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Background. Although incidences of gastric cancer have decreased in recent years, the disease remains a significant danger to
human health. Lack of early symptoms often leads to delayed diagnosis of gastric cancer, so that many patients miss the
opportunity for surgery. Treatment for advanced gastric cancer is often limited. Immunotherapy, targeted therapy, and the
mRNA vaccine have all emerged as potentially viable treatments for advanced gastric cancer. However, our understanding of
the immune microenvironment of gastric cancer is far from sufficient; now is the time to explore this microenvironment.
Methods. In our study, using TCGA dataset and the GEO dataset GSE62254, we performed in-depth transcriptome and single-
cell sequencing analyses based on public databases. We analyzed differential gene expressions of immune cells in metastatic
and nonmetastatic gastric cancer and constructed a prognostic model of gastric cancer patients based on these differential gene
expressions. We also screened candidate vaccine genes for gastric cancer. Results. This prognostic model can accurately predict
the prognosis of gastric cancer patients by dividing them into high-risk and low-risk groups. In addition to this, we identified a
candidate vaccine gene for gastric cancer: PTPN6. Conclusions. Our study could provide new ideas for the treatment of gastric
cancer.

1. Introduction

Although incidences of stomach cancer have declined, it is
still the fifth most common tumor and has the third highest
death rate [1]. The decline in cases of gastric cancer may be
due to the identification of risk factors, changes in dietary
habits, and improvements in the environment [2]. However,
it is worth mentioning that in developing countries, gastric

cancer remains a serious issue [3]. Surgical resection of
tumors and lymph node dissection are the most common
treatments for gastric cancer [4]. However, a large propor-
tion of patients miss surgical treatment because the tumor
is at an advanced stage or they have developed metastases
[5]. Systemic chemotherapy used to be the dominant form
of treatment for this group of patients [6]. However, the
effects of systemic chemotherapy on advanced gastric cancer
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are not positive, and many patients develop drug resistance,
which leads to tumor recurrence and metastasis [6]. In
recent years, targeted therapy or immunotherapy seems to
have emerged as the most promising treatment for advanced
gastric cancer in the future [7]. HER2 inhibitors and VEGFR
inhibitors of targeted therapy have achieved initially positive
clinical results, and studies on immune checkpoint inhibi-
tors are also making good progress [8]. However, our cur-
rent understanding of the immune microenvironment of
gastric cancer is far from sufficient. It is very worthwhile to
explore the immune microenvironment of gastric cancer in
order to find new biomarkers to guide the diagnosis and
treatment of gastric cancer.

As a new sequencing method, single-cell sequencing
analysis has attracted many researchers on account of its
precision [9]. It can be said that single-cell sequencing tech-
nology is a revolutionary research method. While the bulk
sequencing method ignored intercellular heterogeneity,
single-cell sequencing provides a method for us to accurately
analyze gene expression at the single-cell level [10]. Further-
more, we can carry out dimension reduction, clustering, and
annotation of cells through single-cell sequencing. Hence,
we can explore subsets of cancer cells extensively in order
to understand small genomic changes. This is of great signif-
icance in the search for new biomarkers of cancer.

In this study, we divided gastric cancer cells into
immune and nonimmune subtypes by single-cell sequencing
analysis based on public databases. By studying the differen-
tial gene expressions of the two subtypes, we constructed the
prognostic signature associated with the immune subtype of
gastric cancer. This prognostic model can accurately predict

the survival rate of gastric cancer patients and may provide
new insights into the exploration of the immune microenvi-
ronment and immunotherapy.

2. Materials and Methods

2.1. Source of Single-Cell Sequencing Data. We downloaded
the single-cell sequencing dataset of gastric cancer from the
Gene Expression Omnibus (GEO) database, which con-
tained 3 primary gastric cancer samples and paired metasta-
tic samples.

2.2. Source and Processing of Transcriptome Data. Tran-
scriptome data (STAD-Counts, STAD-FPKM), mutation
data (type muTECT2), and clinical data of 407 cases of gas-
tric cancer were downloaded from TCGA database using the
“TCGAbiolinks” package. The STAD-Counts data was used
for difference analysis, while the STAD-FPKM data was con-
verted to TPM data for subsequent analysis. We obtained
348 samples with both transcriptome data and clinical data
by matching the transcriptome samples with clinical data
and eliminating the samples with a survival time of 0.

We also downloaded the dataset GSE62254 and the cor-
responding clinical data from the GEO database and finally
obtained 300 samples with both transcriptome data and clin-
ical data through matching.

2.3. Acquisition of Immune Cell-Related Genes (MImrGenes)
Associated with Gastric Cancer Metastasis. We first calcu-
lated the percentage of mitochondrial and RBC genes in
each cell using the PercentageFeatureSet function of the
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Figure 1: Single-cell sequencing data quality control. (a) The number of genes, percentage of mitochondrial genes, percentage of erythrocyte
genes, and enrichment fraction of G2M and S phase of the cell cycle in metastatic and nonmetastatic gastric cancer cells. (b) Screening of
3000 highly variable genes. (c) Dimensionally reduced distribution of cell cycle conditions in cells.
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Seurat package. We then set screening conditions in which
the number of genes per cell ranged from 200 to 7500, the
percentage of mitochondrial genes was less than 10, the per-
centage of erythrocyte genes was less than 3, and the total
expression of all genes was less than 100,000. We also

