Research Article

Strength Abilities and Serve Reception Efficiency of Youth Female Volleyball Players

Damian Pawlik 1, Wioletta Dziubek 2, Łukasz Rogowski 3, Artur Struzik 4, and Andrzej Rokita 5

1 Department of the Biological and Motor Basis of Sport, Wroclaw University of Health and Sport Sciences, Paderewskiego 35 Avenue, 51-612 Wroclaw, Poland
2 Department of Physiotherapy, Wroclaw University of Health and Sport Sciences, Paderewskiego 35 Avenue, 51-612 Wroclaw, Poland
3 Faculty of Health and Physical Culture Sciences, Witelion Collegium State University in Legnica, Sejmowa 5A Street, 59-220 Legnica, Poland
4 Department of Biomechanics, Wroclaw University of Health and Sport Sciences, Mickiewicza 58 Street, 51-684 Wroclaw, Poland
5 Department of Team Sport Games, Wroclaw University of Health and Sport Sciences, Mickiewicza 58 Street, 51-684 Wroclaw, Poland

Correspondence should be addressed to Wioletta Dziubek; wioletta.dziubek@awf.wroc.pl

Received 23 November 2021; Revised 28 April 2022; Accepted 17 May 2022; Published 1 June 2022

Academic Editor: Yanxin Zhang

Copyright © 2022 Damian Pawlik et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Success in volleyball largely depends on motor abilities, particularly on maximum strength, power, jumping, and speed performance. However, a small number of studies assess the relationship between motor abilities and the effectiveness of volleyball technical skills. Therefore, the aim of the study was to assess the impact of the strength of the upper and lower limbs on the efficiency of serve reception during a 2 vs. 2 game, as well as to evaluate the results of motor measurements in the context of determining the usefulness of current testing procedures. The study involved a carefully chosen group of 12 girls aged 12–13 years (body height: 176 ± 4.2 cm, body mass: 58.6 ± 5.1 kg, and training experience: 43 ± 15 months) selected for the Lower Silesian Regional Volleyball Team. The following tests were conducted: handgrip strength with a hand dynamometer, bent-arm hang, 2 kg medicine ball throw, shoulder joint internal rotators (IR) peak torque, standing long jump, spike jump, and countermovement jump. The measurements of the shoulder joint IR peak torque were performed under isometric (at 10°, 35°, and 65° rotation angles) and isokinetic (at 60°/s, 180°/s, and 300°/s) conditions. The efficiency of serve reception was evaluated during a 2 vs. 2 games by using Data Volley statistical software. The strongest positive relationships were observed between the serve reception efficiency and the peak torque and power of the shoulder joint IR, the medicine ball throw distance, and handgrip strength. Jumping variables showed no associations with efficient serve reception. Consequently, we suggest adding protocols to volleyball training that include strength exercises aimed at developing the IR muscle group. The isokinetic upper limb test should be introduced as a valid tool in selection process. Coaches who do not have access to modern research equipment should use the medicine ball throw test to evaluate strength abilities as an alternative assessment of the serve reception efficiency.

1. Introduction

Volleyball requires players to make quick and precise decisions while maintaining highly accurate motor activities. The precision and proper trajectory of the ball that the player hits to a designated place on the court are very important. A player’s actions are effective if he or she hits the ball closer to the goal, while efficiency is an additional feature by which a positive result is obtained from the action, regardless of whether the action was intentional. The efficiency
index is considered one of the parameters that best explains
the team’s victory or failure during a game [1].

Palao et al. [2] distinguished two major complexes in
volleyball: CI—reception, setting, and attack; CII—block,
defense, setting, and counter-attack. The most important
activities within these two complexes, which affect the type,
form, and consequently the outcome of the play, are the
serve and serve reception [3–5]. These two activities have
a deciding influence on the subsequent development of play
and thus on the result of the game [5–7]. The main goals
of the serve are winning a point or making it difficult for
the opponent to respond with an effective action. Serve
reception is a defensive action, which mainly depends on
the type and velocity of the opponent’s serve, as well as on
the technical and tactical skills of the receiving players [8].

