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Epilepsy detection based on electroencephalogram (EEG) is important for the diagnosis and treatment of epilepsy. The existing
feature extraction method not only consumes a lot of time but also leads to epilepsy information loss because of nonideal
denoising. Therefore, the paper proposes to use noisy EEG signals to detect epilepsy. The original EEG signal is divided into
normal signal and abnormal signal by Riemann potato, and the epilepsy detection model is established based on the normal
signal and abnormal signal, respectively. Finally, the 2 detection results are combined as a final result. The detection
performance of 94.84%, 83.03% sensitivity, and 97.67% specificity is achieved. The experimental results show that the original
noisy signal which is separated by the Riemann potato can have high epilepsy detection performance.

1. Introduction

Epilepsy is one of the most common nervous diseases, which
affects about 1.5% of the population. It will affect the life qual-
ity of patients and even pose a great threat to their lives [1].
Using EEG to detect epilepsy is widely used for epilepsy diag-
nosis [2]. The detection results are one of the important refer-
ences for doctors to treat epilepsy. Traditional epilepsy
detection is completed by doctors according to their own clin-
ical experience. This method is not only time-consuming and
inefficient but also depends on the subjective judgment of doc-
tors [3]. Therefore, the realization of automatic epilepsy detec-
tion has been of great significance to clinical application.

Epilepsy detection methods are commonly divided into
the statistical methods, machine learning methods, and deep
learning methods. The statistical method is to use a certain
feature of signal to distinguish between epileptic signal and
nonepileptic signal and complete epilepsy detection according
to the statistical results. The machine learning method is
mainly to extract some features of the signal and use a
machine learning model to complete epilepsy detection. The
deep learning method is to establish a deep learning model

and complete feature extraction to realize epilepsy detection.
The performance of the statistical method is poor. The perfor-
mance of the deep learning method is better but takes a lot of
training time. The extracted features are fuzzy and cannot be
understood by doctors. It is difficult to apply it to clinical epi-
lepsy detection, which requires a certain detection speed. The
machine learning method is the only method that can be used
in practice with high detection performance.

The traditional machine learning methods include three
steps: preprocessing, feature extraction, and classification.
EEG is not only complex and weak but also mixed with eye
electrical signal, electromyography signal, and other kinds of
noise. Preprocessing is mainly to remove the noise from EEG
signals [4]. However, in practice, there is a certain gap between
extracted features and the real features due to the unsatisfactory
denoising effect which will lead to poor detection performance.
Therefore, scholars tried a variety of noise removal methods, in
which filter denoising and independent component analysis
(ICA) denoising are in common use. Filtering denoising is
based on the characteristics of the spectrum of noise and pure
signal distribute in different frequency bands [5]. However, fil-
tering denoising has a boundary effect, which leads to a poor
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denoising effect at the cut-off frequency boundary. At the same
time, a small part of the spectrum of noise and pure signal coin-
cides, and part of the EEG signal is filtered out when the noise is
filtered out. ICA is a noise removal method that assumes that
the components of EEG signals are independent of each other
and uses the least square method to estimate the model param-
eters after selecting the principal components [6]. The method
is based on multichannel, and the denoising ability will
decrease with the decrease of the number of channels. More-
over, the method consumes a lot of calculation time to remove
noise, and it is difficult to realize the task requires detection
speed. Therefore, the existing noise filtering methods are diffi-
cult to achieve high-performance epilepsy detection.

The paper uses a machine learning model to detect
epilepsy based on noisy EEG. The overall structure is
shown in Figure 1. The EEG signal was separated into
normal signals and abnormal signals by Riemann potato
method. The detection models for normal signal and
abnormal signal were established, respectively, and the 2

results from 2 models are combined as the final epilepsy
detection model.

The paper mainly has the following contributions: (1) It
is the first time to realize epilepsy detection in noisy environ-
ment, which proves that denoising is not a necessary step of
epilepsy detection. (2) Riemann potato is used to divide EEG
into two parts, which proves that the performance of epi-
lepsy detection can be improved through data division.