excluded the effect of the cell cycle on subsequent analysis.
We then normalized the data using the NormalizeData func-
tion, setting the method “LogNormalize,” scale:factor =
10000. We searched for 3000 highly variable genes and
tagged the names of the top 10 genes for subsequent
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Figure 2: Dimensionality reduction clustering and pseudotime series analysis. (a) Spatial distribution of metastatic and nonmetastatic
gastric cancer cells. It can be seen that gastric cancer cells are well divided into metastatic and nonmetastatic clusters. (b) Expression of
immune cell markers in 2 clusters. (c) Spatial distribution of cluster1 and cluster0. (d) Spatial distribution of immune cells and
nonimmune cells. (e) Heat map of the distribution of the top 10 differential genes in the two clusters. (f) Pseudotime series analysis.
Gastric cancer-immune cells differentiate from the deeper blue to the lighter blue. (g) There are 5 states of gastric cancer-immune cell
differentiation. (h) The cells analyzed are all gastric cancer-immune cells. (i) The differentiation track of metastatic gastric cancer-
immune cells and nonmetastatic gastric cancer-immune cells.
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analysis. Subsequently, we centralized the expression of all
genes through the ScaleData function for subsequent analy-
sis. By setting the number of PCS to 7, we reduced the
dimensions of the data and clustered it. We used FindMar-
kers to find the top 10 differentially expressed genes in each
cluster and create heat maps. Next, we distinguished
immune cells from nonimmune cells by marker genes of
immune cells (COL2A1, PTPRC, and EPCAM) and dis-
played them in the form of UMAP. We then selected the
immune cells and used FindMarkers to find the differential
genes between the immune cells of primary gastric cancer
and the immune cells of metastatic gastric cancer by setting
the conditions as jdeG $avg log 2FCj > 0:8 and P value <
0.05. Through the reduceDimension function of the Mono-
cle package, the DDRTree method was used to reduce the
dimension of the data, and the differentiation trajectory of
immune cells was plotted.

2.4. Construction of the Prognostic Model. The expression
matrix was determined by matching the MImrGenes
obtained from TCGA transcriptome data. Then, through

the univariate Cox regression analysis, we set the screening
condition as P < 0:05 and preliminarily obtained genes
related to prognosis. Next, these genes were obtained by
the multivariate Cox regression. Finally, using the least abso-
lute shrinkage and selection operator (Lasso) regression, we
obtained the genes most associated with prognosis and built
a model. The formula of the model is as follows: RiskScore
= Gene1 × coef1 + Gene2 × coef2 +⋯ + genen × coefn.

We then divided the patients into high-risk and low-risk
groups by calculating the median value. Then, the GSE62254
dataset was used as the validation set, and the model risk
value of each sample was obtained through the predict func-
tion, which was divided into high- and low-risk groups
according to the median value.

2.5. Evaluation of the Model. In TCGA and GEO datasets, we
explored the differences in patient outcomes between the
high-risk and low-risk groups. We then drew ROC curves
for the model for 1, 3, and 5 years to judge the accuracy
and stability of the model. In order to further explore the
prognostic evaluation of gastric cancer patients by multiple
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Figure 3: Construction of the prognostic model. (a) Univariate Cox analysis. (b). Multivariate Cox analysis. (c, d) The Lasso regression and
tenfold cross-validation. Finally, a risk scoring formula composed of 8 genes was obtained. The risk value = APOD × 0:125 +MAP3K9 × ð
−0:245Þ + CD59 × 0:240 + TAP1 × ð−0:135Þ + BNC2 × ð−0:268Þ + CRAMP1L × ð−0:327Þ + SMAD5 + COL6A3 × 0:123 × 0:449.
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Figure 4: Evaluation of the model. (a, c, e) In TCGA dataset, the relationship between the model and the prognostic overall survival, the
accuracy and stability of the model in predicting the prognosis of gastric cancer patients, and the comparison of the risk value and
clinical characteristics of the model and the combination of the two indicators for prognosis evaluation. Similarly, (b, d, f) are the results
in the GSE62254 dataset.
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Figure 5: Risk curve and t-SNE dimension reduction analysis. (a, c, e) In TCGA dataset, we explored the distribution of model genes in the
high- and low-risk groups and the survival of gastric cancer patients with increasing risk values. Similarly, (b, d, f) are the above results in
the GSE62254 dataset. (g, h) The t-SNE dimension reduction analysis in TCGA and GSE62254 datasets, respectively.
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Figure 6: Independent prognostic value analysis. (a, c) Univariate and multivariate Cox analyses in TCGA dataset. Risk score is an
independent prognostic factor for gastric cancer patients (P < 0:01). (b, d) Univariate and multivariate COX analyses in the GSE62254
dataset. Risk score is an independent prognostic factor for gastric cancer patients (P < 0:01).
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models and clinical indicators, we plotted the changes in risk
values, clinical data, and their combined AUC values over
time using the timeROC package. To further determine
whether this model is an independent prognostic factor for
gastric cancer patients, univariate and multivariate Cox
regressions were performed with two datasets. At the same
time, in order to evaluate whether the model can distinguish
gastric cancer patients effectively, we reduced the dimension
of patients using the Rt-SNE package and showed the results
on a t-SNE plot. We also analyzed the gene expression in the
model for the high- and low-risk groups, as well as deter-
mined the proportion of gastric cancer patients who died
as the risk value increased.

2.6. Gene Function Enrichment Analysis. We used the
DESeq2 package to analyze differences between patients in
the high- and low-risk groups in TCGA dataset. We set the

conditions as jlog 2FoldChangej > 1 and P adjusted < 0.05
and obtained the differentially expressed genes. Then, we
conducted a Gene Ontology (GO) analysis and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) analysis through
the GOplot package. In the GO enrichment analysis, the
results of P < 0:05 were retained, and the first 10 enrichment
gene sets of BP, CC, and MF were displayed in a bar chart,
while the first 5 were displayed in a circle chart. In the
KEGG enrichment analysis, the first 20 gene sets enriched
in the pathway were displayed in the form of a bar graph,
and the first 5 gene sets in the form of a circle graph.

2.7. Differences in Immunity between High- and Low-Risk
Groups. Next, we used the “Estimate” module of the Timer
2.0 database to download the immune infiltration data
obtained by 7 immune infiltration algorithms of TCGA data
source patients. We then retained the immune cells that
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Figure 7: Gene enrichment analysis. (a, b) The GO functional enrichment analysis. Differentially expressed genes were mainly related to
transmembrane transport across the cell membrane and receptor exchange. (c, d) The KEGG pathway enrichment analysis. They were
mainly enriched in the calcium signaling, cAMP signaling, ECM-receptor interaction, focal adhesion, and Wnt signaling pathways.
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Figure 8: Exploration of immune microenvironment. (a) Distribution of immune cells with significantly different infiltration levels in the
high- and low-risk groups in TCGA dataset (P < 0:05). (b, c) The expression of immune checkpoint genes in TCGA and GSE62254 datasets,
respectively. (d, e) The expression of immunogenic cell death modulators (ICDs) genes in two datasets (∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001).