In many sports, success largely depends on the level of
skills and motor capabilities and particularly on the ability
to develop maximum strength, power, jumping, and speed
tasks [5, 9–11]. In volleyball, strength abilities are considered
both in terms of the value of maximum muscle contraction
and particularly as the relationship between muscle strength
and the speed of muscle contraction (force-velocity compo-
nent) [10, 12]. Serve reception should be performed in a sta-
ble position with substantial effort of lower and upper limb
movements. A relatively high strength level of the upper
and lower limbs may facilitate better ball control by the
receiver and a more precise pass to the setter.

According to recent findings, assessments of strength
and speed-strength components in competitors from various
sports should include measurements of muscle peak torque
developed by particular muscle groups in the lower and
upper limb joints under isometric or isokinetic conditions,
instead of the currently used simple strength field tests
[13–15]. In volleyball, the most important tests include a
countermovement jump (CMJ) and spike jump with a run-
up (SPI) performed on the force plate to evaluate the power
of the lower limbs [16–18].

Current research extensively describes aspects related to
the efficiency of the serve, while few studies have attempted
to explain the impact of performance on the efficiency of
serve reception [19, 20]. Many authors most often use game
statistics to determine the merits of this activity [21, 22].
However, no publications have examined the association
between the levels of motor abilities with the efficiency of
performing particular defensive tasks during a game.

Therefore, the aim of the study was to assess the impact
of the strength of the upper and lower limbs on the efficiency
of serve reception during a 2 vs. 2 game, as well as to evalu-
ate the results of motor measurements in the context of
determining the usefulness of current testing procedures.

2. Materials and Methods

2.1. Participants. The study involved a carefully selected
group of 12 girls aged 12–13 years selected for the Lower
Silesian Regional Volleyball Team. Detailed characteristics
of the group are presented in Table 1. This team is one of
the top three teams in Poland in this age category. Youth
volleyball players and their parents were informed about

<table>
<thead>
<tr>
<th>Group</th>
<th>Body height (cm)</th>
<th>Body mass (kg)</th>
<th>BMI (kg/m²)</th>
<th>Training experience (month)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± SD</td>
<td>176.5 ± 4.2</td>
<td>58.6 ± 5.1</td>
<td>18.8 ± 1.3</td>
<td>43 ± 15.1</td>
</tr>
</tbody>
</table>

the purpose of the study. Parents provided written permis-
sion for their child’s participation in the experiment. Before
the main tests, each participant was familiarized with the
task and performed a practice test. The experiments were
performed in the Biomechanical Analysis Laboratory (with
PN-EN ISO 9001:2009 certification). The study was
reviewed and approved by the Senate Committee on
Research Ethics of the Wroclaw University of Health and
Sport Sciences, Poland (no. 19/2016), and the procedures
complied with the Declaration of Helsinki regarding human
experimentation.

Participants were included in study if they were active in
competitions and volleyball training. Furthermore, partici-
pants must not have currently been experiencing pain in
the area of the shoulder girdle; knee or ankle joints and were
required to have a current athlete’s medical book approved
by a sports medicine doctor. Prior to the tests, a dynamic
volleyball warm-up was performed, containing only the
dynamic exercises, to obtain the highest values of the exam-
ined variables. Warm-up includes 2 min trotting, 10 min
strength and dynamic exercise (planks, squats, front and side
leg swings, trunk twist, hip extension, standing hip rotations,
and push-ups), 10 min dynamic warm-up (trotting, arm cir-
cles, side shufflers, high knees, butt kicks, lunges, and inch-
worms), 3 min of coordination ladder exercises, and
finishing by 4 min plyometric exercises (alternate leg
bounds, 6 m sprint, vertical jump and 6 m sprint, and verti-
cal jump and 6 m sprint with change direction).

