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The finite-time attitude cooperative control problem for a group of multiple unmanned aerial vehicle systems with external
disturbances and uncertain parameters is discussed in this paper. The dynamics of the systems is described by quaternion
avoiding the singularity. Based on the attitude error and angular velocity error, a novel nonsingular terminal sliding mode
surface is proposed for the controller with event-triggered scheme. The lumped disturbances are estimated by neural networks
with adaptive law. The communication frequency is decreased by the proposed distributed event-triggered based sliding mode
controller. Lyapunov theory is utilized to analyze the stability of the systems, and the Zeno behavior is avoided by rigorous
proof. Finally, simulation examples are presented to illustrate the efficiency of the proposed control algorithm.

1. Introduction

Attitude cooperative control of multiple unmanned aerial
vehicle systems (MUAVs) is significantly important in the for-
mation flying missions. Compared to a single unmanned
aerial vehicle (UAV), MUAVs can accomplish more complex
and dangerous missions by collaboration, such as search and
rescue, forest fire fighting, emergency rescue, low-attitude
reconnaissance, and combat military missions [1–3]. Attitude
cooperative control problem has been of growing interests in
last several years due to its engineering and theoretical impli-
cations. Many scholars proposed different attitude control
scheme to improve the accuracy and stability of the MUAVs.
Variable structure control combined with decentralized com-
munication scheme was proposed for spacecraft formation
flying [4], based on the development of consensus theory,
leader-follower was employed in the multiple aircrafts [5, 6].
As the amount of the MUAVs increases, the communication
burden among each UAVwill increase and may cause the net-
work communication jam, and it would seriously affect the
stability of the systems due to the band width is limited. It is

significant to consider the network communication strategy
ofMUAVswhen designing the attitude cooperative controller.

Even-triggered scheme is employed in the multiagent
systems for considering the limited band width and energy
consumption, instead of continuous control input update,
the controller updates the input depending on the event-
triggered function, which is relevant to the measurement
error, and when the estimation error comes up to the given
threshold value the update of the controller will be updated
[7]. An event-triggered-based controller was proposed in
first-order multiagent systems (MAS) by introducing the
event-triggered mechanism, and the triggered condition
was designed associated with the states of agents [8]. Distrib-
uted rendezvous problem was investigated for second-order
multiagent systems with combinational measurement by
event-triggered mechanism [9]. Based on the measurement
error, the event triggered function was built for linear
MAS, and all the states of the agents reach to consensus
[10, 11]. Event-triggered scheme was employed in many sys-
tem dynamical model which can be described as second-
order dynamics [12]. A distributed sliding mode controller
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based on event triggered finite time mechanism was
designed for formation of multirobot systems [13]. The
event triggered was widely used in attitude control of space-
crafts to save the communication resources [14–16]. How-
ever, the mentioned works with attitude control did not
consider the uncertain parameters. Based on event-
triggered strategy, time-varying formation problem was
investigated for MUAVs under switching topology [17], atti-
tude formation on SO (8) [18], and dynamical consensus
formation problem which was limited by time-varying dis-
turbances [19]. However, external disturbances and inertial
matrix uncertainty cannot avoid in practical environment.
The event-based formation control for MUAVs only guar-
antees asymptotically convergence in the aforementioned
works [17–19]. Finite-time control is a useful tool which
has high accuracy and robustness property, enabling the
control systems to approach the stable region in finite time.
Finite-time control has been extensively utilized in Euler-
Lagrange systems [20–22]. Distributed attitude tracking
problem of spacecrafts was proposed considering distur-
bances and uncertain parameters in finite time [20]. Adap-
tive control was introduced into the finite-time controller
extended the mentioned work [20] for attitude tracking
problem of spacecrafts [21]. Feedback control was employed
in formation control for finite time convergence of nonholo-
nomic wheeled mobile robots [22]. Distributed finite-time
control (FTC) problem was studied for multiple quadrotor
formation with the information of leader not available to
all the followers [23]. However, no external disturbances
were considered. The disturbance was estimated by the
observer, and FTC was investigated for a single quadrotor
[24, 25]. However, attitude cooperative problem was not
considered. There is less work associated with the finite-
time attitude cooperative or formation control with
event-triggered mechanism for MUAVs. Most recently,
FTC based on event-triggered was investigated for quadro-
tor flying control [26, 27]. However, attitude tracking
problem was not considered, and the controller designed
was limited to the specific UAV. So, attitude cooperative
control with FTC theory and event-triggered mechanism
is more interesting.