10 Applied Bionics and Biomechanics



5048

0
TTN
TP53

LRP1B
SYNE1
MUC16
CSMD3

FLG
ARID1A

FAT4
CSMD1
HMCN1
PCDH15

PCLO
SPTA1

DNAH5
AHNAK2

RYR2
ZFHX4
DMD

DNAH11
DNAH9

NAV3
OBSCN

SACS
ABGRB3
CDH1
ERBB4
FAT3

KMT2D
LRRK2

45%
45%
30%
24%
23%
22%
21%
18%
18%
17%
16%
16%
15%
15%15%
13%
13%
13%
12%
12%
12%
12%
12%
12%
11%
11%
11%
11%11%11%

Altered in 162 (94.19%) of 172 samples.

0 78

Missense_mutation
Nonsense_mutation
Frame_shift_del
Frame_shift_ins

Splice_site
In_frame_del
In_frame_ins
Multi_hit

(a)

COL6A3

BNC2

TAP1

CRAMP1L

APOD

MAP3K9

SMAD5

CD59

5048

0

8%

5%

3%

2%

2%

2%

1%

0%

Altered in 30 (17.44%) of 172 samples.

0 14

Missense_mutation Nonsense_mutation
Frame_shift_del
Frame_shift_ins

Multi_hit

(b)

TTN
TP53

MUC16
ARID1A
SYNE1
CSMD3
LRP1B
OBSCN
PCLO

PIK3CA
FAT4
FLG

USH2A
DNAH5
KMT2D

RYR2
HMCN1

RYR1
ZFHX4

FAT3
SPTA1

CSMD1
SYNE2

AHNAK2
COL12AI

MDNI
LAMAI
DMD
NBEA
SDK1

59%
47%
36%
30%
29%
28%
27%
25%
24%
22%
21%
21%
21%
21%
21%
21%
20%
20%
20%
20%
20%
19%
19%
18%
18%
18%
18%
17%
17%
17%

Altered in 168 (96.55%) of 174 samples.
5929

0
0 102

Missense_mutation

Nonsense_mutation
Frame_shift_del Frame_shift_ins

Splice_site
In_frame_del

In_frame_ins

Multi_hit

(c)

COL6A3

BNC2

CRAMP1L

MAP3K9

TAP1

APOD

CD59

SMAD5

14%

2%

1%

1%

0%

0%

0%

6%

Altered in 38 (21.84%) of 174 samples.5929

0
0 24

Missense_mutation Nonsense_mutation
Frame_shift_del
Splice_site

In_frame_del
Multi_hit

(d)

0.75

0.50

0.25

0.00

0 2.5 5 107.5
Time (days)

Cu
m

ul
at

iv
e e

ve
nt

p = 0.034

All-cause mortality of TTN

Group
Low TTN
High TTN

(e)

10

p = 0.027

All-cause mortality of FAT3

Low FAT3
High FAT3

0.75

0.50

0.25

0.00

0 2.5 5 7.5
Time (days)

Cu
m

ul
at

iv
e e

ve
nt

(f)

0.6

0.4

0.2

0.0

p = 0.71

All-cause mortality of TTN

Low TTN
High TTN

Cu
m

ul
at

iv
e e

ve
nt

100 2.5 5 7.5
Time (days)

(g)

p = 0.56

All-cause mortality of FAT3

Low FAT3
High FAT3

0.6

0.4

0.2

0.0

Cu
m

ul
at

iv
e e

ve
nt

100 2.5 5 7.5
Time (days)

(h)

Figure 9: Continued.
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differed between the two groups and displayed them in heat
maps. After this, we collected 47 immune checkpoint- (ICP-)
related genes and 25 immunogenic cell death (ICD) modula-
tors by studying the published literature and investigated the
expression of these genes in the high- and low-risk groups
for two datasets. Differentially expressed ICP and ICD genes
were retained (P < 0:05) and displayed in a bar chart.

2.8. Single Sample Gene Set Enrichment Analysis (ssGSEA).
We collected the marker genes of macrophage and dendritic
immune cells through a review of the literature and obtained
the enrichment fractions of each gastric cancer sample in
these two cells by the ssGSEA analysis.

2.9. Landscape Analysis of Gene Mutation. We constructed a
mutation waterfall plot of the top 30 most frequently
mutated genes in the high- and low-risk groups using the
oncoplot function of the maftools R package. We then
explored the relationship between these genes and the prog-
nosis of gastric cancer. Meanwhile, in order to observe the
mutation of genes in the model, we also drew a mutation
map of the model genes in the high- and low-risk groups.

2.10. Exploration of Candidate mRNA Vaccine for Gastric
Cancer. The cBioPortal site is a comprehensive database of
multiple tumor datasets. In this study, the mutant genes
and copy number variation genes of TCGA gastric cancer
patients were obtained and visualized. The GEPIA website
is an important database for cancer research. In this study,
we used the GEPIA database, set conditions as jlog 2FC > 1
j and P value < 0.01 to obtain the differences in gene expres-
sion of TCGA data sources of gastric cancer and normal tis-
sues, and simultaneously analyzed the prognosis of genes in
gastric cancer. The TIMER database was used in this study
to explore the relationship between genes and immune cells
in gastric cancer.

2.11. Drug Sensitivity Analysis.We calculated the 50% inhib-
itory concentration (IC50) of the drug in gastric cancer sam-
ples using the pRRophetic R package and gastric cancer
expression matrix. Then, we obtained the drugs with differ-

ent IC50 values in the high- and low-risk groups of gastric
cancer by difference analysis (P < 0:05).