2. Related Methods

2.1. Region Division. In the paper, the experiment database is
provided by the Massachusetts Institute of Technology
(MIT), which is obtained by using a 10-20 system. Through
observing the database, the fact is that some patients lacked
some channel information. All patients shared 18 channels
including FP1F7, F7T7, T7P7, P7O1, FP1F3, F3C3, C3P3,
P3O1, FP2F4, F4C4, C4P4, P4O2, FP2F8, F8T8, T8P8, P8O2,
FZCZ, and CZPZ [7]. According to the channel location,
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Figure 1: Structural diagram of epilepsy detection.
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Figure 3: Continued.
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EEG regions are divided into region 1, region 2, region 3, region
4, region 5, region 6, region 7, region 8, and the central region.
The region division is shown in Figure 2. It can be seen from
Figure 2 that 18 channels cover different regions of the scalp.
The region division can ensure that there is at least one channel
in each region. In the paper, the epilepsy detection method
based on multichannel is used to complete epilepsy detection
which can ensure that there is at least one channel in each
EEG region for feature extraction. The method can ensure
the overall detection performance will not be greatly reduced
due to individual channel loss.

2.2. Correlation Analysis of Channels. EEG is nonlinear, ran-
dom, low-energy biological which is generated by the neurons
in the brain. It is the comprehensive reflection of the group
activity of neurons on the scalp surface [8]. During the process
of signal transmission, it will be affected by many kinds of
noise. Due to the close distance between channels in the same
region, the influence of noise on adjacent 2 channels is similar.

Hence, the EEG signals from adjacent channels have a certain
similarities. In the paper, 6 of the 18 channels are selected as
examples which is shown in Figure 3.

It can be seen from Figure 3 that the EEG signals from
adjacent channels are similar to each other in both epileptic
signals and nonepileptic signals. Therefore, according to the
channel similarity, choosing the most suitable channel for
epilepsy detection in the same region is meaningful. It can
not only reduce the number of channels but also ensure that
the selected channel has the advantage of multiple regional
EEG signals. In the paper, the Pearson correlation coefficient
is used to represent the similarity of channels.

Pearson correlation coefficient of X and Y is defined as
follows:

ρX,Y = COV X, Yð Þ
σXσY

= E XYð Þ − E Xð ÞE Yð ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E X2ð Þ − E2 Xð Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E Y2ð Þ − E2 Yð Þ
p , ð1Þ

where EðXÞ is the mathematical expectation of the X.
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Figure 3: Similarity of signals from different channels.
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The paper analyzes the similarity of signals from 2 different
channels. For the channels with large similarities, selecting the
channel with strong epilepsy detection ability is used for feature
extraction and at the same time abandoning the channel with
weak epilepsy detection ability to reduce the number of chan-
nels. The method can improve the epilepsy detection speed.

2.3. Feature Extraction. The feature directly determines the
performance of epilepsy detection. Williamson et al. found
that the EEG signal with higher a power spectral density
(PSD) has stronger ability to detect epilepsy [9]. Bai et al.
found that the sample entropy has a strong anti-
interference performance for EEG signals [10]. The paper
selects the PSD and sample entropy as features.

(1) PSD

In the paper, the Welch method is used to calculate the
PSD. The method divides data into L segments (allowing
overlap), improving the signal variance characteristics and
reducing the uncorrelation of each segment of data. The
window is used to complete the data interception, and the
PSD of each segment is denoted as PðωÞ. The expression is
shown in equation (2).

P ωð Þ = 1
MUL
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Figure 4: Schematic diagram of Riemann potato.

Table 1: Pearson correlation coefficient of 2 channels (>0.5).