Motivated by the aforementioned works and analysis,
finite-time attitude cooperative control problem of MUAVs
with event-triggered mechanism is investigated, and the net-
work communication resources are reduced. The contribu-
tion of this paper is illustrated in the following aspects: (1)
external disturbances and uncertain parameters are consid-
ered in the attitude dynamics, and the attitude cooperative
problem is described by the quaternion avoiding the singu-
larity. The attitude tracking consensus errors are measured
by employing a positive error function, a novel integral slid-
ing mode surface is proposed, the FTC is designed for the
closed loop systems, and neural network is utilized to esti-
mate the lumped uncertainties. (2) The communication fre-
quency of the controller among the followers is reduced due
to the event-triggered strategy which is employed in the con-
troller, so the proposed novel event-triggered function saves
the communication burden and energy of each UAV. The
deduced lower bound between triggering intervals guarantee

no Zeno behavior occurs. (3) Fast terminal sliding mode
control is utilized in control law which guarantees that the
attitude achieves the desired value in finite time.

The rest of this paper is organized as follows. In Section
2, preliminaries of graph theory, quaternion-based attitude
dynamics of MUAVs, and some useful lemmas are given,
and Section 3 gives main results. The performance of the
controller is proved by numerical simulation examples in
Section 4. Finally, conclusion is given in Section 5.

2. Preliminaries and Problem Formulation

2.1. Notations. The following convenience notations are
adopted throughout the paper: Rn denotes n × 1 real column
vector, In = ½1, :::1�T denotes n × 1 column vector with each
element being, and In denotes a n × n dimensional identity
matrix. ⊗ stands for Kronecker product. k:k stands for the
induced matrix 2-norm or the Euclidean vector norm. In
addition, for a given vector x ∈ Rn, xi denotes the ith element
of the vector x, sigrðxÞ = sgn ðxÞjxjr .

Graph theory is utilized to describe the communication
flow among the MUAVs. Let G = ðν, ξÞ denotes the graph,
in which, ν = fν1, ν2,⋯, νng is a nonempty set containing
a group number of nodes which denotes the UAV, and ξ
⊆ ν × ν is called edge which is a set of nodes. If there any
two nodes could communicate with each other, the graph
G is called connected graph. A = ½aij�N×N ∈ Rn×n is weighted
adjacency matrix representing the communication between
each node, in which, aii = 0, otherwise, aij = aji ≥ 0. D =
diag fd1, d2,⋯, ng denotes the degree matrix of associated
with weighted graph, the elements of the degree matrix are
di =∑n

j=1aij. The Laplacian matrix of the weighted graph is
denoted by L =D − A, and L is symmetric matrix.

Throughout this paper, leader-follower MUAVs are con-
sidered which contains one leader and n followers. The fol-
lowers are marked as iði = 1,⋯, nÞ, and the leader is
marked as 0. Let �G denotes the topology graph associated
with MUAVs containing one leader and n followers. A diag-
onal matrix B = diag fb1,⋯, bng is utilized to denote the
communication between the follower UAV and the leader
UAV. If bi > 0 means that the ith follower can obtain the
communication flow of the leader, otherwise, bi = 0.

Assumption 1. Consider the MUAVs consisting of N fol-
lowers and one leader, the topology of the MUAVs is
described by �G, and �G is directed connected graph.