2.12. Construction of the Nomogram and Calibration Curve.
A nomogram of the patient “TCGA-Hu-A4GY” was plotted
using the regplot package to integrate risk groups with clin-
ical features. To evaluate the accuracy of the model, we also
plotted the 1-, 3-, and 5-year calibration curves of the
nomogram.

2.13. Statistical Analysis. The rank-sum test was used for
comparison between groups, with P < 0:05 indicating statis-
tical significance. The R software version 4.0.3 was used.

3. Results

3.1. Single-Cell Sequencing Data Quality Control. After per-
forming the quality control of single-cell sequencing data for
gastric cancer (as shown in Figure 1(a)), it was observed that
there was little difference betweenmetastatic and nonmetastatic
cells in terms of the number of cells, which ranged from 200 to
7500. The total gene expression was also concentrated, the per-
centage of mitochondrial genes was almost 0, the percentage of
erythrocyte genes was less than 10, and the cell cycle score was
similar.When combining these results with those in Figure 1(c),
we found that cells in the G1, G2M, and S phases were close to
each other, suggesting that cell cycle had no significant effect on
subsequent analysis. We then selected 3000 highly variable
genes out of 21,196 (Figure 1(b)). The red ones are highly vari-
able genes, and the first 10 highly variable genes are marked,
these being NFKBIA, JUN, HSP90AA1, RPL32, ZNF689,
MTRNR2L1, ZNF700, HM13, HSP90AB1, and FOSB. We
can see that the highly variable genes and the nonhighly variable
genes are clearly separated.

3.2. Acquisition of Genes Associated with Gastric Cancer
Metastasis and Immunity. After dimensionality reduction
and clustering of single-cell data of gastric cancer (as shown
in Figure 2(a)), we found that gastric cancer cells could be
divided into two clusters: 0 and 1. We explored the expression
of immune cell markers in cluster0 and cluster1 (Figure 2(b))
and, after reclustering the cells (Figure 2(c)), found that
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Figure 9: Mutation correlation analysis. (a, b) Mutation landscape of the top 30 genes in the high-risk group and mutation landscape of the
8 genes in the model. (c, d) The map of mutation landscape in the low-risk group and gene mutation in the model. (e, f) The relationship
between gene TTN and overall survival in high- and low-risk groups. (g, h) The relationship between gene FAT3 and overall survival in the
high- and low-risk groups. (i, j) The mutation symbiosis diagram of genes in the model in the high- and low-risk group.
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Figure 10: Continued.
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cluster0 consistedmostly of immune cells and cluster1 nonim-
mune cells (Figure 2(d)). We further divided all cells into
metastatic and nonmetastatic cells (Figure 2(a)) and found

that cluster1—that is, nonimmune cells—accounted for a large
proportion of metastatic gastric cancer cells, which may indi-
cate that an abundance of immune cells is related to the
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Figure 10: Candidate vaccine genes and therapeutic drugs for gastric cancer. (a) Distribution of genes with copy number variation in gastric
cancer. (b) The distribution of different genes on chromosomes between gastric cancer and normal tissues, where red is the upregulated gene
in gastric cancer and green is the downregulated gene. (c) The survival curve of PTPN6 in gastric cancer. (d) The correlation analysis
between PTPN6 and tumor purity, antigen-presenting cells, and B cells. (e–j) The IC50 value of different chemotherapy drugs in the
high- and low-risk groups in TCGA dataset (∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001).
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inhibition of tumor metastasis. By creating a heat map of the
top 10 differentially expressed genes of cluster0 and cluster1,
we found that genes HEG1, FCGBP, NDRG2, RPL28,
GNB2L1, GSN, CORO2A, UBC, RPL13, and COL5 were
mainly expressed in cluster0 (Figure 2(e)), while SREK1,
NUFIP2, ORC5, ZBTB41, PRKAA2, OSBPL8, SERPINB13,
MAF, and LOC643763 were mainly expressed in cluster1
(Figure 2(e)).

3.3. Pseudotime Analysis. In order to further explore the dif-
ferences in immune cell differentiation between metastatic
and nonmetastatic gastric cancer, we performed a pseudo-
time analysis. As shown in Figure 2(f), we found that the
cells differentiated over time from the darker blue to the
lighter blue ground. Figure 2(g) shows that immune cell dif-
ferentiation of gastric cancer has five differentiation states,
with state1—in red—being the earliest differentiation state.
Figures 2(h) and 2(i) indicate that in the process of immune
cell differentiation of gastric cancer, the immune cells of
both metastatic and nonmetastatic gastric cancer were dif-
ferentiated first, the main ones being the immune cells of
metastatic gastric cancer. The subsequent differentiation

mainly occurred with nonimmune cells. Therefore, there
are differences between metastatic and nonmetastatic
immune cells in gastric cancer, which warrants further
investigation. We further obtained through differential anal-
ysis 221 differential genes from immune cells of metastatic
and nonmetastatic gastric cancer for subsequent analysis.
These 221 MImCGenes were matched with TCGA and
GSE62254 datasets, and a total of 189 overlapping genes
were found for subsequent analysis.

3.4. Construction of the Prognostic Model. Firstly, 24 genes
related to prognosis were obtained from TCGA dataset by
the univariate Cox regression analysis (Figure 3(a)). The
HR values of APOD, GABARAPL2, CD59, ANGPT1,
TAP1, CALD1, COL24A1, MS4A4A, CD93, PECAM1,
SPRED1, SLC77A14, BNC2, PRPH2, SMAD5, NR4A3,
COL6A3, and AMOTL1 were more than 1, denoting poor
prognosis of gastric cancer. However, the HR values of
MAP3K9, TAP1, GMIP, ABCA7, DNMT1, CRAMP1L,
and HNRNPA2B1 were less than 1, which indicated a better
prognosis for patients. Next, we conducted multivariate Cox
regression (Figure 3(b)) and screened 8 genes, these being
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Figure 11: The construction of a Nomogram. (a) We constructed the Nomogram based on the risk value and clinical characteristics of the
gastric cancer patient model, and predicted the 1, 3 and 5 year mortality of the patient TCGA-HU-A4Gy. (b) calibration curves of
nomogram for prediction of prognosis at 1, 3 and 5 years in patients with gastric cancer
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APOD, MAP3K9, CD59, TAP1, BNC2, CRAMP1L,
SMAD5, and COL6A3. Finally, the Lasso regression analysis
was performed (Figures 3(c) and 3(d)). The minimum
lambda value was 0.0024, and 8 genes were used to construct
the model. RiskScore per patient = APOD × 0:125 +MAP3K
9 × ð−0:245Þ + CD59 × 0:240 + TAP1 × ð−0:135Þ + BNC2 ×
ð−o:268Þ + CRAMP1L × ð−0:327Þ + SMAD5 + COL6A3 ×
0:123 × 0:449. Patients were then divided into high- and
low-risk groups based on median risk values for follow-up
analysis. The survival analysis of 8 genes in the model was
presented in Supplemental Figure S1.