Channel Epilepsy Nonepilepsy

FP1F7—FP1F3 0.64 0.58

F7T7—F3C3 0.77 0.8

F7T7—C3P3 0.56 0.5

T7P7—C3P3 0.67 0.67

FP1F3—FP2F4 0.51 0.59

F3C3—F4C4 0.57 0.65

F3C3—FZCZ 0.7 0.78

C3P3—P3O1 0.54 0.49

C3P3—C4P4 0.64 0.65

C3P3—P4O2 0.5 0.5

C3P3—CZPZ 0.86 0.73

P3O1—P4O2 0.59 0.71

F4C4—F8T8 0.6 0.74

F4C4—FZCZ 0.86 0.8

C4P4—P4O2 0.61 0.54

C4P4—T8P8 0.62 0.6

C4P4—CZPZ 0.78 0.78

C4P4—CZPZ 0.65 0.52

FZCZ—CZPZ 0.5 0.01
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where dðnÞ is the window. In the paper, the rectangular
window is selected as the window. M represents the number
of data in each segment. U is the normalization factor. The
expression is shown in equation (3).

U = 1
M

〠
M

n=1
d2 nð Þ: ð3Þ

(2) Sample entropy

In the paper, sample entropy is chosen as the feature.
The sample entropy is a measure of complexity proposed
by Richman and Randall [11]. They measure the complexity
of time series by measuring the probability of generating
new signal patterns. The greater the probability of new pat-
terns, the greater the complexity of the time series is. The
calculation of sample entropy does not depend on the data
and has a good consistency. Sample entropy is widely used
in the evaluation of the complexity of biological signals
and the diagnosis of pathological state [10]. The sample
entropy can reflect the small transformation of EEG signal
during epileptic seizures [12], which can be used as a feature
in the epilepsy detection model.

2.4. Significance Analysis. EEG signals will inevitably be
mixed with noise. ICA is widely used in EEG acquisition
equipment. It is officially declared that 95% of the noise
can be removed [13]. It is recognized as the best denoising
method for EEG signals so far. The feature obtained after

denoising by ICA is also the closest to the real feature [10].
In the paper, all channels in the database are used for
denoising by ICA. It is through the significance analysis of
the features obtained before and after the denoising to deter-
mine whether the features of noisy signals can be used in the
detection model.

In the paper, the significance test method is used to
study the feature difference before and after denoising. The
significance test is to make a hypothesis on the parameters
or distribution on the form of population (random variable)
and then use the sample information to judge whether the
hypothesis (alternative hypothesis) is reasonable, that is, to
judge whether the real situation of the population is signifi-
cantly different from the original hypothesis. The signifi-
cance test is used to judge whether there is a difference
between different data groups and whether the difference is
significant.

In the paper, one-way analysis of variance (ANOVA) is
used to study the significance of features. The purpose of
one-way ANOVA is to determine whether the same variable
from different groups has different effects on the corre-
sponding variable Y . The expression of one way ANOVA
was as follows:

yij = aj + εij: ð4Þ

The hypothesis is as follows: yij is an observation value that
represents the observation number and represents different
groups of predicted variables. yij are independent of each
other. εiji s random error, independent, and normally

Table 2: PSD of 18 channels of EEG.

Nonepilepsy Epilepsy
Channel 0103 0104 0301 0302 0513 0516 0103 0104 0301 0302 0513 0516