2.2. Study Design. The following tests were conducted on all
players: upper limb tests (muscle peak torque of shoulder
joint internal rotators (IR) under isokinetic and isometric
conditions, handgrip strength, bent-arm hang, and medicine
ball throw), lower limb tests (spike jump, long jump, and
countermovement jump with arm swing), and an assess-
ment of the efficiency of serve reception during a game.

2.3. Upper Limb Tests. Variables measuring the strength of
the upper limbs were assessed using the research tests
described below. The handgrip strength of right and left
hand was performed with a hand dynamometer (Baseline
Hydraulic Hand Dynamometer, White Plains, NY). Next,
subjects were required to throw a 2 kg medicine ball and per-
formed the bent-arm hang test [15, 23, 24].

The measurements of the shoulder joint IR peak torque
were performed using the Multi Joint 4 isokinetic dyna-
mometer from Biodex Medicine System (Shirley, NY, USA) [25]. Prior to the torque measurements, the seat,
dynamometer, and suitable attachment were adjusted to
ensure that the tip of the dynamometer became an extension
of the axis of rotation of the examined joint. The
participant’s torso and pelvis were stabilized using straps attached to the chair to eliminate movements in neighboring joints. The position of the participant was considered completely fixed. The subject was instructed to adopt a completely steady position. On the verbal command "jump," the subject performed a vertical CMJ with an arm swing. After the jump (100% of one’s capabilities), the subject exited the platform and waited for their second jump. The next jump was performed after all subjects had completed the first jump, and the interval did not cause a loss of readiness to attempt the maximum jump. The break between the jumps was approximately 2 minutes. The height of the center of mass was estimated based on the time of flight. Instantaneous peak power in the take-off phase was computed as the product of instantaneous ground reaction forces and the velocity of the general center of body mass. The instantaneous velocity of the general center of body mass in the take-off phase was evaluated based on the integration of the vertical component of the ground reaction forces (reduced by the weight of a participant) with respect to time. The relative peak power was obtained by dividing the peak power by the participant’s body mass.

2.5. Efficiency of Serve Reception. The volleyball players’ game was observed during a tournament for two-person (2 vs. 2) teams. The pairs were created based on a ranking list of all female players, which the team coaches determined based on a subjective evaluation of the game. Coaches considered the following criteria: level of technical skills, level of tactical abilities, and volitional predispositions (determined subjectively—attitude and commitment to training and sports rivalry). Team pairs were selected to ensure that the sum of the ranking number equaled the same value (pairs were created based on the volleyball skills ranking list: 1-12, 2-11, 3-10, 4-9, 5-8, and 6-7). The games were played using “peer-to-peer” system (15 games, 5 games per team). The duration of each game was 14 minutes, and after 7 minutes, the courts were changed. Games were played on a field with the dimensions 18 m × 4.5 m. The height of the net was 215 cm.

Games were recorded using a Sony HD (HDR-CX405) camera. The collected data were subjected to quantitative and qualitative analyses, while the index of efficiency of serve reception of all players was calculated using Data Volley software (Data Project, Italy). The quality of serve reception was assessed on a five-point scale [30]. The serve reception efficiency index was calculated by adding the number of serve receptions of the given type and all serve receptions using the following formula: \(WE(R) = (R^+ + R^- + R^0) / n_dz \), where \(WE(R) \) is an efficiency index, \(R^+ \) is a perfect serve reception, \(R^- \) is very good serve reception, \(R^0 \) is a serve reception where the opposing team scored a point, and \(n_dz \) represents the number of players. If a player exhibited a better serve reception, the efficiency index will be closer to 100%.

