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Deep learning models are effectively employed to transfer learning to adopt learning from other areas. This research utilizes
several neural structures to interpret the electroencephalogram images (EEG) of brain-injured cases to plan operative imagery-
computerized interface models for controlling left and right hand movements. This research proposed a model parameter
tuning with less training time using transfer learning techniques. The precision of the proposed model is assessed by the
aptitudes of motor imagery detection. The experiments depict that the best performance is attained with the incorporation of
the proposed EEG-DenseNet and the transfer model. The prediction accuracy of the model reached 96.5% with reduced time
computational cost. These high performance proves that the EEG-DenseNet model has high prospective for motor imagery
brain-injured therapy systems. It also productively exhibited the effectiveness of transfer learning techniques for enhancing the
accuracy of electroencephalogram brain-injured therapy models.

1. Introduction

The brain signal acquisition model (BSA) is a message
model that can learn brain actions connected to patients’
objectives and transform them into control motion. BSA
models are widely utilized in therapy of brain-injured cases.
EEG signals deliver a noninvasive resolution for the BSA
model and are utilized in most brain signal systems. BSA
systems have the following phases: signal reading, image
analysis, controller apparatus, and signal forwarding [1–4].
The brain signal system paradigms using EEG are based on
steady-state motor imagery control systems [5, 6]. Without
muscle contraction, the imagery process comprises varia-
tions of muscle stimulated by the brain [7–11]. In the pre-
sented article, EEG signals are collected from cases with
physical disabilities for brain-injured patients. Occupational
therapy using motor imagery BSA models can motivate the
injured motor to revive the nerves surrounding the injured
brain parts and partly reinstate the cases ability.

Deep learning techniques are used for BSA systems, the
EEG feature selection, prediction, and detection models
[12–16]. The authors in [15] proposed a SVM model to pre-
dict two classes of motor imagery signals. The authors in
[16] presented two weighted process prediction models,
attaining higher accurate prediction [17]. EEG prediction
using deep learning can outperform classical models on large
database. Such models can designate properties without fea-
ture engineering. This marks the neural model a significant
selection for handling motor imagery signals using on BSA.
Recent research utilized various deep learning models to
extract deep features from EEG signals. The authors in
[15] proposed a convolutional neural network with an
encoder with higher prediction accuracy than classical pre-
diction models on the BSA EEG-2b dataset. Authors in
[16] presented a belief deep learning prediction model using
the Boltzmann model. Authors in [18] presented the enve-
lope map of EEG signals by employing the Hilbert technique
and constructed a motor imagery-based BSA prediction
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deep model. They employed the model to the BSA EEG-2
dataset and exhausted the most progressive prediction accu-
racy stated. Authors in [16] utilized a deep learning model
depiction of multiple channel EEG signal to enhance the
accuracy. The authors in [17] developed a novel 3D map
vectors of EEG signals with a multi-CNN and the linking
prediction model. Their system has accomplished high per-
formance. In concept, deep learning attains operative EEG
feature selection and better accuracy classification [18–20].
Nevertheless, because of the bad medical state and perva-
siveness of brain-injured cases, the EEG capturing is hard
with an effect on the structure of great-size dataset. The
application of these models for motor imagery studies in
brain-injured cases is restricted. Our model uses transfer
learning process, which can efficiently tackle the mentioned
challenges [21–25]. Transfer learning process is completed
by transferring continual or switching discriminated data
between cases. Features selected by transferal learning have
resemblances and inheritance [26–28]. These features can
be defined in a small-sized dataset and can confirm the effi-
ciency of EEG deep CNN models [29–33].

In this research, the paper’s contribution is as follows:

(i) Proposing a deep learning models with several
extensions and parameter fine tuning using deep
process

(ii) Enhancing the accuracy of the BSA model for the
recuperation of brain-injured patients, this research
employs these deep model to process the EEG sig-
nals of brain-injured cases

(iii) The presented model is to incorporate fine tuning
with neural and transfer learning leading to the pro-
posed EEG-DenseNet model to detect motor imag-
ery settings

(iv) This research approves the model within the cases
to assess the accuracy of all other models. By evalu-
ation the experiments of compared models, it can be
proven that EEG-DenseNet outperforms other
transfer learning models in all other platforms.
The expected performance of our model scopes
96.5% accuracy for both left hands and right hands

The remainder of this paper is organized as follows: Sec-
tion 2 presents the dataset description. Section 3 introduces
the proposed models and presents the experimental results
and compare it versus other deep learning systems for motor
imagery BSA system. Section 4 depicts the proposed models
extension, while Section 5 produces the conclusions and
discussion.

