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Background. Detecting fatigue at the early stages of a run could aid training programs in making adjustments, thereby reducing the
heightened risk of injuries from overuse. The study aimed to investigate the effects of running fatigue on plantar force distribution
in the dominant and nondominant feet of amateur runners. Methods. Thirty amateur runners were recruited for this study.
Bilateral time-series plantar forces were employed to facilitate automatic fatigue gait recognition using convolutional neural
network (CNN) and CNN-based long short-term memory network (ConvLSTM) models. Plantar force data collection was
conducted both before and after a running-induced fatigue protocol using a FootScan force plate. The Keras library in Python
3.8.8 was used to train and tune deep learning models. Results. The results demonstrated that more mid-forefoot and heel force
occurs during bilateral plantar and less midfoot fore force occurs in the dominant limb after fatigue (p<0:001). The time of peak
forces was significantly shortened at the midfoot and sum region of the nondominant foot, while it was delayed at the hallux region
of the dominant foot (p<0:001). In addition, the ConvLSTM model showed higher performance (Accuracy= 0.867,
Sensitivity= 0.874, and Specificity= 0.859) in detecting fatigue gait than CNN (Accuracy= 0.800, Sensitivity= 0.874, and
Specificity= 0.718). Conclusions. The findings of this study could offer empirical data for evaluating risk factors linked to overuse
injuries in a single limb, as well as facilitate early detection of fatigued gait.

1. Introduction

The popularity of long-distance running as an easily accessi-
ble and promoted sport has increased within the last four
decades. However, the incidence of musculoskeletal injuries
caused by running has also increased rapidly, especially in the
lower extremities [1]. The tendons, muscles, or bones of the
lower extremities during long-distance running are repeatedly
subjected to chronic submaximal loading over a long period
of time [2]. As a consequence, overuse injuries are considered
to be the most common running injuries [2]. It should, how-
ever, be noted that the etiology of running fatigue-induced
injuries is multifactorial and complex [3]. Fatigue from long-

distance running can shift foot mechanics, potentially causing
structural overload [4, 5]. Investigating the relationship
between fatigue and the load distribution pattern during run-
ning gait has garnered increased interest [6]. A consensus is
that an increase in peak metatarsal head pressure occurs after
running fatigue [7, 8]. However, inconsistent results have
been reported for the influence of running fatigue on the
middle foot and heels [2, 7]. Weist et al. [9] demonstrated a
significant increase inmidfoot pressure and the impulse in the
medial heel after performing a running-induced fatigue pro-
tocol. Nevertheless, the study by Bisiaux and Moretto [10]
found a reduction in pressure and impulse in the midfoot
under similar conditions. Willson and Kernozek [11]
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observed a significant reduction in peak heel pressure after
30min of high-intensity running.

In addition, more laterally directed roll-off and inade-
quate pronated heel strikes have been demonstrated to be
the potential triggers for lower limb overuse injuries [12].
Previous studies have reported that midfoot, metatarsal,
and medial heel loading increases after running-induced
plantar muscle fatigue, while loading on the lateral toes
decreases [2]. Similar studies have reported that running
fatigue causes a reduction in the medial longitudinal arch,
which significantly increases mid-toe pressure [13]. In addi-
tion, excessive plantar forces of the forefoot lateral were
identified as a potential cause for gait-related Achilles tendi-
nopathy [7]. Most of the studies mentioned above did inves-
tigate changes in unilateral plantar pressure distribution after
fatigue, especially the dominant side. However, there seems
to be a lack of empirical data on the effect of running fatigue
on the nondominant plantar load distribution. Due to the
altered symmetry after fatigue, excessive loading usually
occurs in the unilateral limb, especially in the nondominant
limb, which may have a weaker fatigue tolerance. Ignoring
asymmetric information about bilateral limbs to explore risk
factors for fatigue, although it may simplify the data proces-
sing and analysis process, may also produce deceptive results.
Assuming that changes in bilateral plantar pressure distribu-
tion play a primary role in the course of overuse injury
development [14, 15], the role of fatigue on both dominant
and nondominant plantar distribution should be examined.
Therefore, one of the objectives of this study was to deter-
mine the effect of running-induced fatigue on bilateral plan-
tar force distribution.