Based on Assumption 1 and graph theory, we define a
matrix C = L + B.

Lemma 2 (see [28]). If Assumption 1 holds, then, matrix C is
invertible.

Lemma 3 (see [29]). Consider a system modeled as _z = f ðzÞ
, f ð0Þ = 0, x ∈ℝn, a continuous function VðzÞ ∈ℂ1 which is
defined on a neighbourhood of the origin. If the function Vð
zÞ satisfies that it is positive definite and _VðzÞ ≤ −∇1V

∂ðzÞ,
where ∂ ∈ ð0, 1Þ, ∇1 is positive parameters. The systems
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converge to the origin in finite-time, the converge time T
which depends on the initial state of zð0Þ:

T z 0ð Þð Þ ≤ V1−∂ z 0ð Þð Þ
∇1 1 − ∂ð Þ : ð1Þ

Lemma 4 (see [30]). If there is a real number xi ∈ℝ, i = 1,
⋯, n, α ∈ ð0, 1�, then

〠
n

i=1
∣ xi ∣

 !α

≤ 〠
n

i=1
xij jα ≤ n1−α 〠

n

i=1
∣ xi ∣

 !α

: ð2Þ

For x ∈ℝn, jαj ∈ ð0, 1Þ, then

xαk k ≤ n1−α xk kα: ð3Þ

2.2. Attitude Dynamics Model of MUAVs. Throughout this
paper, the attitude dynamics of UAV is described by quater-
nion which could avoid singular problem and analyze con-
veniently [31].

Ji _ωi = ui − S ωið ÞJiωi + ϑi,

_Qi =
1
2 ϕ Qið Þωi,

ð4Þ

where Qi = ½qi qi0�T represents the attitude of the ith UAV,
qi ∈ℝ

3, qi0 ∈ℝ, Qi ∈ℝ4, Qi ∈ℝ4, jQij = 1, and ωi ∈ℝ3 is
the angular velocity. Ji denotes the inertia matrix of the ith
UAV and is positive definite; ui denotes the control torque
of the ith UAV; ϑi denotes the external disturbances. ϕðQiÞ
is given by

ϕ Qið Þ =
qi0I3 + S qið Þ

−qi
Τ

 !
: ð5Þ

For a vector given as n = ½n1, n2, n3�T ∈ R3×1, SðnÞ is
defined as

S nð Þ =
0 ‐n3 n2

n3 0 ‐n1
‐n2 n1 0

0BB@
1CCA: ð6Þ

Let RðQiÞ denote the rotation matrix which is given as
RðQiÞ = ð2qi02 − 1ÞI3 + 2qiqiT − 2qi0ΠðqiÞ, Qi = ½qi qi0�T for
the attitude control of UAV, the rotation matrix denotes
the inertial frame of the ith UAV into the body frame. The
multiplication between two unit quarternions is given by

Q1 ⊙Q2 =
q10q2 + q20q1 + S q1ð Þq2

q10q20 − qT1 q2

� �
, ð7Þ

where Q1 = ½q1 q10�T and Q2 = ½q2 q20�T .
In the leader-following MUAVs, the followers adjust

itself attitude to be consistent with the attitude of the leader.

The attitude tracking errors and angular velocity errors of
the ith UAV are given as follows

~Qi =Q−1
i ⊙Qd , ð8Þ

~ωi = ωi − R ~Qi

� �
ωd , ð9Þ

where Qd ≜ ½qd , ηd�T denotes the desired attitude which is

given Qd ≜ ½qd , ηd�T , and the desired angular velocity is
denoted by ωd . Based on the definition of the tracking errors,
~ωi and ~Qi represent the attitude velocity tracking error and
angular tracking errors, respectively.