2. Dataset Description

The EEG signal is captured from 100 cases (60 brain-injured
patients and 40 healthy cases). The simulation utilizes 64-
channel EEG reading device to gather data from brain-
injured cases (EEG signals with motor imagery). Each exper-
iment proceeds for 0.5 minutes; the details of one experi-
ment is depicted in Figure 1. The recording begins with
half the time of the motionless signal. Succeeding a prompt,
EEG motor imagery signals are recorded for 6 seconds.
There are prompts at the start and finish of motor imagery
task. The sampling of signal reading has frequency of
960Hz. In the gathering procedure, cases track the prompts
to make imagery motions, such as hand movement. The
time exhibited by the prompt is half the 0.5 minutes time
line. The time for a single task is 6 seconds, and it includes
a single sort of activity. The pause between successive actions
is 5 seconds. The prompts for the hands movement acquire-
ments are random. The simulation includes 50 hand motor
acquisition.

These data items are recorded and labeled in a public
dataset that we utilized for our experiments [15]. The statis-
tics of the motor function data is depicted in Table 1.

2.1. Preprocessing Task. Preprocessing task comprises clean-
sing and downsizing. In this research, a 12–32Hz low pass
filter is utilized to remove noises [20], and then, the fre-
quency rate is decreased from 960 to 60Hz. EEG signals
are usually tainted with the 40 to 60Hz frequency with nos-
iness from wires and other apparatus which are seized by
electrodes of the acquisition device. The signal is saved in
map presentation (N , M, and S). N is defined as the count
of recordings trials and is set to a constant equal to 3 which
is usually enough. M defines the channels number; S defines
the count of sampling items per channel. This research uti-
lizes the brain-injured patients’ EEG that has motor imagery
containing hand movement. The data recorded for each case

Start (Motion less) Prompt Motion

Figure 1: Data gathering process of the simulation.

Table 1: Motricity index scores.

Motor
function

Mean
Standard
deviation

Minimum Maximum

Shoulder flex 2.67 0.72 0 4

Elbow flex 2.81 0.68 0 4

Wrist extensor 0.51 0.67 0 2

Finger
extensor

0.15 0.35 0 1

Finger flex 0.96 0.87 0 2

Hip flex 2.71 0.63 0 4

Knee extensor 1.71 0.73 0 3

Ankle flex 1.96 0.87 0 3

Toe flex 0.86 0.77 0 2
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is divided into three data subsets namely: training, valida-
tion, and testing. There is a 100 trial recording for each case
including motor imagery task. For each case, 90 data items
are utilized for training, 15 for validation and 15 for testing.
Randomly, K cross-validation is used where K = 12, to com-
pute the expected accuracy of each case. We have 40 healthy
people and 60 brain-injured patients.

2.2. Deep Learning Phase: The Proposed EEG-DenseNet
Model. EEG-DenseNet is a dense CNN model for handling
EEG signals. It is trained with small-sized dataset, and it

can yield a neuro instruction. Table 2 displays the graphical
construct and the definite factors of the EEG-DenseNet deep
system. The input has dimension of (M and S): M defines
the channels number, and S defines the count of sampling
items per channel. This research utilizes the Adam optimizer
[18, 20, 21] and optimizes the entropy loss ReLu function.
The proposed EEG-DenseNet is depicted in Figure 2.

2.3. Incorporation of Fine Tuning in the EEG-DenseNet. The
efficiency of transfer learning is influenced by many param-
eters. One of these parameters is correspondence among the

Table 2: Parameter of EEG-DenseNet: T = temporal filter, DP = depth, P = point filter. K is the count of motor imagery units.