Previous studies have widely shown that fatigue gait risk is
associated with shifts in the distribution of bilateral plantar
pressure [1, 4, 6, 11]. Coaches and runners can avoid the
occurrence of overuse injuries by monitoring fatigue levels
in the context of competitive and recreational sports. In addi-
tion, excessive fatigue may affect runners’ performance and
cause secondary injuries to the runner [16]. Therefore, human
activity recognition (HAR) methods based on wearable sen-
sors and deep learning algorithms have beenwidely developed
in the last decade [17–19]. Despite significant strides in gait
and biomechanics analysis, research into automated fatigue
gait recognition with data-driven models remains insufficient
[18, 20]. Typical techniques to detect fatigue are surface
electromyogram-based collection of muscle activity signals
and optical motion capture-based collection of joint kinemat-
ics [21, 22]. However, the limited data collection area and the
location of the marker attachments make monitoring limited.
On the contrary, force plates or insoles with force sensors are
easy to use and save time in the experimental setup for data
collection. Therefore, this study intends to use a deep learning
algorithm based on bilateral plantar pressure data for the early
identification of fatigue gait.

Since larger spatial dependencies exist in the pressure
data of each plantar region throughout the gait cycle [23,
24], the CNNmodel has been reported to be better at extract-
ing local spatial features [15]. Similarly, time series data-
based plantar pressure data are considered to possess time

dependence [25]. However, the plantar pressure distribution
data based on time series features may be regarded as static
spatial data by the CNN model, and the time-dependent
information within the series is lost. Previous studies have
shown that long short-term memory network (LSTM) mod-
els perform better for the prediction of long-time depen-
dence and nonlinear dynamic changes in a time series [26].
However, LSTM models are less effective in handling spatial
relationships of data. The spatial characteristics of the pres-
sure distribution in different plantar regions and the dynamic
time characteristics of the variation with time should be con-
sidered in the model selection for this study.

The ConvLSTM model will be used in this study on the
ground that it transforms the structure of recurrent neural
networks into a convolutional structure, thereby preserving
the spatial and temporal information of plantar pressure
[27]. To verify the performance of the ConvLSTM model
for fatigue gait recognition, we used a CNN model to com-
pare the performances. Two hypotheses were proposed: (1)
The metatarsal, midfoot, and heel pressures increased in the
dominant and nondominant feet after the fatigue interven-
tion, with more significant changes in the nondominant foot;
(2) The ConvLSTM model has better performance than the
CNN model for automatic recognition of fatigue gait.

2. Materials and Methods

2.1. Participants. Thirty healthy amateur runners (males)
were enlisted from universities and local running clubs for
this study. The anthropometric information of the partici-
pants is presented in Table 1. The inclusion criteria for this
study were that the dominant extremity side was the right
extremity side (preferred leg when kicking a ball), the
absence of any lower extremity or pelvic musculoskeletal
pain in the last 6months, and running at least 2–3 times
per week and for <45min or <10 km at per running event.
The Ethics Committee at Ningbo University approved the
study (code: RAGH20210827), and all subjects signed the
informed consent.

2.2. Data Collection. Subjects were guided by the experimen-
tal operator to familiarize the experimental environment
(includes ground running tests with barefoot before and after
the running-induced fatigue protocol) and process and par-
ticipated in a 10-min jogging warm-up on a treadmill (Satun
h/p/cosmos, Nussdorf–Traunstein, Germany) in advance. A
previously identified and validated protocol was employed
for building a running-induced fatigue model [28]. With
reference to our previously built approach [29], a heart

TABLE 1: Anthropometric characteristics of the recruited
participants.

Information Mean S.D.

Age (year) 24.27 1.36
Height (cm) 177.00 4.33
Weight (kg) 69.80 8.46
BMI (kg/m2) 22.20 1.7
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rate sensor band (Polar RS100, United States) and a Borg
[30] RPE scale (6–20 scales) were utilized for monitoring
fatigue during running. Every participant commenced walk-
ing on a treadmill at a velocity of 6 km/h. The pace of gait
was augmented by 1 km/h every 2 min until an exertion level
of 13 on the Borg scale was attained. Participants sustained
the running pace at the established equilibrium until achiev-
ing a Borg rating of 17% or 90% of their maximum heart rate
(maximum heart rate= 220-age), at which juncture they per-
sisted in running for an extra 2 min. New neutral running
shoes were given to every participant for the protocol involv-
ing running-induced fatigue.