The attitude tracking error systems can be obtained,

J i _~ωi = −ωi
× ⋅ J iωi + ui + T i ⋅ Π ~ωið Þ ⋅ R Qidð Þ ⋅ ωd − R Qidð Þ ⋅ _ωd½ �,

ð10Þ

_~Qi =
1
2 ϕ

~Qi
� �

⋅ ~ωi: ð11Þ

Assumption 5. Three positive constants dm, σ1, σ2 exist and
are satisfying jdij ≤ dm, jωij ≤ σ1, and j _ωij ≤ σ2, respectively.

Assumption 6. The inertia matrix �Ji is known and nonsingu-
lar. ΔJ denotes the uncertainties and is bounded.

Lemma 7 (see [32]). Considering the system formulated as
eqs. (10) and (11), for sliding mode surface κi = ~ωi + r1qi +
r2q

c
i , where 0 < c < 1, r1 > 0, r2 > 0, for i = 1,⋯, n. If the slid-

ing mode surface reaches zero, then, ~ωi = 0, q0,i = 1 and qi =
0 can be reached in finite time, respectively.

3. Main Results

3.1. Event-Triggered Finite-Time Control Design. In this sec-
tion, the control objective is to design a finite-time control
law such that the angular velocity errors ~ωi and the error
quaternions ~Qi of the closed-loop system (10) and (11) can
converge to small regions in finite time, respectively.

First, the sliding mode surface �si is defined as

�si = �Ji ~ωi + k1~qi + k2Τi ~qið Þ½ �, ð12Þ

with Τið~qiÞð~qiÞ = ½Τi1ð~qi1Þ, Τi2ð~qi2Þ, Τi3ð~qi3Þ�T ∈ R3×1,

Τij ~qij
� �

=
sigℓ ~qij
� �

, if s∗ij = 0 or s∗ij ≠ 0, ~qij
��� ��� >ϒ ,

ϖ1~qij + ϖ2sig2 ~qij
� �

, if s∗ij ≠ 0, ~qij
��� ��� ≤ϒ

8><>:
ð13Þ

where i = 1,⋯, n, j = 1, 2, 3, s∗i = ½s∗i1, s∗i2, s∗i3�T , and s∗i = ~wi +
k1~qi + k2sigrð~qiÞ, where k1 and k2 are positive constants.
Define sigιð~qiÞ = ½sigιð~qi1Þ, sigιð~qi2Þ, sigιð~qi3Þ�T , ι ∈ ð0, 1Þ, ϖ1
= ð2 − rÞϒ r−1, ϖ2 = ðr − 1Þϒ r−2, ϒ is a small positive
constant.
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To develop the control law, the following equations are
derived from (10) and (11):

�Ji _~wi + k1 _~qi + k2 _Τi ~qið Þ
� �

= zi + δi + ui, ð14Þ

where

zi = −S wið Þ�Jiwi + �Ji S ~wið ÞR ~Qi

� �
wd − R ~Qi

� �
_wd

� �
+ k1�Ji _~qi + k2�Ji _αi ~qið Þ,

ð15Þ

_αi ~qið Þ =
r diag ~qij

��� ���r−1� �
~qi, if s∗ij = 0 or s∗ij ≠ 0,  ~qij

��� ��� > ϕ,

l1 _~qi + 2l2~qi sgn ~qið Þ _~qi, if s∗ij ≠ 0,  ~qij
��� ��� ≤ ϕ,

8>><>>:
ð16Þ

δi = ϑi − ~Ji _~wi − S wið Þ~Jiwi + ~Ji S ~ωið ÞR ~Qi

� �
ωd − R ~Qi

� �
_ωd

h i
:

ð17Þ
δi is the lumped disturbances containing model uncer-

tainty and external disturbances.
By (12) and (14), we can obtain

_�si = zi + δi + ui: ð18Þ

Based on the sliding mode surface �si = �Ji½~ωi + k1~qi + k2
Τið~qiÞ�, a novel integral sliding mode surface is proposed
which is given as follows

si =�si −
ðt
0
xηi dt, ð19Þ

where xi = −∑j∈Ni
aijð�si −�sjÞ + bi�si, and η ∈ ð0:5, 1Þ is strictly

the ratio of positive odd numbers. The derivative of (19) is

_si = _�si − xηi : ð20Þ

An event-triggered finite-time sliding mode consensus
controller is designed as follows

ui tð Þ = xηi tik
� �

− k3 sign si t
i
k

� �� �
− k4si t

i
k

� �
− zi t

i
k

� �
− bδ i t

i
k

� �
,

ð21Þ

where k3 and k4 are positive constants, respectively. For t
∈ ½tik, tik+1Þ, tik is the latest event-triggered time for the ith
UAV, and the UAV only updates the control protocol at
its own event-triggered time.

An adaptive radial basis function neural networks
(RBFNNs) scheme is proposed for the unknown disturbance
δi, as RBFNNs can estimate the unknown continuous func-
tions δi and ensure tracking error ultimately converges to an
adequately small compact. Illustrated in Figure 1, the adap-
tive RBFNNs can be written as

bδ i = Ŵ
T
i Hi Xinð Þ, ð22Þ

where bδ i ∈ℝ3 is the RBFNNs output vector, Xin =
½~qiT , ~wi

T �T ∈ℝ6 is the input vector of the RBFNNs, Ŵi ∈
ℝ J×3 is the weight vector, J > 1 is the nodes number of mid-
dle hidden layer, Hi = ½hi1,⋯, hiJ �T ∈ℝ J is the basis function
vector, and hiJ is being the commonly used Gaussian func-
tions, which is simplified as

hiJ Xinð Þ = exp −
Xin − ciJ
		 		2

σiJ

 !
, ð23Þ

where ciJ is the center of the receptive field, and σiJ is the
width of the Gaussian function. There exists an optimal vec-
tor W∗

i such that

δi =W∗T
i Hi Xinð Þ + εi, ð24Þ

where εim denotes the maximum value of the RBFNNs esti-
mation error kεik.

Let ~Wi =W∗
i − Ŵi denotes the vector of weight errors,

and the adaptive weight update law are designed as

_̂Wi = AHi Xinð ÞsTi , ð25Þ

where A is a positive-definite symmetric matrix of gains.
The measurement error of the event-triggered mecha-

nism is defined as

ei tð Þ = xηi tik
� �

− xηi tð Þ − k3 sign si t
i
k

� �� �
+ k3 sign si tð Þð Þ

− k4si t
i
k

� �
+ k4si tð Þ − zi t

i
k

� �
+ zi tð Þ − bδ i t

i
k

� �
+ bδ i tð Þ:

ð26Þ

3.2. Stability Analysis. In the following, the stability of the
attitude cooperative under event-triggered adaptive
RBFNNs control law is analyzed in detail.

Theorem 8. On the basis of Assumptions 1, and considering
that the system (10) and (11) under the action of the control-
ler (21) and the adaptive weight update law (25), the follow-
ing event-triggered function is given as follows

Y tð Þ = eik k − k3 − k4 sik k + ρi, ð27Þ

...

...... .

...

Hi(Xin)
ˆWi

Xin
ˆ

δi

Adaptive law

ˆWi
T Hi(Xin)

.
ˆWi = AHi(Xin)si

T

wi˜qi˜

Figure 1: Adaptive RBFNN control.
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where εim < ρi < k3, and when the event-triggered function Y
ðtÞ > 0, that is, keik > k3 + k4ksik − ρi, the event is triggered.
The ith UAV performs information interaction and update
the control protocol at its own event-triggered time. And the
system can achieve finite-time consensus under this action.