Structure Layer Filters Size Output Activation

1

Input: input layer M × S

Reshape: first convolutional layer
(CL)

1 ×M × S

Second CL T (1, 64) T ×M × S Linear activation
function

Normalization T× M× S

Depth CL DP × T (C, 1) DP × Tð Þ × 1 × S Linear activation
function

Batch sizing DP × Tð Þ × 1 × S

Nonlinear activation layer DP × Tð Þ × 1 × S ReLu

Max pooling (1, 4) (DP×T)×1× S/4

Dropout layer (one out of four)
Probability prð Þ = 0:25 or pr =

0:5 DP × Tð Þ × 1 × S/4

2 Separable CL P (1, 16) P × 1 × S/4 Linear activation
function

Batch sizing P × 1 × S/4

Nonlinear activation layer P × 1 × S/4 ReLu

Max pooling (1, 6) P × 1 × S/16ð Þ

Failure layer
Probability = 0:35 or
probability =0.6

P × 1 × S/32ð Þ

Flattening out P × S/32

Classifier Dense classified fully connected K × P × T/32ð Þ Norm = 0:25 K Softmax

Input Block 1 Block 2 Block 3
Classification

M

S

Kernel Output Kernel Output Kernel Output

Figure 2: EEG-DenseNet structure.
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training source input and the destination signals. The greater
the correspondence, the greater the fine tunings outcome.
The factors attained by the initial input and CL of the
EEG-DenseNet are the elementary factors (for instance,
selecting a definite visual filter from the initial layers)
[31–36]. The last layers select definite features (for instance,
the system can recap the feature representation map dis-
tinctly and get the finest feature maps). In the simulation,
the database size is rather small. To evade overfitting, the
tuning of the deep learning model is done into the depicted
stages:

(i) Adjust the factors of the output layer. Our model
uses transfer learning for the initial layers, and
adjust the classifier parameters

(ii) Modify the model CL parameters to fittingly dimin-
ish the learning level and epochs count. The learn-
ing level is comparatively low because the
operative system weights are utilized for model tun-
ing. If the learning level is elevated, the system can
be modified rapidly and dismisses the initial
weights. After tuning, this research selects to update
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Figure 3: Fine tuning of the convolutional layers.
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all parameters [37, 38]. The EEG-DenseNet model
was formerly executed on large datasets, which
undetectably extended the previously trained data,
and its accuracy is valuable to the new dataset.
Hence, fine model tuning will enhance the model

to attain higher results utilizing only limited num-
ber of epochs

(iii) Begin the training stage and compute the parame-
ters of the transfer learning model

The proposed model utilizes both the EEG feature selec-
tion captured in the transfer learning model and fine model
tuning. This creates a robust adaptive model with parameter
tuning for better motor imagery recognition.

Fine tuning randomly set the weights of the pretrained
network. Different datasets are utilized in the neural convo-
lution for relearning. Also, weights are utilized on the pre-
ceding convolutional layers, and the preliminary weights
on the preceding layers are set. The experiments produce
better grouping of the unused layers and the fine-tuned
layers, as depicted in Figure 3.

3. Results and the Prediction Performance

Our research uses the training, validation, and testing data-
sets of each case into the deep learning models under com-
parison along with our model. Figure 4 displays the
depiction of the expected precision of a single deep learning
method. As perceived, the EEG-DenseNet method achieves
the highest precision. The expected prediction precision of
the EEG-DenseNet method from all cases is reaching
96.5%. The model learning parameters are depicted in
Table 3. The expected total accuracy of healthy cases and
brain-injured cases is depicted in Figure 2. We evaluated
the statistical t-test of the prediction performance linking
to the 100 cases using the support vector machine, latent
Dirichlet allocation, and our EEG-DenseNet model, with p
value of 5:19 × 2−10. It is depicted that pr is about 0.055,
and the prediction precision has shown momentous vari-
ances. It implicates that enhancement of our model is
higher. For the input signals, prediction accuracy of the sup-
port vector machine, latent Dirichlet allocation classifier,
and our model are investigated, and the experiments are
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Figure 4: The expected prediction performance of the compared model versus our proposed model models.

Table 3: The parameters of our model.

Model parameters Value

Learning level 0.0002

Dropout rate 0.6

Number of epochs 200

T 8

P 12

DP 3

Table 4: Prediction results attained by various tuned models.

Subject
Accuracy (%)

Proposed
model

Support vector
machine

Latent Dirichlet
allocation

C1 97 87 84

C2 96 87 84

C3 93 77 87

C4 97 84 87

C5 94 74 84

C6 94 77 87

C9 95 84 87

C6 96 77 77

C9 98 84 74

C10 97 87 87

C11 94 87 74

Mean 98.7 84.47 79.49

Standard
deviation

±4.7 ±3.8 ±3.4

5Applied Bionics and Biomechanics



depicted in Table 4. It can be proved from the precision of
our model that it outperforms other classifiers. In Figure 5:
the accuracy of the EEG-DenseNet for 11 cases C1 to C11
(6 healthy: C1 to C6 and 5 brain-injured patients C7 to
C11) is depicted.