Pedobarographic data collection was done before and
after the running-induced fatigue protocol. Dynamic plantar
force data were measured during running using a FootScan
pressure plate (size: 2× 0.4m, frequency: 480Hz, RsScan
International, Olen, Belgium) embedded in the middle of a
20-m runway. The pressure plate is calibrated using the indi-
vidual’s body weight prior to measurement to avoid errors.
Two sets of infrared photocells were placed on either side of
the data collection area to monitor the running speed. All
participants were required to run barefoot over the data
collection area at a speed of 3.3m/s Æ5% [30]. Participants
were instructed to use the nondominant foot as the first step
on the force plate and to ensure that two consecutive steps
were recorded for each trial. Attempts to change the operat-
ing mode to strike the pressure plate were ruled out until
three valid trial data points were measured before and after
the running-induced fatigue protocol.

2.3. Data Processing. For each trial, 10 plantar anatomical
regions were identified by the FootScan application. To avoid

recognition errors, the pixels of each area were manually
calibrated by an operator. These areas were defined as the
hallux (H), other toe (OT), metatarsal 1–5 (M1–M5), mid-
foot (MF), medial heel (HM), and lateral heel (HL). Time-
series attributes of force information for each region and the
sum area were interpolated to 101 frames using linear inter-
polation for statistical comparison. To reduce the effect of
individual weight and gait speed differences on the data, all
data in this study were annotated using Zavg (total force over
the entire support period divided by the total number of
frames) [25]. As shown in Figure 1, to preserve asymmetric
information of bilateral limbs before and after fatigue, the
plantar force data of the nondominant and dominant foot
were stitched longitudinally to obtain the bipedal force dis-
tribution information of one gait cycle for machine learning
training [23].

2.4. CNN Model Building. This study uses the Keras Applica-
tion Programming Interface (API) in Python 3.8.8 for CNN
and ConvLSTM model building. CNN models have good
performance for feature extraction of input data through con-
volutional operations of different topological structure ker-
nels. The convolution layer in the model preserves the spatial
relationships of the data by using the same convolution oper-
ation for each position of the original data. Each type of
feature that is extracted generates a feature matrix Z. There-
fore, after k times convolution calculations, the corresponding
output matrix Zk can be represented by Equation (1). In addi-
tion, the convolution operation for one-dimensional time
series data is also a nonlinear transformation of the original
series. Applying a convolution kernel of length l to a univari-
ate time series X of length T, Equation (2) is obtained.
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Zk ¼ f Wk ∗X þ bð Þ; ð1Þ

Ct ¼ f w ∗Xt−l=2:tþl=2 þ b
À Á

∣8t 2 1;T½ �; ð2Þ

where Wk and k are the convolution kernels (size: k1× k2)
and the number of convolution kernels, respectively. b is
biased, and the convolution operator is defined as ∗. f is
the activation function that performs a nonlinear transfor-
mation in the convolution layers.

As shown in Figure 2, The optimal CNN model for the
recognition of fatigue gait is obtained through repeated
debugging parameters. We used a total of eight convolutional
layers, three maximum pooling layers, one average pooling
layer, one dropout layer, and one dense layer to build the
convolutional neural network model. The number of convo-
lution kernels is set to (128, 128, 128, 128, 64, 64, 32, 32). The
time step settings are (10, 10, 10, 10, 10, 10, 4, 4). In addition,
“RELU” and “Softmax” are set as the activation functions for
the convolutional and dense layers, respectively.