3.5. Evaluation of the Model.We evaluated the value and sta-
bility of the model in both TCGA dataset and the GSE62254
dataset. As shown in Figures 4(a) and 4(b), it was found that
there was a significant difference in the prognosis between
the high-risk and low-risk groups in the two different data-
sets (P < 0:01), with patients in the high-risk group showing
a poor prognosis. We also found that the ROC curves for 1,
3, and 5 years were all greater than 0.65 in the two datasets,
and the area under the ROC curve for 5 years in TCGA data-
set was 0.748, suggesting that the model has a high degree of
accuracy and is relatively stable in evaluating the prognostic
outcomes of gastric cancer patients (Figures 4(c) and 4(d)).
We then analyzed the value of risk and clinical data as well
as the AUC value of the area under the curve of the combi-
nation of the two new indicators over time. For TCGA data-
set (Figure 4(e)), it was found that the model performed well
in both short-term and long-term prognoses of gastric can-
cer. For the GSE62254 dataset (Figure 4(f)), both the
short-term prognosis assessment and the long-term tumor
stage assessment performed well. For both datasets, the com-
bined “riskScore+ Clinical” was superior to other indicators.

3.6. Risk Curve and t-SNE Dimension Reduction Analysis. In
order to observe the gene expression in the model and the
proportion of patients who died as the risk value changed,
we plotted risk curves for the two datasets. As shown in
Figures 5(a)–5(f), MAP3K9, TAP1, and CRAMP1L were
mainly expressed in the low-risk group, while APOD,
CD59, BNC2, SMAD5, and COL6A3 were mainly expressed
in the high-risk group. As the risk value increased, the pro-
portion of patients dying also increased. In order to observe
the ability of the model to distinguish between gastric cancer
patients, the t-SNE analysis was performed on all patients, as
shown in Figures 5(g) and 5(h), and it was found that the
model was able to distinguish between patients effectively.

3.7. Evaluation of the Independent Prognostic Value of the
Model. We then explored the independent prognostic value
of the model. Univariate (Figures 6(a) and 6(b)) and multi-
variate (Figures 6(c) and 6(d)) Cox regression analyses were
performed on the risk score of the model and clinical indica-
tors of patients in TCGA and GSE62254 datasets. We found
that the risk scores of the models for both datasets were
independent prognostic factors (P < 0:05).

3.8. Gene Enrichment Analysis. In order to further explore
the differences in gene function enrichment and pathway
between patients in the high- and low-risk groups in the

model, the GO and KEGG enrichment analyses were per-
formed for the differentially expressed genes between the
two groups. GO enrichment analysis found that differentially
expressed genes were mainly related to transmembrane trans-
port across the cell membrane and receptor exchange
(Figures 7(a) and 7(b)). The KEGG enrichment analysis
showed that they were mainly enriched in the calcium signal-
ing, cAMP signaling, ECM-receptor interaction, focal adhe-
sion, and Wnt signaling pathways (Figures 7(c) and 7(d)).

3.9. Immunological Differences between High- and Low-Risk
Groups. We then explored the infiltration of immune cells
in the high- and low-risk groups, selecting those with differ-
ent infiltration levels of immune cells between the two
groups (P < 0:05) and displaying the information on a heat
map (Figure 8(a)). A difference was observed in the infiltra-
tion levels of immune cells between the high- and low-risk
groups. The CIBERSORT method revealed that CD4 and
CD8 T cells were mainly infiltrated in the low-risk group,
while M2 macrophages were mainly infiltrated in the high-
risk group. T cells play a central role in the human body’s
immune system, and the low level of T cells in the high-risk
group may indicate that the poor prognosis of high-risk
patients is related to the low level of T cell expression. Previous
studies have reported that immune checkpoint (ICP) genes
and immunogenic cell death (ICD) modulator genes play an
important role in host antitumor immunity. Next, we con-
ducted a differential analysis of immune checkpoint genes in
the two datasets (Figures 8(b) and 8(c)); we found that
CD200, CD276, CD28, NRP1, TNFSF4, and VTCN1 were
mainly expressed in the high-risk group in both datasets, while
CD274, ZDO1, LAG3, LGALS9, PDCD1, TNFSF14, and
TNFSF9 were mainly expressed in the low-risk group. Mean-
while, differences in immunogenic cell death (ICD) modulator
genes were also analyzed in the high- and low-risk groups
(Figures 8(d) and 8(e)), and it was found that HGF and
IFNAR2 were upregulated in the high-risk group, while CALR
and HMGB1 were downregulated in the high-risk group.