Proof. First, selecting the Lyapunov function as follows

V1 =
1
2 s

T
i si +

1
2 tr

~W
T
i A

−1 ~Wi

� �
: ð28Þ

Taking the derivative of (28), substituting (21) and (26)
into the derivative, we can obtain

_V1 = sTi ei − k3 sign sið Þ − k4si + δi − bδ i

� �
+ tr − ~W

T
i A

−1 _̂Wi

� �
≤ sik k eik k − k3 sik k − k4 sik k2 + sTi ~W

T
i Hi + εi

� �
+ tr − ~W

T
i A

−1 _̂Wi

� �
≤ sik k eik k − k3 − k4 sik k + εim

� �
+ tr ~W

T
i His

T
i

� �
+ tr − ~W

T
i A

−1 _̂Wi

� �
:

ð29Þ

By the adaptive weight update law (25), it is obtained
that

_V1 ≤ sik k eik k − k3 − k4 sik k + εim
� �

: ð30Þ

When the event-triggered function YðtÞ ≤ 0, keik ≤ k3 +
k4ksik − ρi,

_V1 ≤ − sik k ρi − εim
� �

< 0: ð31Þ

According to the Lyapunov stability theory, it can be
seen that under the action of the controller (21), the adaptive
weight update law (25), and the event-triggered function
(27), the sliding mode surface si can realize si = 0 and _si = 0
. By lemma 2, the reaching time is given as follows

tr =
ffiffiffi
2

p
V1/2

1 0ð Þ
ρi − εim

: ð32Þ

Then, select the Lyapunov function as

V2 =
1
2
�SΤ L + Bð Þ ⊗ I3½ �Τ L + Bð Þ ⊗ I3½ ��S, ð33Þ

where �S = ½�s1T ,⋯,�snT �T .
Define

pi = 〠
j∈ni

aij �si −�sj
� �

+ bi�si,

P = pΤ1 ,⋯, pΤn
� �Τ = L + Bð Þ ⊗ I3 ⋅ �S:

ð34Þ

Then, we can get

V2 =
1
2 P

ΤP: ð35Þ

Let S = ½s1T ,⋯, snT �T , when _si = 0, we know _�si = xηi ,

then _�S = −½ðL + BÞ ⊗ I3 ⋅ �S�η.
Under Assumption 1 and Lemma 2, it can be obtained

that λminðL + BÞ > 0. And taking the derivative of (35), we
can obtain

_V2 = −PΤ L + Bð Þ ⊗ I3½ � L + Bð Þ ⊗ I3 ⋅ �S
� �η

= −PΤ L + Bð Þ ⊗ I3½ �Pη ≤ −λmin L + Bð ÞPΤPη,
ð36Þ

Since the positive odd ratio parameter η ∈ ð0:5, 1Þ, and
combined with Lemma 3, we can find

_V2 ≤ −λmin L + Bð Þ 〠
3n

i=1
pij j1+η

 !
≤ −λmin L + Bð Þ Pk k2� �1+η/2

≤ −21+η/2λmin L + Bð ÞV1+η/2
2 :

ð37Þ

According to Lemma 1, under the action of the control-
ler (21), the state of the system can reach and remain on the
sliding mode surface �S = 0 within finite time. The settling
time is t f .

t f =
V1−η/2

2
21+η/2λmin L + Bð Þ 1 − η/2ð Þ : ð38Þ

When �S = 0, then �si = �Ji½~wi + k1~qi + k2αið~qiÞ� = 0, so ~wi
+ k1~qi + k2αið~qiÞ = 0. According to Lemma 4, we know ~wi
⟶ 0, ~qi ⟶ 0 in finite time will be satisfied.

Next, we need to analyze whether the system has a min-
imum event-triggered time interval strictly greater than zero,
which means that there is no Zeno behavior. When the
event-triggered function (27) satisfies YðtÞ > 0, the event is
triggered. Combining (26), we can see that between any
two adjacent event-triggered moments, keik increases from
zero to k3 + k4ksik − ρi, therefore, when the growth rate is
the fastest, the event-triggered time interval is the smallest.
In this case, when the minimum time interval is a value

1 3

2

0

Figure 2: Communication topology.
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Figure 3: Attitude tracking.
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Figure 4: Attitude tracking errors.
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greater than zero, it can be guaranteed that there is no Zeno
behavior.☐

Theorem 9. Based on Assumption 1, the system (10) and (11)
under the action of the controller (21), the adaptive weight
update law (25), and the event-triggered function (27), the
system does not have Zeno behavior under any initial
conditions.