FP1F7 468 247 581 256 829 1149 1678 1560 3748 3850 4423 5616

F7T7 321 181 367 271 1444 2021 1039 834 3337 3725 6948 7081

T7P7 498 184 121 120 734 1024 1013 713 908 2000 4380 3913

P7O1 342 168 79 100 1211 1665 651 515 537 622 4481 5078

FP1F3 638 408 514 405 836 1259 2312 1887 4153 4160 5312 5809

F3C3 682 409 112 246 1283 1602 1772 1189 1243 1259 9001 8162

C3P3 352 183 83 77 511 793 915 606 604 632 3298 5298

P3O1 544 268 74 70 835 1362 1220 912 379 379 4357 6954

FP2F4 615 419 378 438 617 686 2016 1902 3048 3012 6588 5025

F4C4 635 385 77 200 556 458 2092 1623 568 512 6168 5235

C4P4 367 237 84 104 404 448 1288 991 521 464 4291 2973

P4O2 719 522 75 113 472 581 1797 1712 300 364 4896 3820

Fp2F8 478 300 388 371 440 660 1710 1456 3067 4035 4482 5577

F8T8 419 300 179 184 485 627 1556 1474 1450 1949 5521 4924

T8P8 599 300 72 118 443 564 1995 1277 709 1489 5500 4295

P8O2 691 517 66 73 409 519 2119 2236 279 374 4786 3628

FZCZ 948 508 105 214 789 737 2351 1767 797 693 6453 6070

CZPZ 777 427 70 126 473 453 1814 1425 463 409 4051 2969
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distributed, with zero mean value and constant variance, that
is, εij ~Nð0, σ2Þ. aj represents the overall average of group J.

The ANOVA tests the hypothesis of H0 which is differ-
ent from the other group.

H0 : a1 = a2 =⋯ak: ð5Þ

H1 means not all groups have the same mean.
In practical application, the threshold (e.g., 0.05) will be

set to calculate the p value of the two groups of data. When
the p value is greater than the threshold value, the same fac-
tors in different groups will have the same effect on the pre-
diction variables, that is, the feature plays the same role in
the detection model.

2.5. Riemann Potato. In the paper, the original signal (EEG
with noise) is divided into normal signal and abnormal
signal by Riemann potato. The Riemann potato is a math-
ematical method to detect outliers by covariance matrix
based on Riemann geometry [14]. The distance distribu-
tion of the signal covariance matrix is calculated by setting
the threshold artificially. When the distance between
covariance matrices is beyond the threshold, it is consid-
ered an outlier. Riemann potato method was used to pro-
cess each record. Each record was divided into two parts:
normal signal and abnormal signal. Then, the normal sig-
nals are combined to form the normal data set, and the
abnormal signals are combined to form the abnormal data
set. Riemann potato schematic diagram is shown in
Figure 4. For more details, refer to the literature [15].

3. Experiments and Results

3.1. Database. The database is provided by the Massachu-
setts Institute of Technology (MIT). The database contains
23 EEG records from 22 epileptic patients (one of them

has two EEG records), containing the patient’s age, gender,
and other information. The EEG signal is sampled by
256Hz, and the information is stored with 16 binary values.
The frequency range of the EEG signals is (0-100Hz) [16].
The database contains a variety of epilepsy types, which is
large and representative [7].

3.2. Channel Selection

3.2.1. Correlation Coefficient of Channels. Pearson correla-
tion coefficient was used to analyze the correlation of 18
channels. The correlation coefficients between any two chan-
nels of epileptic signals and nonepileptic signals were calcu-
lated. The channel with a correlation coefficient of more
than 0.5 is given in Table 1.

The 9 regions are divided according to the location
including a central region which includes channel FZCZ
and channel CZPZ. The correlation coefficient of channel
FZCZ and channel CZPZ in epileptic signal is 0.5, and that
of channel FZCZ and channel CZPZ in nonepileptic signal
is 0.01. It can be seen that channel FZCZ and channel CZPZ
are closely related, but the correlation is poor. The two chan-
nels are very close to the hippocampus area of an epileptic
seizure, and the distance between the epileptic signal and
the scalp is the smallest having the least noise. Therefore,
channel FZCZ and channel CZPZ are selected for feature
extraction in the central region. In other regions, only one
channel is selected for extracting features to save time.

3.2.2. PSD Analysis. The greater the PSD, the stronger the
ability to detect epilepsy is. In the paper, the average PSD
of epilepsy signal and nonepilepsy signal in 3 patients is cal-
culated which is shown in Table 2. The record number 0103
in the table represents the 3th EEG record from patient 01 in
the database.