2.5. ConvLSTM Model Building. The convolutional layer
extracted the temporal characteristics from the pressure
data, while the LSTM layer handled the spatial characteristics
(Figure 3(b)). In our ConvLSTM model, operations are
depicted by Equations (3)–(8), where ∗ symbolizes the con-
volution process, and ∘ denotes the Hadamard product.

ft ¼ σ Wxf ∗ xt þWhf ∗ ht−1 þ bf
À Á

; ð3Þ

it ¼ σ Wxi ∗ xt þWhi ∗ ht−1 þ bið Þ; ð4Þ
ect ¼ tanh Wxc ∗ xt þWhc ∗ ht−1 þ bcð Þ; ð5Þ

ct ¼ ft ∘ ct−1 þ it ∘ect ; ð6Þ
ot ¼ σ Wxo ∗ xt þWho ∗ ht−1 þ boð Þ; ð7Þ

ht ¼ ot ∘ tanh ctð Þ; ð8Þ

where it, ft, and ot are the input gate, oblivion gate, and
output gate, respectively, in the proposed model; xt
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FIGURE 2: Diagram of the internal structure of the CNN model in this study.
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represents the data input at the current moment, while ht−1
refers to the output from the hidden layer at the preceding
moment. ct denotes the cell state.

Figure 3(a) shows the framework for building the
ConvLSTM model in this research. In this study, we try to
make l choose a variety of different division lengths, such as
51, 101, 151, 202, and so on, for modeling, and finally find that
the model’s classification performance is optimal when the
subsequence length is l= 101. The optimal ConvLSTM for
the recognition of fatigue gait is obtained through repeated
debugging parameters. We sequentially set up a ConvLSTM
layer (number of convolution kernels= 64, kernel size= (1,5)),
a dropout layer (random discard ratio= 0.5), a Flatten layer
and two dense layers (first: units= 50, activation=RELU”; sec-
ond: units= 2, activation= “Softmax”) in the final model.

To ensure fast convergence during the training of the
binary classification model, the cross-entropy loss function
was chosen as the loss function for this study, as shown in
Equation (9).

L¼ −
1
N

∑
N

i¼1
y ið Þ log by ið ÞÀ Áþ 1 − y ið ÞÀ Á

log 1 − by ið ÞÀ ÁÂ Ã
;

ð9Þ

where N is the number of samples and y ið Þ and by ið Þ are
defined as the true and predicted values.

2.6. Statistical Analysis. In this study, a total of 90 cases were
sampled, and 80% of the samples were set as the training set
and 20% as the test set, where 20% of the training samples
were set as the validation set for cross-validation. Therefore,
the training set, validation set, and test set samples in this
study are 72, 14, and 18. To avoid the occurrence of model
underfitting, the number of model iterations was set to 300.
This study uses accuracy, sensitivity, and specificity as quan-
titative metrics for the performance of two classification
models. We used fatigue gait as positive samples and normal
gait as negative samples. Therefore, Equation (10) was used
to assess the overall classification capability of the models.
Equations (11) and (12) were used to evaluate the classifica-
tion capability of negative samples and positive samples of
the models, respectively.

Accuracy ¼ TPþ TN
TPþ FNþ FPþ TNð Þ × 100%; ð10Þ

Sensitivity ¼ TP
TPþ FNð Þ × 100%; ð11Þ

Specificity ¼ TN
FPþ TNð Þ × 100%; ð12Þ

where TP and TN are the number of samples correctly iden-
tified as fatigue gait and normal gait, respectively, and FP and
FN are the number of samples incorrectly identified as
fatigue gait and normal gait, respectively. To avoid accidental

error, each model is run five times on the test set, and the
corresponding classification results are collected.

The Shapiro–Wilk test was performed to check the normal-
ity of the data distribution. The paired sample T-test of open-
source statistical parameter mapping 1d (SPM1d) was used to
check the differences between pre- and post-fatigue time-series
forces at dominant and nondominant foot. The discrete values
of the percentage of time of peak force were checked using a
paired sample T-test in Python 3.8.8 with the SciPy library. The
significance levels were set at 0.05.

3. Results

3.1. Force Development in Toe and Metatarsal Areas. As
shown in Figure 4, starting from initial nondominant foot
contact, the force progression in forefoot regions differed
between pre- and post-fatigue states. Specifically, the force
in M3 shows a significant increase at 12%–79% of contact
duration after fatigue. However, the force of M5 has
decreased at 50%–69% of contact duration after fatigue
(p<0:001). For the dominant foot, there was a significant
increase of force at OT (83%–95% (p¼ 0:001), 96%–100%
(p¼ 0:046) of contact duration), M2(17%–97%, p<0:001),
and M3(14%–97%, p<0:001) after running-induced fatigue.
However, the force of M4 decreased at 0%–3% of contact
duration after fatigue (p¼ 0:049).