We used the following definitions for the accuracy, sen-
sitivity, and specificity:

Accuracy =
TP + TN

TP + FP + FN + TN
, ð1Þ

Sensitivity = TP
TP + FP

, ð2Þ

Specificity =
TN

TN + FN
, ð3Þ

where TP is the true positives, TN is the true negatives, FP is
the number of false positive cases, and FN is the number
false negative cases.

4. The Proposed Model Extension

4.1. Accuracy. Three extension models have been developed
on the proposed EEG-DenseNet method. The starting model
is to statistically set the parameter of the deep learning
model; then, a different subset is fed in for model (the exten-
sion method is named EEG-DenseNet_E1).

The second extension model is to halt the variation of
the weights in the block 1 of the proposed CNN in the trans-
fer learning model and start retraining the other layers such
that different weights can be attained (the processed exten-
sion model is called EEG-DenseNet_E2).

The third extension model is analogous to the second
extension model, with the weights of both blocks in the pro-
posed CNN unchanged (the processed extension model is
called EEG-DenseNet_E3).

The three extension systems are compared. The expected
prediction accuracies of 11 cases are depicted in Table 5. It
depicts the accuracy of the various extension models. The
second model has the best prediction result.

It can be depicted from Table 6 that the prediction accu-
racy of the EEG-DenseNet_E2 model outperforms the other
two extension models. The performance results prove that
model of partly unchanging parameter values is higher than
the other model of the total model weight starting point. It
can be depicted from Table 6 that the prediction perfor-
mance from EEG-DenseNet_E2 model is higher than the

0 10 20 30 40 50 60 70 80 90 100

C1
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C6
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C6
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Acuuracy of the EEG-DenseNet % 

Right hand
Left hand

Figure 5: The accuracy of the EEG-DenseNet for 11 cases C1 to C11 (6 healthy: C1 to C6 and 5 brain-injured patients C7 to C11).

Table 5: Prediction accuracy results realized by the different
extension models for both hands movements.

Case

EEG-
DenseNet_E1

(%)

EEG-
DenseNet_E2

(%)

EEG-
DenseNet_E3

(%)
Left
hand

Right
hand

Left
hand

Right
hand

Left
hand

Right
hand

C1 87 86.5 97 96 90 93

C2 80 80 97 98 87 82

C3 77 89 87 88 80 80

C4 77 86 87 85 77 77

C5 80 80 87 88 80 84

C6 87 87 90 94 87 83

C9 87 86 90 90 87 86

C6 80 80 87 89 80 84

C9 77 85 97 88 80 85

C10 77 84.9 87 86 80 80

C11 77 86 90 97 87 86

Mean 79.09 89.09 98.7 98.8 82.29 85.7

Standard
deviation

±2.3 ±4.3 ±3.4 ±4.1 ±1.9 ±3.3
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results of the EEG-DenseNet_E3 model. The reason for that
is that the selected features in the second one are the definite
features linked to the motor imagery. By keeping the param-
eter values of the second block unchanged, the capability of
model classification is decreased, so the accuracy is reduced.

As a final note, the experimental results realized from the
EEG-DenseNet_E2 model are as shown: in the EEG-
DenseNet method, it is proven that deep factors are selected
in the first one, while more specified features are extracted in
the second block of the CNN structure.

Performance comparison between our model and other
models in terms of accuracy is depicted in Table 6.

4.2. Computational Complexity. In deep learning model,
time complexity measurement is one of the norms for com-
puting the model performance. The novelties of several
models are established using the time computational com-
plexity. To minimize time complexity, we substitute the
multiplication operations into parallel addition operations.
In this article, the research computed the floating-point
operations per second (FLOPs) of all models to compute
the time and space computational load of the proposed
model [27].

The count of the FLOP operations controls the training
time and the classification time of the proposed model. If
the CPU time are getting time consuming, it can affect the
model training and classification CPU time to need a high
time complexity, and it is impossible to achieve the real-
time requirements.

Memory requirements (MEM) are also important to
compute the separability of the hardware modules of the
module functionality. MEM computes the count of factors
for optimizing the method. In memory restriction, the
higher the number of the method parameters, the greater
the quantity of input needed for model training. The size
of the input in actual situations is typically not too high that
deems the system modeling overfits.