3.10. Mutation Landscape Analysis. Gene mutation plays an
important role in the development of tumors. We used the
maftools package to explore mutations in high- and low-risk
groups in TCGA dataset. As shown in Figures 9(a) and 9(b),
the percentage of mutations in the top 30 genes in the high-
risk group was 96.55%, while in the low-risk group it was
94.19% (Figures 9(c) and 9(d)). The mainmutation types were
deletion mutations, and the genes showing the highest fre-
quency of mutations were TTN and TP53. We found that
the proportion of mutations in the first 30 genes was lower
in the high-risk group than in the low-risk group. To further
examine the causes of this, we conducted the survival analysis
of the first 30 mutated genes in the high- and low-risk groups
and found that the TTN and FAT3 genes correlated with
patient prognosis in the high-risk group (Figures 9(e) and
9(f)), with high expression levels for both indicating poor
prognosis. However, the expression of these mutated genes
was not significantly associated with survival in the low-risk
group (Figures 9(g) and 9(h)). These two genes may play an
important role in the high-risk group of gastric cancer; they
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may be oncogenes of gastric cancer and could be potential
therapeutic targets in the high-risk group of gastric cancer
patients. Next, we analyzed the mutations of 8 genes in the
model in the high- and low-risk groups (Figures 9(b) and
9(d)) and found that the percentage of mutations in the low-
risk group was 21.84%, with a total of 5 genes, these being
COL6A3, BNC2, CRAMP1L, MAP3K9, and TAP1
(Figure 9(d)). In the high-risk group, the mutation frequency
of model genes was 17.44%, and a total of 7 genes were muta-
ted—COL6A3, BNC2, TAP1, CRAMP1L, APOD, MAP3K9,
and SMAD5, in descending order of mutation frequency
(Figure 9(b)). We followed this with an exploration of the
mutation symbiosis between genes in the model (Figures 9(i)
and 9(j)) and found that there was mutation symbiosis
between COL6A3 and CRAMP1L in the high-risk group
(P < 0:05). COL6A3 and TAP1, TAP1 and MAP3K9, TAP1
and APOD, and CRAMP1L andMAP3K9 showedmore obvi-
ous mutation symbiosis (P < 0:01). BNC2 and CRAMP1L dis-
played mutation symbiosis in the low-risk group (P < 0:05).
Therefore, different mutational landscapes exist in the high-
and low-risk groups, which may be associated with different
outcomes in the high- and low-risk groups. These genes may
be potential targets for immunotherapy.

3.11. Exploration of Candidate mRNA Vaccine for Gastric
Cancer. At present, the treatment of gastric cancer is mostly
limited to surgical resection, but many people, when diag-
nosed, have already missed the best opportunity for treat-
ment. The mRNA vaccine has been reported to play an
important role in cancer therapy; it is therefore necessary
to search for mRNA vaccine candidate genes for gastric can-
cer. Firstly, 16,743 mutated genes and 20,608 copy number-
amplified genes of gastric cancer were analyzed on the cBio-
Portal website. Figure 10(a) shows the occurrence of copy
number variation in gastric cancer patients, with amplifica-
tion occurring mainly on chromosomes 7, 8, and 20. At
the same time, we explored the distribution of different
genes in chromosomes between gastric cancer and the nor-
mal group, among which 3746 genes (marked in red) were
upregulated in the gastric cancer group (Figure 10(b)).
Finally, we found that both mutations and copy number var-
iations occurred and were highly expressed in gastric cancer,
and 10 genes with high expression were associated with a
better prognosis. However, macrophage and DC cells were
positively correlated with only one, namely PTPN6. As
shown in Figure 10(c), the highly expressed gene PTPN6
suggests a more positive prognosis for gastric cancer: macro-
phages (COR = 0:153, P < 0:01, Figure 10(d)) and dendritic
cells (COR = 0:51, P < 0:001, Figure 10(d)), as well as B cells
(COR = −0:146, P < 0:01, Figure 10(d)). Therefore, it is
likely that PTPN6 is an mRNA vaccine gene for gastric can-
cer, which is of great significance to the development of gas-
tric cancer treatment. Patients in the high-risk group of
gastric cancer have a poor prognosis, so we obtained 6 che-
motherapy drugs through screening via the pRRophetic
package, as shown in Figures 10(e)–10(j). They have differ-
ent IC50 values in the high- and low-risk groups, with the
IC50 values in the high-risk group being lower, so these
may be candidates for the treatment of gastric cancer.

3.12. The Construction of a Nomogram. To further evaluate
the prospects for survival of gastric cancer patients, we drew
a nomogram combining the risk value and clinical charac-
teristics of the model. As shown in Figure 11(a), We found
that the 1, 3, and 5 mortality rates of patients TCGA-HU-
a4Gy-norm were 0.243, 0.587, and 0.723, respectively. In
order to verify the accuracy of survival prediction, calibra-
tion curves were also drawn (Figures 11(b)) We found that
the calibration curves of 1, 3, and 5 years were all accurate,
suggesting that the nomogram was an effective tool for pre-
dicting the prognosis of patients.

4. Discussion

As immunotherapy becomes an increasingly hot topic of scien-
tific research, there is likewise a growing interest in tumor
immunology as a focus of research [11]. Conventional treat-
ment of gastric cancer thus far has generally been unsatisfactory
[12]. Immunotherapy has achieved positive initial results in the
clinical treatment of gastric cancer and has a positive outlook as
a treatment method [13]. Neoantigen production, genomic
instability, and viral or bacterial infection may be favorable fac-
tors for immunotherapy [14]. These factors are common in gas-
tric cancer, so gastric cancer may prove to be an effective
candidate tumor for immunotherapy [6]. It is well known that
immune cell reprogramming is one of the hallmarks of tumors;
consequently, the immune microenvironment of tumors is
complex and changeable [15]. At present, our understanding
of the tumor immune microenvironment is insufficient. It is
crucial to explore the tumor microenvironment of gastric can-
cer in greater detail and to develop more personalized forms
of immunotherapy. In addition, the in-depth study of tumor
immunemicroenvironments and the identification of candidate
vaccine genes will contribute to the development of mRNA vac-
cines and the development of novel tumor therapy.

In this study, we explored the differentially expressed
genes of immune cells in metastatic and nonmetastatic gastric
cancer by combining single-cell sequencing and transcriptome
data. We subsequently constructed the prognostic model
using these differentially expressed genes. This prognostic
model can accurately predict the prognosis of gastric cancer
patients by dividing them into high-risk and low-risk groups.
In addition to this, we identified a candidate vaccine gene for
gastric cancer: PTPN6. This has implications for the develop-
ment of novel treatments for gastric cancer.