2.6. Statistical Analysis. Statistical analyses were performed using STATISTICA 12.0 software. A basic statistical analysis of the data determined the mean values and standard deviations. The main goal of the statistical analysis was to describe the relationships between the volleyball players’ efficiency of serve reception during a 2 vs. 2 game and the investigated motor abilities. Spearman’s correlation coefficient \(r \) was determined in the analysis; however, on the basis of the number of participants (\(n = 12 \)), this coefficient was deemed statistically significant when its absolute value was greater than 0.58 (at the significance level \(\alpha = 0.05 \)) or 0.50 (at the significance level \(\alpha = 0.10 \)). Only clear correlations
determined from the tested data were considered statistically significant (even if the level $\alpha = 0.10$ is assumed as critical). In the tables below, statistically significant correlations at the level $p < 0.05$ are marked with the symbol (\ast) and at $p < 0.1$ with the symbol $(\ast\ast)$. The Intraclass Correlation Coefficient was measured for upper limbs on isometric (left ICC = 0.93 and right ICC = 0.95) and isokinetic (left ICC = 0.89 and right ICC = 0.95) tests with confidence interval (95%).

3. Results

The strongest statistically significant correlations ($p < 0.05$) were observed between the distance of the medicine ball throw, grip strength of the left hand, isometric peak torque for right shoulder joint IR (65°), isokinetic peak torque for right shoulder joint IR for angular velocities of 60°/s, 180°/s, and 300°/s, and serve reception. Statistically significant relationships ($p < 0.1$) were observed between static peak torque for IR of the left and right shoulder joints at 10° and 35°, isokinetic peak torque for the left shoulder joint IR for angular velocities of 180°/s and 300°/s, and serve reception (Table 2).

The average power (AVGP) of the right shoulder joint IR exhibited significant correlations ($p < 0.05$) with the efficiency of serve reception at all angular velocities (60°/s, 180°/s, and 300°/s), while the power of the left shoulder joint IR exhibited a significant correlation with serve reception at only an angular velocity of 180°/s (Table 3).

4. Discussion

The aim of the study was to assess the impact of the strength of the upper and lower limbs on the efficiency of serve reception during a 2 vs. 2 game. First selections for the regional and national teams occur at the age of 12-13. Therefore, this age period is very important for young volleyball players. Currently, studies have evaluated selected motor abilities of female volleyball players [31, 32] or the efficiency of actions during a game with senior players [2, 33]. Anthropometric parameters and motor tests results are decisive factors for the selection of youth national female volleyball teams [34]. However, a small number of works assess the relationship between motor performance and the effectiveness of technical elements in volleyball [35–38]. Katić et al. [35] proved that the mechanisms regulating the force influence the performance of attack, block, and play, while the processes responsible for speed and power have a greater influence on the effectiveness of serve reception. Stamm et al. [36] found that flexibility and speed abilities contributed in 44% to the effectiveness of serve reception. All these works use field-test measurements, while our work includes an extended group of tests with laboratory tests.

The serve reception can have a crucial influence on setting efficiency [39]. All strength tests involving the upper limbs exhibited statistically significant relationships with the efficiency of serve reception, particularly tests in which the IR of the shoulder joint were involved. The achievement of a high strength value may affect the correct positioning of arms at the time of contact with the ball, as well as the accurate reproduction of the technique [40, 41]. Uncontrolled changes in the initiated sequence of movements or in the position of the arms caused by contact with the ball result in a departure from the correct movement pattern and consequently an inaccurate reception or an error. Higher level of strength ability results in greater motor control [42–44]. Thus, athletes with higher levels of upper limb strength will show greater precision and control in the serve reception.

The female player received the serve more efficiently when the value of peak torque of the shoulder joints IR was higher. Higher values for the peak torque and power of the IR within the right shoulder joint generally indicated a more effective serve reception by the player. Significant relationships were observed with the efficiency of serve reception, regardless of the angle or angular velocity at which the torque of IR was evaluated. The vast majority of research describes the results of experienced female players and volleyball players who have recovered from an injury to the upper limb or a comparison between the dominant and the nondominant limb [14, 45–48]. However, no study has investigated volleyball players aged 13 or compared the maximum torque of the upper limbs with the efficiency of actions during a game.