In this article, floating-point operations per second and
MEM of all the methods are utilized to compute the time
and space computational load, as depicted in Table 7. It is
shown from the mentioned table that the requirements for
the EEG-DenseNet training are less than the other compared
models, thus decreasing the count of operations and the
parameters to fit real-time requirements. The training com-
putation time of the EEG-DenseNet model is lower than
other compared models. Table 8 depicts the time and space
requirements for the compared model classification.

In Table 9, we display the statistics for using EEG-
DenseNet model with and without fine tuning depicting
the correctly and incorrectly predicted cases. Also it declares

Table 6: Floating-point operations per second and training CPU
time of training of all methods.

Method
Average
accuracy

(%)

Average sensitivity
(%) (percentage of
patients with a

dysfunction case who
predicted as positive)

Average specificity
(%) (percentage of
patients without a
dysfunction case
who predicted as

negative)

EEG-
DenseNet

97.6% 98.1% 97.9%

DenseNet 92.4% 93.2% 92.8%

Xception 91.4% 91.6% 92.1%

ResNet 89.7% 89.8% 88.7%

VGG16 87.4% 88.2% 88.6%

Table 7: Floating-point operations per second and training CPU
time of training of all methods.

Method
Floating-point operations per
second (millions per second)

Average
minutes

Standard
deviation

EEG-
DenseNet

0.052 142 ±8.9

DenseNet 2.479 470 ±8.7
Xception 6.243 409 ±10.8
ResNet 3.965 616 ±12.9
VGG16 13.15 855 ±14.6

Table 8: Floating-point operations per second and training CPU
time of classification all methods.

Method
Floating-point operations per second

(millions per second)
Seconds

EEG-
DenseNet

0.0052 12

DenseNet 0.179 40

Xception 0.243 49

ResNet 0.765 66

VGG16 0.815 85

Table 9: Statistics for using EEG-DenseNet model with and
without fine tuning.

EEG-DenseNet model
classifier without fine

tuning

EEG-DenseNet model
classifier with fine

tuning

Correctly
predicted

0.871 0.971

Incorrectly
predicted

0.139 0.039

Qualitative
reliability

0.197 0.321

Average
square
error

0.872 0.321

Table 10: Confusion matrix for the EEG-DenseNet model with
fine tuning for 100 cases for left hand.

Classified cases
Positive Negative

Actual cases
Positive 50 6

Negative 4 40
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the qualitative reliability Kappa metric as well as average
square error. From Table 8, it is clear that incorporating fine
tuning in the deep learning model will accentuate the model
performance.

In Tables 10 and 11, we display the confusion matrixes
for the EEG-DenseNet model with fine tuning for 100 cases
for left hand and right hand.

5. Conclusions

In this article, the research was to determine if the proposed
EEG-DenseNet model that incorporated fine parameter tun-
ing with deep learning can be efficiently utilized for small-
sized input. The presented model is primarily used for the
input signals of normal cases and brain-injured cases. The
simulation can prove that the total prediction results of
healthy cases are higher than brain-injured cases. It is more
difficult to capture EEG signals from brain-injured cases as
well as very costly. Brain-injured patients have hard time
staying motionless without eye blinking or involuntary
movements that frequently infect the captured EEG signals.
Moreover, brain damage can extremely alter the lively prop-
erties of the EEG data, thus aggregating the uncertainty of
the EEG distribution. It is an important issue to attain a large
size and better quality EEG signals from brain-injured cases.
It should be noted that the accuracy of patients’ EEG actions
may not accomplish the required effect, which are prospec-
tive parameters impacting the final performance results.

This article investigated the input data of the whole cases
both healthy and brain-injured patients to clarify the efficacy
of the data communication of models with transfer learning.
These neural structure models are motivated by image pro-
cessing and feature extraction. The universal features of all
cases can be learned through the initial CL model layers.
Deeper more specific features are extracted from experimen-
tal training. This research can use small-sized databases by
ceasing the prior layers of transfer learning and diminishes
the count of model parameters that has to be maximized.
This research indicates that the presented model can transfer
learning for the same pattern. The experimental results
depict that transfer learning should be incorporated in the
paradigm of EEG processing. The EEG-DenseNet outper-
forms other state-of-the-art neural deep learning models in
motor imagery detection. The experiments prove that we
can utilize small-sized dataset for training. The learning pro-
cess are efficiently done on the EEG signals of brain-injured
cases via transfer learning modeling.
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