3.2. Force Development in the Middle Foot, Heel, and Sum
Areas. As shown in Figure 5, there was no difference in MF at
the nondominant foot. Interestingly, there was a significant
decrease in plantar force at the dominant foot (0%–65%,
p<0:001). The heel regions were directly affected by running
fatigue. For nondominant and dominant plantar forces, they
were significantly increased at HM (nondominant: 30%–36%,
p¼ 0:023; dominant: 11%–49%, p<0:001) and HL regions
(nondominant: 11%–19%, p¼ 0:027; dominant: 3%–51%,
p<0:001). However, the sum of forces from all ten regions at
nondominant (33%–46%, p<0:001) and dominant (34%–47%,
p<0:001) significantly decreased after running-induced fatigue.

3.3. Relative Time of Peak Force. As shown in Table 2, the
relative time of peak force was significantly shortened at MF
(p¼ 0:001) and SUM (p¼ 0:01) regions at nondominant feet
in a fatigued state. Similarly, there was a significant shorten-
ing in the relative time of peak force at M5 of the dominant
foot after fatigue. Interestingly, for H regions, the relative
time of peak force was significantly delayed.

3.4. Representations of Deep Learning Models. The classifica-
tion results of total plantar pressure at CNN and ConvLSTM
model are shown in Figure 6, and the confusion matrix and
ROC of each model are shown in Figure 7. Table 3 presents
the average accuracy, specificity, and sensitivity derived from
the five test sets. The ConvLSTM model outperformed the
CNN with an accuracy of 86.7% versus 80%. Likewise,
ConvLSTM’s specificity was superior at 85.9%, compared
to CNN’s 71.8%. Nonetheless, both models matched with a
sensitivity rate of 87.4%.
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4. Discussion

The aim of this investigation was to investigate the effect of
running fatigue on the bilateral plantar force distribution of
the foot and the effectiveness of CNN and ConvLSTMmodels
for fatigue gait recognition. The results of this study showed
that running fatigue changed the distribution pattern of load
on the plantar of the dominant and nondominant limbs.
These changes are similar to previous studies [6, 8, 11]. The
force distribution of the dominant plantar of runners shown

major differences reflected in reduced force under themidfoot
at the expense of increased force under the H, M2, and M3.
This increased loading of the medial forefoot region is in
agreement with previously demonstrated higher pressures
under the forefoot and lower peak pressures under the mid-
foot, which were reported by Bisiaux and Moretto [10] after
fatigue induced by an intensive 30-min run. These results may
indicate that the load was transferred from the midfoot to the
toes andmetatarsals [10]. The increased loading inM2–3may
be related to reduced activity of the toe flexors and posterior
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tibial muscles after running fatigue [31]. In addition, Arndt
et al. [32] have also reported that higher strain rates and
deformation of metatarsal bones can also occur after muscle
fatigue caused by running. These findings could be a risk
factor for a metatarsal stress fracture [10]. Especially the M2
and M3 are vulnerable because of the difference between the
applied plantar pressure and bone strength [31].

Previous studies have demonstrated that dominant feet
play a propulsive role, while nondominant feet are more
likely to function as a stable gait [15]. Excessive force at

the H region after fatigue appears in the dominant limb
may be a compensatory effect of the functionally driven
winch mechanism [5]. Willson and Kernozek [11] reported
that running fatigue could cause changes in plantar surface
loading characteristics and running technique. This study
showed that the force of M5 at the nondominant foot has
decreased at the metaphase (50%–69%) of contact duration,
while the force of M3 has increased significantly at most of
the contact duration (12%–79%) after fatigue, suggesting that
the fatigue transferred foot loading from the lateral region
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TABLE 2: The relative time of peak force in the 10 areas in the pre-fatigue versus post-fatigue at the nondominant and dominant foot during
running gait.