It can be seen from Table 2 that differences in the PSD
live in different patients. The PSD of EEG signals obtained
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Figure 5: Normal signal and abnormal signal from epileptic signal.
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from the same patients at different times is also different. On
the whole, the PSD of epileptic signals is greater than that of
nonepileptic signals. Thus, the PSD can be used as a feature
to distinguish epileptic signals from nonepileptic signals.

3.2.3. Channel Selection. The principle of channel selection in
the paper is as follows: in the 9 regions, one channel is selected
from each region (two channels are selected in the central
region). In the same region (excluding the central region), if
the difference between the average PSD is large, the channel with
a larger average PSD is selected for feature extraction. Otherwise,
select the channel farthest from the identified channel to ensure
that the channel used covers the scalp as much as possible. The
specific selection process is as follows: for channels T8P8 and
C4P4, the channel T8P8 with the largest PSD is selected. For
channels FP2F4 and FP2F8, the channel FP2F4 with the largest
PSD is selected. For channels FP1F7 and FP1F3, channel FP1F3
with the largest PSD is selected. For channels P4O2 and P8O2,
P4O2 with the largest PSD is selected. For channels T7P7 and
C3P3, the channel T7P7 with the largest PSD is selected. The
relationship between the PSD of channel F7T7 and channel
F3C3 is uncertain. To ensure that the selected channel contains
EEG information of different regions as much as possible, the
channel FP1F3 has been selected. In the paper, channel F7T7
which is far away from channel FP1F3 is selected. Similarly,
the relationship between the PSD of channel P7O1 and P3O1
is uncertain. Similarly, the relationship between the PSD of chan-
nel F4C4 and F8T8 is uncertain, and channel F8T8 is chosen. In

this paper, 10 channels including channels FP1F3, F7T7, T7P7,
P3O1, FP2F4, F8T8, T8P8, P4O2, FZCZ, and CZPZ are selected
for feature extraction.

3.3. Signal Processing by Riemann Potato. In the paper, the
13th record from patient 01 was analyzed as an example.
The 98-second epileptic signal and 2000-second nonepileptic
signal were processed by Riemann potato. The epileptic signal
was composed of 72-second normal signal and 26-second
abnormal signal, and the nonepileptic signal was composed
of 152-second normal signal and 1848 second abnormal sig-
nal. In this paper, 2 of the 10 channels are selected as examples.
Figure 5 shows the time domain signal of the normal signal
and the abnormal signal from the epileptic signal. Figure 6
shows the time domain signal of the normal signal and abnor-
mal signal channels from the nonepileptic signal.

It can be seen from Figure 5 that there is a large differ-
ence between normal epileptic signals and abnormal epilep-
tic signals. It can be seen from Figure 6 that there is a large
difference in amplitude between normal signals and abnor-
mal signals about nonepileptic signals. It can be seen the dif-
ference between normal signal and the abnormal signal is
large. The classification model of normal signal and the
abnormal signal can be established, respectively, to reduce
the interaction to improve the detection performance.

Riemann potato is used to process epileptic signals and
nonepileptic signals, and the significance of the features
(PSD and sample entropy) of normal signals and abnormal

Table 3: Significance analysis of normal signal and abnormal signal.

Type FP1F3 F7T7 T7P7 P3O1 F8T8 T8P8 FP2F4 P4O2 FZCZ CZPZ

PSD of nonepilepsy 9.3E-12 4.8E-10 2.5E-11 3.2E-08 2.3E-16 2.9E-18 3.4E-14 3.4E-15 1.6E-13 5.0E-15

Sample entropy of nonepilepsy 5.3E-06 0.046 0.055 0.004 2.0E-06 0.013 0.062 0.055 0.031 0.029

PSD of epilepsy 2.0E-04 4.4E-06 7.2E-3 6.4E-4 3.7E-09 7.6E-06 6.9E-09 1.0E-10 2.3E-09 2.4E-08

Sample entropy of epilepsy 0.045 0.038 0.055 0.023 0.0056 0.0044 0.057 0.0002 0.063 0.056
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Figure 6: Normal signal and abnormal signal from nonepileptic signal.
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signals from 10 channels is analyzed. The results are shown
in Table 3.