Most volleyball actions (motor activities) are performed in a stable position, but the technique of serve reception itself is based on the movement of the lower limbs, torso, and upper limbs towards the ball and following through with a serve reception. Therefore, motor tests in which the isokinetic element occurs are more strongly correlated with technique and consequently with the result of the action performed. On the basis of the results of the assessment of strength abilities, tests that evaluate the peak torque of the shoulder joint IR under isokinetic conditions at high angular velocities of 180°/s and 300°/s using modern research equipment appear to be more reasonable than tests performed under isometric conditions. Coaches who do not have access to modern research equipment should use the medicine ball throw to measure strength as an alternative assessment of the serve reception efficiency [35].

Lower limb tests showed no associations with efficient serve reception. Wrong chosen strength tests, which do not reflect the specifics of the game, may provide information opposite to the anticipated results. Katić et al. [35] noticed relationship between lower limb movement and effectiveness of serve reception. Tests based on the measurement of movement speed or lower limb power may be more appropriate for the displacement to the incoming ball than for the serve reception effect itself (when a quasistatic position is performed). Therefore, it is worth adding tests based on the isometric torque measurement, which is responsible for stabilizing the position during serve reception. The vertical jump height and power did not significantly affect the efficiency of the serve reception. When analyzing the technique of serve reception, the athlete should assume a stable position with lower limb flexion, undergoing a slight extension at the time of contact with the ball. Therefore, a test should be applied that is more similar in terms of the specificity of serve reception. To identify the relationship between the
Table 2: Strength abilities of 13-year-old girls selected for the Lower Silesian Regional Volleyball Team with correlation coefficients with the serve reception.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean ± SD</th>
<th>Confidence interval</th>
<th>Serve reception</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handgrip strength (kG)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>27.3 ± 3.1</td>
<td>25.3 ± 29.3</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>27.6 ± 3.4</td>
<td>25.4 ± 29.7</td>
<td></td>
</tr>
<tr>
<td>Isometric peak torque at a specific angle (Nm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L 60°/s</td>
<td>19.6 ± 6.0</td>
<td>15.8 ± 23.4</td>
<td>0.4</td>
</tr>
<tr>
<td>L 35°/s</td>
<td>19.7 ± 5.1</td>
<td>16.5 ± 22.9</td>
<td>0.57*</td>
</tr>
<tr>
<td>L 10°/s</td>
<td>19.6 ± 5.1</td>
<td>16.3 ± 22.8</td>
<td>0.57*</td>
</tr>
<tr>
<td>R 65°/s</td>
<td>22.7 ± 5.9</td>
<td>18.9 ± 26.4</td>
<td>0.67**</td>
</tr>
<tr>
<td>R 35°/s</td>
<td>23.0 ± 5.4</td>
<td>16.5 ± 22.9</td>
<td>0.54*</td>
</tr>
<tr>
<td>R 10°/s</td>
<td>21.8 ± 5.5</td>
<td>16.3 ± 22.8</td>
<td>0.54*</td>
</tr>
<tr>
<td>Isokinetic peak torque of IR at a specified angular velocity (Nm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L 60°/s</td>
<td>19.9 ± 3.8</td>
<td>17.5 ± 22.3</td>
<td>0.34</td>
</tr>
<tr>
<td>L 180°/s</td>
<td>19.8 ± 3.7</td>
<td>17.4 ± 22.1</td>
<td>0.53*</td>
</tr>
<tr>
<td>L 300°/s</td>
<td>23.1 ± 5.3</td>
<td>19.7 ± 26.5</td>
<td>0.54*</td>
</tr>
<tr>
<td>R 60°/s</td>
<td>20.1 ± 4.7</td>
<td>17.2 ± 23.1</td>
<td>0.71**</td>
</tr>
<tr>
<td>R 180°/s</td>
<td>18.6 ± 4.4</td>
<td>15.8 ± 21.4</td>
<td>0.72**</td>
</tr>
<tr>
<td>R 300°/s</td>
<td>22.7 ± 5.1</td>
<td>19.4 ± 25.9</td>
<td>0.70**</td>
</tr>
<tr>
<td>Simple field tests (ICSPFT)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance the medicine ball was thrown (m)</td>
<td>8.0 ± 1.3</td>
<td>7.2 ± 8.8</td>
<td>0.59**</td>
</tr>
<tr>
<td>Bent-arm hang time (s)</td>
<td>29.7 ± 6.9</td>
<td>25.3 ± 34.1</td>
<td>-0.50*</td>
</tr>
<tr>
<td>Standing long jump (cm)</td>
<td>193 ± 9</td>
<td>187 ± 19</td>
<td>-0.29</td>
</tr>
<tr>
<td>Jump tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPJ reach height (cm)</td>
<td>270 ± 12</td>
<td>262 ± 278</td>
<td>0.08</td>
</tr>
<tr>
<td>CMJ height (cm)</td>
<td>30.5 ± 5.2</td>
<td>27.6 ± 33.8</td>
<td>-0.05</td>
</tr>
<tr>
<td>CMJ peak power (W/kg)</td>
<td>44.5 ± 6.2</td>
<td>41.1 ± 48.4</td>
<td>-0.21</td>
</tr>
</tbody>
</table>