The prognosis of gastric cancer is usually poor, especially
at an advanced stage [16]. Once gastric cancer has metasta-
sized, treatment options are limited [17]. Therefore, it is of
clinical significance to precisely evaluate the prognosis of
patients with gastric cancer and accurately predict the risk of
gastric cancer metastasis. Our study constructed a prognostic
model of gastric cancer based on single-cell sequencing analy-
sis and predicted the likelihood of such metastasis. The appli-
cation of single-cell sequencing improves the accuracy of
genetic analysis. Furthermore, the constructed prognostic
model can divide gastric cancer patients into high-risk and
low-risk groups in order to more effectively determine the
prognosis of patients, and more personalized treatment can
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be provided according to these groups. Thismakes sense in the
current era of precision medicine.

With the introduction of immune checkpoint inhibitors,
the treatment of cancer has undergone landmark changes;
gastric cancer is one such form of cancer to be affected by
these developments [18]. The first drug to be approved by
the US Food and Drug Administration (FDA) for tumor
immunotherapy is ipilimumab, an anticytotoxic T lympho-
cyte antigen-4 (CTLA-4) antibody, which is used to treat
melanoma [19]. Subsequently, PD-1/PD-L1 inhibitors were
discovered and applied clinically [20]. Gastric cancer is
considered an effective candidate tumor type for immuno-
therapy due to the frequent presence of chromosomal
instability, genomic instability, microsatellite instability,
Epstein-Barr virus, and Helicobacter pylori infection [21].
CTLA-4 inhibitors and PD-1/PD-L1 have been used in the
treatment of advanced gastric cancer, improving the progno-
sis of patients to a certain extent [22]. However, there are still
a considerable number of gastric cancer patients who
respond poorly, tumor heterogeneity being to blame for this
[23]. Therefore, we conducted an in-depth exploration of the
immune microenvironment of gastric cancer and examined
the differences present in this microenvironment. This is use-
ful for increasing our understanding of tumor immunity in
gastric cancer.

To summarize, we constructed an immune-related prog-
nosis model for gastric cancer—based on single-cell
sequencing analysis—which can not only accurately predict
the prognosis of gastric cancer patients but also enrich our
understanding of the immune microenvironment of gastric
cancer. However, there are limitations to our study. We lack
in vivo and in vitro trials, as well as real-world clinical
cohorts to verify our conclusions; we shall make efforts to
address these limitations in the future.

5. Conclusion

We analyzed differential gene expressions of immune cells in
metastatic and nonmetastatic gastric cancer and constructed
a prognostic model of gastric cancer patients based on these
differential gene expressions. In addition, we screened candi-
date vaccine genes for gastric cancer. Our study could pro-
vide new possibilities for the treatment of gastric cancer.

Abbreviations

MImrGenes: Immune cell-related genes
IC50: 50% inhibitory concentration
CTLA-4: Cytotoxic T lymphocyte antigen-4
GO: Gene Ontology
KEGG: Kyoto Encyclopedia of Genes and Genomes.

Data Availability

All data generated and described in this article are available
from the corresponding web servers and are freely available
to any scientist wishing to use them for noncommercial pur-
poses, without breaching participant confidentiality. Further

information is available from the corresponding authors on
reasonable request.

Additional Points

Key Messages. What is already known on this topic: gastric
cancer is one of the most common tumors at present, and
the treatment effect of advanced gastric cancer is still far
from ideal. What this study adds: through bioinformatics-
based analysis, we explored the immune microenvironment
of gastric cancer and constructed a metastasis-related prog-
nostic model. How this study might affect research, practice,
or policy: our study can be used as a reference for the prog-
nostic assessment of gastric cancer and for the study of
immune microenvironments.

Ethical Approval

Ethics approval and written consent were not needed for this
study exploring the public data.

Conflicts of Interest

All authors declare that no conflict of interest exists.

Authors’ Contributions

Liang Chen and Jiaheng Xie designed the study. Liang Chen,
Qikai Tang, and Yiming Hu were involved in database
search and statistical analyses. Liang Chen, Jiaheng Xie,
and Wei Wei were involved in the writing of the manuscript
and its critical revision. Hongzhu Yu, Wei Wei, and Jiaheng
Xie were responsible for the submission of the final version
of the paper. All authors approved the final version. All
authors agree to be accountable for all aspects of the work.
Liang Chen, Rubin Xu, Wei Wei, and Qikai Tang are the
joint first authors.

Acknowledgments

We are very grateful for data provided by databases such as
TCGA and GEO.

Supplementary Materials

Supplemental Figure S1: survival analysis of 8 genes in the
model. (Supplementary Materials)

References

[1] D. E. Guggenheim and M. A. Shah, “Gastric cancer epidemiol-
ogy and risk factors,” Journal of Surgical Oncology, vol. 107,
no. 3, pp. 230–236, 2013.

[2] P. Karimi, F. Islami, S. Anandasabapathy, N. D. Freedman, and
F. Kamangar, “Gastric cancer: descriptive epidemiology, risk
factors, screening, and prevention,” Cancer Epidemiology, Bio-
markers & Prevention, vol. 23, no. 5, pp. 700–713, 2014.

[3] Z. Song, Y. Wu, J. Yang, D. Yang, and X. Fang, “Progress in the
treatment of advanced gastric cancer,” Tumour Biology,
vol. 39, no. 7, p. 1010428317714626, 2017.

18 Applied Bionics and Biomechanics

https://downloads.hindawi.com/journals/abb/2022/7061263.f1.pdf


[4] V. De Re, “Molecular features distinguish gastric cancer sub-
types,” International Journal of Molecular Sciences, vol. 19,
no. 10, p. 3121, 2018.

[5] H. Yoon and N. Kim, “Diagnosis and management of high risk
group for gastric cancer,” Gut Liver, vol. 9, no. 1, pp. 5–17,
2015.