It can be seen from Table 3 that there is significant differ-
ence in sample entropy and PSD obtained from normal signal
and abnormal signal about the epileptic signal. Similarly, the

sample entropy and PSD obtained from abnormal signals
from nonepileptic signals are significantly different from those
obtained from the normal signals. It can be seen that the PSD
and sample entropy can be used as the distinguishing charac-
teristics of the normal signal and abnormal signal.
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Figure 7: Trend of mean PSD.

Table 4: Significance analysis of sample entropy before and after denoising.

FP1F3 F7T7 T7P7 P3O1 F8T8 T8P8 FP2F4 P4O2 FZCZ CZPZ

Epilepsy 0.61 0.54 0.60 0.65 0.75 0.43 0.83 0.53 0.94 0.94

Nonepilepsy 0.54 0.62 0.72 0.81 0.72 0.78 0.63 0.69 0.80 0.68
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3.4. Features Analysis in Noisy Environment

3.4.1. Analysis of Sample Entropy

(1) Significance Analysis of Sample Entropy. In the paper, fea-
ture extraction needs to be completed in a noisy environ-

ment, so the selected features must perform well. The
sample entropy is selected as the feature, the signal obtained
by ICA denoising is regarded as the reference (so far, ICA is
recognized as the best denoising performance), and 2 sec-
onds is taken as the analysis period. The paper studied the
sample entropy from patient 13 of 10 channels of EEG signals
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Table 5: Significance analysis of sample entropy before and after denoising.

FP1F3 F7T7 T7P7 P3O1 F8T8 T8P8 FP2F4 P4O2 FZCZ CZPZ

Epilepsy 0.98 0.19 0.74 0.77 0.63 0.78 0.66 0.98 0.86 0.98

Nonepileptic signal 0.20 0.96 0.72 0.94 0.37 0.95 0.30 0.80 0.61 0.97
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which were used to analyze the significance of sample entropy
of epileptic signals and nonepileptic signals before and after
denoising. The experiment results are shown in Table 4.

It can be seen from Table 4 that the sample entropy of epi-
leptic signal and nonepileptic signal is not significant. The dif-
ference of sample entropy as a feature in the classification
model is very small, which proves that sample entropy can still
be used as classification feature for noisy signal

(2) (2) Trend of Sample Entropy. Taking the EEG signal from
patient 13 as an example, the average power spectrum den-
sity trend of epileptic signal and nonepileptic signal before
and after denoising is given in Figure 7. It can be seen that
although there are differences in the sample entropy values
between epileptic and nonepileptic signals before and after
denoising, the trend is consistent. The graph proves that
the role of sample entropy as a feature in detection before
and after denoising has not changed, and sample entropy
can still be used as a feature for noisy signals.

3.4.2. PSD Analysis

(1) Significance Analysis of PSD. The PSD is selected as the
classification feature, the signal obtained after denoising by
ICA is used as the reference, and 2 seconds is used as the anal-
ysis period to study the PSD of 21 channels of EEG signals
from patient 01. The significance of the PSD of epileptic signal
and nonepileptic signal before and after denoising is analyzed,
respectively. The experiment results are shown in Table 5.

It can be seen from Table 5 that the PSD of both epileptic
signal and nonepileptic signal is not significant before and
after denoising. The difference in the role of PSD as a feature
in the classification model is very small, which proves that

the PSD can still be used as a classification feature even in
a noisy environment.

(2) (2) The Trend of PSD. Taking the EEG signal of patient
13 as an example, Figure 8 shows the trend of PSD of epilep-
tic signal and nonepileptic signal before and after denoising.
It can be seen that although there are differences in PSD
between epileptic signals and nonepileptic signals before
and after denoising, the trend is consistent. Figure 8 proves
that the role of PSD as a feature in detection has not changed
before and after denoising, and the PSD can still be used as a
feature for noisy signals.

