution of this article
is the presentation of the thigh-velocity-based T-MM algo-
rithm for an improved TO estimation. The algorithm pro-
vided a similar median TO bias of (<20ms) for both sound
and prosthetic legs.

On the other hand, the S-DM method provided the best
accuracy for HS prediction confirming the findings of
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similar studies reporting errors in the range of 8–14ms [6],
[19]. Combining the HS estimation from the F-DM method
and TO estimation from the T-MM algorithm greatly
enhances the gait parameter accuracy as compared to
single-limb-based estimation. This hybrid approach was also
advocated in [3] yet is still unexplored. Moreover, as shown
in Figure 4, the algorithm is robust against gait speed and
subjects’ K-level with a median error of less than 5% of stride
time. An additional strength of this algorithm is the absence
of any restrained time intervals for the events to occur. This
results in a reduced computational cost during implementa-
tion. Moreover, the peak threshold (to discriminate between
the actual peaks and the false peaks) is calculated automati-
cally for each trial by taking the absolute mean of the input
velocity signal eliminating the need for any manual adjust-
ment for different speeds or subjects.

4.2. Limitations and Future Work. A key limitation of this
study is the use of data acquired on a treadmill resulting in
minimal gait variations. In a less constraining environment,
the amputee gait could present a more varying gait making
the prediction task more challenging. Moreover, to general-
ize the results, the algorithm should be validated on other
populations with gait disorders, such as the patients suffer-
ing from Parkinson’s disease.

Appendix

Correlation and Bland–Altman plots for four gait parame-
ters calculated using the hybrid foot–thigh (h-ST) algorithm.
All units are in milliseconds.
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