[6] E. C. Smyth, M. Nilsson, H. I. Grabsch, N. C. van Grieken, and
F. Lordick, “Gastric cancer,” Lancet, vol. 396, no. 10251,
pp. 635–648, 2020.

[7] Q. Zhao, L. Cao, L. Guan et al., “Immunotherapy for gastric
cancer: dilemmas and prospect,” Briefings in Functional Geno-
mics, vol. 18, no. 2, pp. 107–112, 2019.

[8] D. Vrána, M. Matzenauer, Č. Neoral et al., “From tumor
immunology to immunotherapy in gastric and esophageal
cancer,” International Journal of Molecular Sciences, vol. 20,
no. 1, p. 13, 2019.

[9] S. Gao, “Data analysis in single-cell transcriptome sequenc-
ing,” Methods in Molecular Biology, vol. 2018, pp. 311–326,
2018.

[10] C. Ziegenhain, B. Vieth, S. Parekh et al., “Comparative analysis
of single-cell RNA sequencing methods,” Molecular cell,
vol. 65, no. 4, pp. 631–643.e4, 2017.

[11] M. Abbott and Y. Ustoyev, “Cancer and the immune system:
the history and background of immunotherapy,” Seminars in
Oncology Nursing, vol. 35, no. 5, p. 150923, 2019.

[12] C. Coutzac, S. Pernot, N. Chaput, and A. Zaanan, “Immuno-
therapy in advanced gastric cancer, is it the future?,” Critical
Reviews in Oncology/Hematology, vol. 133, pp. 25–32, 2019.

[13] J. Xie, S. Ruan, Z. Zhu et al., “Database mining analysis
revealed the role of the putative H+/sugar transporter solute
carrier family 45 in skin cutaneous melanoma,” Channels,
vol. 15, no. 1, pp. 496–506, 2021.

[14] J. Xie, Z. Zhu, Y. Cao, S. Ruan, M. Wang, and J. Shi, “Solute
carrier transporter superfamily member SLC16A1 is a poten-
tial prognostic biomarker and associated with immune infiltra-
tion in skin cutaneous melanoma,” Channels, vol. 15, no. 1,
pp. 483–495, 2021.

[15] X. Dai, L. Lu, S. Deng et al., “USP7 targeting modulates anti-
tumor immune response by reprogramming tumor-
associated macrophages in lung cancer,” Theranostics,
vol. 10, no. 20, pp. 9332–9347, 2020.

[16] A. Digklia and A. D. Wagner, “Advanced gastric cancer: cur-
rent treatment landscape and future perspectives,”World Jour-
nal of Gastroenterology, vol. 22, no. 8, pp. 2403–2414, 2016.

[17] T. Z. Recent, “Advances in the surgical treatment of advanced
gastric cancer: a review,” Medical science monitor: interna-
tional medical journal of experimental and clinical research,
vol. 25, pp. 3537–3541, 2019.

[18] K. Kono, S. Nakajima, and K. Mimura, “Current status of
immune checkpoint inhibitors for gastric cancer,” Gastric
Cancer, vol. 23, no. 4, pp. 565–578, 2020.

[19] E. M. Van Allen, D. Miao, B. Schilling et al., “Genomic corre-
lates of response to CTLA-4 blockade in metastatic mela-
noma,” Science, vol. 350, no. 6262, pp. 207–211, 2015.

[20] S. Kleffel, C. Posch, S. R. Barthel et al., “Melanoma cell-
intrinsic PD-1 receptor functions promote tumor growth,”
Cell, vol. 162, no. 6, pp. 1242–1256, 2015.

[21] R. Dolcetti, V. De Re, and V. Canzonieri, “Immunotherapy for
gastric cancer: time for a personalized approach?,” Interna-
tional journal of molecular sciences, vol. 19, no. 6, p. 1602,
2018.

[22] S. Matsueda and D. Y. Graham, “Immunotherapy in gastric
cancer,” World Journal of Gastroenterology, vol. 20, no. 7,
pp. 1657–1666, 2014.

[23] M. Naseem, A. Barzi, C. Brezden-Masley et al., “Outlooks on
Epstein-Barr virus associated gastric cancer,” Cancer Treat-
ment Reviews, vol. 66, pp. 15–22, 2018.

19Applied Bionics and Biomechanics


	Single-Cell Sequencing Analysis Based on Public Databases for Constructing a Metastasis-Related Prognostic Model for Gastric Cancer
	1. Introduction
	2. Materials and Methods
	2.1. Source of Single-Cell Sequencing Data
	2.2. Source and Processing of Transcriptome Data
	2.3. Acquisition of Immune Cell-Related Genes (MImrGenes) Associated with Gastric Cancer Metastasis
	2.4. Construction of the Prognostic Model
	2.5. Evaluation of the Model
	2.6. Gene Function Enrichment Analysis
	2.7. Differences in Immunity between High- and Low-Risk Groups
	2.8. Single Sample Gene Set Enrichment Analysis (ssGSEA)
	2.9. Landscape Analysis of Gene Mutation
	2.10. Exploration of Candidate mRNA Vaccine for Gastric Cancer
	2.11. Drug Sensitivity Analysis
	2.12. Construction of the Nomogram and Calibration Curve
	2.13. Statistical Analysis

	3. Results
	3.1. Single-Cell Sequencing Data Quality Control
	3.2. Acquisition of Genes Associated with Gastric Cancer Metastasis and Immunity
	3.3. Pseudotime Analysis
	3.4. Construction of the Prognostic Model
	3.5. Evaluation of the Model
	3.6. Risk Curve and t-SNE Dimension Reduction Analysis
	3.7. Evaluation of the Independent Prognostic Value of the Model
	3.8. Gene Enrichment Analysis
	3.9. Immunological Differences between High- and Low-Risk Groups
	3.10. Mutation Landscape Analysis
	3.11. Exploration of Candidate mRNA Vaccine for Gastric Cancer
	3.12. The Construction of a Nomogram

	4. Discussion
	5. Conclusion
	Abbreviations
	Data Availability
	Additional Points
	Ethical Approval
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