3.5. Experiment Results. The random forest model is used
for the detection of epilepsy. Random forest is an efficient
integrated detection method composed of a large number
of decision trees. The constructed decision trees have little
correlation [17]. In the paper, random forest models are
established for normal, abnormal, and original signals
(data without denoising and Riemann potato processing).
The parameters of the model are optimized by using the
grid search method. The number of variables randomly
selected in the normal signal classification model is 2.
The optimal number of decisions is 500. The threshold
for nonepilepsy and epilepsy is 0.5 and 0.55, respectively.
In the abnormal signal classification model, the number
of randomly selected variables is 1, the optimal decision
number is 500, and the judgment threshold of nonepilepsy
and epilepsy is 0.4 and 0.6, respectively. In the original
signal classification model, the number of randomly
selected variables is 2, the optimal decision number is
500, and the threshold of nonepilepsy and epilepsy is 0.5
and 0.5, respectively. Using R language to implement the
model, the detection results are shown in Table 6.

Table 7: Test performance comparison.

Accuracy Sensitivity Specificity Number of channels Type

Ye [18] 85.6 91.7 80.6 18 After denoising

Das [19] 91.09 87.83 94.35 18 After denoising

Jacobs [20] 95.00 97.50 95.00 18 After denoising

Chulkyun [21] 95.71 98.65 84.15 23 After denoising

Zhang [22] 99.05 95.45 99.10 5 After denoising

Kashif [23] 99.6 100 99.8 23 After denoising

Mingyang [24] 99.63 97.84 99.63 5 After denoising

Daoud [25] 99.66 99.72 99.60 8 After denoising

Proposed method 94.84 83.03 97.67 10 Before denoising

Table 6: Test performance comparison (%).

Accuracy Sensitivity Specificity

Primary signals 92.03 73.48 97.02

Normal signal 95.38 84.31 97.95

Abnormal signal 93.91 80.95 97.19

Normal and abnormal signal 94.84 83.03 97.67
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It can be seen from Table 6 that the accuracy of the
model used for the classification of abnormal signals is
93.91% correctly, and there are only a few nonepileptic clas-
sification errors for the normal signals. The main reason is
that abnormal signals are separated by the Riemann potato,
and the center of the Riemann potato is decided by average
value. There is individual instantaneous noise in the noisy
signal, resulting in a slight deviation of the average value of
the signal, resulting in very few nonepileptic classification
errors. In practice, if there is no instantaneous noise, the
accuracy will be better in principle.

The comparison of detection performance between the
proposed method and some existing methods is shown in
Table 7. It can be seen from Table 7 that the performance
of the proposed method is the best in terms of accuracy, sen-
sitivity, and specificity, especially in terms of sensitivity, and
it can achieve 94.84% correct classification of epileptic sig-
nals, which has important practical application value.

4. Conclusion

In the paper, the original EEG signal containing noise is
selected as the research object, and 10 representative EEG
channels are selected for feature extraction. The original sig-
nal is divided into normal signal and abnormal signal by
Riemann potato. The epilepsy detection models of normal
signal and abnormal signal are established, respectively,
and the overall detection model is obtained by integrating
the epilepsy detection model of normal and abnormal signal.
The experiment results show that the accuracy is 94.84%, the
sensitivity is 83.03%, and the specificity is 97.67%. Although
the paper realized epilepsy detection in noisy environment,
it has the following two limitations: (1) The research is based
on the database provided by MIT and does not consider the
generalization ability. (2) Although epilepsy detection is
realized in noisy environment, there is still space for
improvement. Aiming at the two limitations mentioned
above, the following research needs to be done in the future:
(1) It is necessary to establishing an epilepsy detection model
based on the characteristics of different data sets and indi-
viduals. (2) Although epilepsy detection can be realized in
noisy environment, the detection performance is still far
from practical application. It is of great significance to
improve epilepsy detection performance.
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