Proof. Let βiðtÞ = k3 sign ðsiðtÞÞ + k4siðtÞ + ziðtÞ + bδ iðtÞ,
since the system (10) and (11) can achieve consensus under
the action of the controller (21), the adaptive weight update
law (25), and the event-triggered function (27), k _βiðtÞk have

upper bounds, which are taken as k _βiðtÞkmax. And combin-
ing (26) to derive keik as follows

d eik k
dt

≤
dei
dt

				 				 ≤ d −xηi tð Þ + βi tð Þ
� �

dt

					
					 ≤ d

dt
xηi tð Þ

				 				 + _βi tð Þ
			 			

≤ η xη−1i

			 			 _xik k + _βi tð Þ
			 			

max
:

ð39Þ

Let X = ½xT1 ,⋯, xTn �T , we can obtain _X = −ðL + BÞ ⊗ I3 ⋅ _�S.
When _S = 0, _�S = Xη will be satisfied, so _X = −ðL + BÞ ⊗ I3 ⋅

Xη. And according to Lemma 3, we know

xη−1i

			 			 ≤ Xη−1		 		 ≤ 3nð Þ2−η Xk kη−1,

_xik k ≤ _X
		 		 ≤ L + Bð Þ ⊗ I3 ⋅ X

ηk k ≤ L + Bk k Xηk k
≤ 3nð Þ1−η L + Bk k Xk kη:

ð40Þ

By (38) and (39), we can obtain

d eik k
dt

≤ η 3nð Þ3−2η L + Bk k Xk k2η−1 + _βi tð Þ
			 			

max
: ð41Þ

Due to X = −P and kPk = ffiffiffi
2

p
V1/2

2 ðtÞ ≤ ffiffiffi
2

p
V1/2

2 ð0Þ, we
have

d eik k
dt

≤ 22η−1/2η 3nð Þ3−2η L + Bk kV2η−1/2
2 0ð Þ + _βi tð Þ

			 			
max

:

ð42Þ

For any t ∈ ½tik, tik+1Þ, tik is the latest event-triggered time
for the ith UAV, the time interval Ti

m = tik+1 − tik, and keiðtik
Þk = 0 at the event-triggered moment, and let λi = 22η−1/2η
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Figure 5: Angular velocity tracking.
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ð3nÞ3−2ηkL + BkV2η−1/2
2 ð0Þ + k _βiðtÞkmax, we can obtain

ei tð Þk k − ei t
i
k

� �		 		 = ei tð Þk k ≤ t − tik
� �

λi ≤ Ti
mλi: ð43Þ

When the event-triggered function (27) satisfies YðtÞ > 0
, the event is triggered, we have

ei tð Þk k > k3 + k4 sik k − ρi > k3 − ρi: ð44Þ

Combining (41) and (42), we can know

Ti
m > k3 − ρi

λi
: ð45Þ

It can be concluded from (43) that the event-triggered
time interval is strictly greater than zero, so there is no Zeno
behavior.☐

4. Example Simulation

Considering the system composed of four UAVs includes
three follower UAVs and one leader UAV, and the leader
node is marked as 0. The directed communication topology

is shown in Figure 2. Hence, we have

L =
1 −1 0
0 1 −1
−1 0 1

2664
3775B =

1 0 0
0 1 0
0 0 1

2664
3775: ð46Þ

The actual inertia matrices are assumed to be

J1 =
15 1 1
2 16 0:5
0 0:5 14

2664
3775J2 =

13 0:5 0
1 15 0:5
0 1:5 14

2664
3775J3 =

14 1 2
0 13 0
2 1 15

2664
3775:

ð47Þ

With the existence of model uncertainties and external dis-
turbances, the nominal inertiamatrices of the UAV are given by
�J1 = �J2 = �J3 = diag ð½20 20 20�TÞ. Take the disturbances as

d1 = 0:1 sin tð Þ, 0:2 cos 0:5tð Þ, 0:15 cos 0:7tð Þ½ �T ,
d2 = 0:1 cos tð Þ, 0:2 sin 0:5tð Þ, 0:15 sin 0:7tð Þ½ �T ,
d3 = 0:1 cos tð Þ, 0:2 cos 0:5tð Þ, 0:15 sin 0:7tð Þ½ �T :

ð48Þ

The initial quaternions of the follower UAVs are selected
as Q1ð0Þ = ½1, 0, 0, 0�T , Q2ð0Þ = ½0, 1, 0, 0�T , and Q3ð0Þ =
½0, 0, 1, 0�T , the initial angular velocities of the follower
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Figure 6: Angular velocity errors.
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Figure 7: Continued.
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UAVs are selected as w1ð0Þ = ½0, 0, 1�T , w2ð0Þ = ½0, 0, 1�T ,
and w3ð0Þ = ½0, 0, 1�T . The initial quaternion of the leader
UAV is selected as Q0ð0Þ = ½0, 0, 0, 1�T , and the angular
velocity of the leader UAV is given
asw0ðtÞ = ½0:1 cos ð0:2tÞ,−0:1 sin ð0:2tÞ,−0:1 cos ð0:2tÞ�T .

The controller parameters are chosen with k1 = 1, k2
= 0:001, k3 = 0:01, k4 = 1, r = 0:6, ϕ = 0:1, η = 0:1, and ρi
= 0:009. The adaptive RBFNN controller parameters are
adjusted as J = 7, ci = ½−1:5,−1,−0:5, 0, 0:5, 1, 1:5�, σi = 5,
and A = diag ð½0:5 0:5 0:5�TÞ.

Figures 3 and 4, respectively, show the attitude tracking
Qi and the attitude tracking errors ~Qi of the ith
UAV,i = 1, 2, 3.

Figures 5 and 6, respectively, show the angular velocity
tracking wi and the attitude tracking errors ~wi of the ith
UAV. From Figures 3–6, it can be seen that the attitude
and the angular velocity of all follower UAVs can accurately
track the leader UAV over time under the action of the con-
troller (17) and the event-triggered function (23).

Figure 7 shows the evolution process of the measurement
error norm of the system, where threshold keikmax = k3 + k4k
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Figure 7: Variation trend of measurement error norm keik and thresholdkeikmax.
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sik − ρi. When the value of keik increases from zero to keikmax,
the event is triggered.

Figures 8–10 show the event-triggered time of the UAV i
, i = 1, 2, 3, and the denser part marked by the rectangular
box is enlarged. At the event-triggered time of the UAV i,
the UAV i interacts with information and updates the con-
troller. Figure 11 shows the control torque ui of the UAV i.

From Figures 7–11, it can be seen that the superior per-
formance of the proposed event-triggered control strategy in
reducing the energy dissipation of the system and the update
frequency of the controller.

The approximation error kεik of the RBFNNs to unknown
lumped disturbance δi is shown in Figure 12. It can be seen
that the RBFNNs can approach δi at a faster speed under the
action of the adaptive weight update law (23).

5. Conclusions

In this paper, a distributed finite time event-triggered control
strategy with RBFNNs is proposed for attitude cooperative
control of MUAVs. Under the leader-following framework,
the tracking errors of attitude converge to zero in finite time,
the communication resources is saved and the Zeno behavior
is excluded by utilizing the event-triggered scheme. Finally,
theory and numerical simulation proof is given for the pro-
posed control law. In the future, we will consider actuator sat-
uration problem by fault-tolerant technology and self-
triggered scheme to be used in finite-time control.
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