Table 3: Average power of the internal rotation of the shoulder joint under isokinetic conditions and the correlation coefficient with the serve reception.

<table>
<thead>
<tr>
<th>Average power</th>
<th>Mean ± SD (W)</th>
<th>Confidence interval</th>
<th>Serve reception</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVGP L IR 60°/s</td>
<td>12.7 ± 2.6</td>
<td>11.0 ± 14.3</td>
<td>0.37</td>
</tr>
<tr>
<td>AVGP L IR 180°/s</td>
<td>20.6 ± 4.4</td>
<td>17.9 ± 23.4</td>
<td>0.54*</td>
</tr>
<tr>
<td>AVGP L IR 300°/s</td>
<td>21.1 ± 6.3</td>
<td>17.1 ± 25.1</td>
<td>0.45</td>
</tr>
<tr>
<td>AVGP R IR 60°/s</td>
<td>13.5 ± 3.5</td>
<td>11.2 ± 15.7</td>
<td>0.77**</td>
</tr>
<tr>
<td>AVGP R IR 180°/s</td>
<td>21 ± 6.6</td>
<td>16.9 ± 25.2</td>
<td>0.89**</td>
</tr>
<tr>
<td>AVGP R IR 300°/s</td>
<td>21.5 ± 6.2</td>
<td>17.6 ± 25.4</td>
<td>0.90**</td>
</tr>
</tbody>
</table>

*Significant at $p < 0.1$; **significant at $p < 0.05$; R: right side; L: left side; IR: internal rotation.

The strength of the lower limbs and the efficiency of serve reception the test based on the isometric effort should be used, rather than a jumping ability test.

Upper body strength is identified as one of the most important factors in differentiating between players of the most and least successful teams [49]. In the present study, we attempted to assess the strength abilities of upper and lower limbs with the efficiency of serve reception. Currently, the efficiency of volleyball technique skills was mostly evaluated only by game statistics or in isolated game fragments. There are insufficient studies about the relationships between serve reception during the game and motor ability test results. While performing isolated movement tasks, the player may perform them with high efficiency but can still commit numerous errors during the game.

Our study has some limitations. The studied athletes were youth female volleyball players; therefore, obtained relationships should not be related to the elderly and male groups. The studied group considered only 12 participants, but it should be taken to account that it was a selected group of female volleyball players with the highest performance level at this age.

5. Conclusions

Among the many field and laboratory tests used in this study, it has been shown that IR isokinetic tests have the strongest relationship with the effectiveness of serve.
reception. Therefore, the IR muscle group has a significant role in successful serve reception. Consequently, we suggest adding protocols to volleyball training that include strength exercises aimed at developing this muscle group. Our research suggests that if possible, the isokinetic upper limbs test should be introduced as a valid tool for selecting female players for representative groups.

Data Availability
The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest
The authors declare no conflict of interest.

Acknowledgments
We would like to thank all participants engaged in this experiment.

References