Areas
Non-dominant foot Dominant foot

Pre (%) Post (%) p-Value Pre (%) Post (%) p-Value

H 56.99 (9.07) 57.26 (11.14) 0.84 55.6 (12.71) 58.9 (13.02) 0.04∗

OT 52.51 (11.90) 55 (13.46) 0.17 53.34 (11.59) 52.43 (12.95) 0.58
M1 56.99 (9.33) 55.8 (11.58) 0.27 56.22 (10.75) 56.33 (10.62) 0.92
M2 58.97 (6.19) 58.7 (7.09) 0.74 58.47 (5.96) 58.32 (6.38) 0.86
M3 56.74 (3.46) 56.87 (4.62) 0.22 56.98 (4.39) 56.51 (5.23) 0.49
M4 54.46 (5.01) 54.00 (7.09) 0.56 55.93 (5.60) 55.70 (6.31) 0.77
M5 57.03 (7.88) 57.38 (9.23) 0.76 62.23 (6.59) 59.62 (11.30) 0.05∗

MF 53.26 (6.40) 50.50 (7.14) 0.001∗ 53.87 (6.75) 53.61 (8.09) 0.81
HM 25.37 (18.94) 25.3 (17.58) 0.97 24.48 (19.59) 24.57 (17.30) 0.97
HL 11.02 (11.54) 11.62 (10.25) 0.72 14.50 (15.19) 11.29 (10.64) 0.07
SUM 31.61 (4.76) 29.7 (6.06) 0.01∗ 33.47 (6.32) 32.38 (7.86) 0.28

Note. “ ∗” means significant difference between pre- and post-fatigue state (p≤ 0:05). Nondominant foot= left foot; dominant foot= right foot.
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toward the inside of the foot, especially in the nondominant
foot [13]. This finding may be a weakening of the function of
the nondominant limb to stabilize gait after muscle fatigue
[21]. In addition, the relative time of peak force of MF at the
nondominant was significantly shortened after fatigue, sug-
gesting that more impulse was concentrated in the MF
region. This finding may be due to the damage to the active
control mechanism of the MF during the contact stage, lead-
ing to a reduction in the cushioning function of the nondom-
inant plantar, which was the potential factors for plantar
fasciitis [33]. Interestingly, the relative time of the peak of
H-region force at the dominant foot was significantly delayed
after fatigue. This finding may be a compensatory mecha-
nism to maintain the propulsive function of the dominant
limb, making the gravitational torque between the heel and
toe region more even in the later stages of push-off [6].

Several reports have investigated the influence of the
range of motion in the coronal plane of the foot on shock
attenuation at heel strikes [34, 35]. In addition, the ability of
the musculoskeletal system to attenuate the shock magnitude
generated during heel strikes also decays with fatigue [36]. In
our study, the plantar forces recorded under the HM and HL
regions of both dominant and nondominant revealed the
changes which running fatigue during the loading stage.
Without other direct measurements, we can only speculate
that excessive heel loading after fatigue may be linked to
weaker muscle strength, which controls the movement of
the ankle joint in the coronal plane after fatigue [10]. These
observations were consistent with several previous studies
[2, 7]. Interestingly, the sum of forces from all ten regions
at nondominant of 33%–46% of contact duration signifi-
cantly decreased, and the relative time of peak force was
significantly shortened after running-induced fatigue, sug-
gesting that dorsiflexor fatigue led to more vertical loading
rate on the plantar. A significant interaction between loading
rate and running-related calf, foot, and ankle injuries was
demonstrated in a study by Gerlach et al. [37]. The results
of this study could provide necessary enlightenment about
the condition of different running-related injuries among
runners with limbs on different sides.

In addition, by applying the feature set of the time series
bilateral plantar force data to specific deep learning predictive
models for running fatigue gait, the results showed that both
CNN and ConvLSTM models have good performance in pre-
dicting fatigue gait automatically. As expected, the ConvLSTM
model (85.9%, 88.9%, 83.3%, 85.9%, and 89.2%, respectively)
has better accuracy compared to the CNN model (85.6%,
73.8%, 82.7%, 80.3%, and 75.4%) in all five tests, suggesting
that ConvLSTM performs better for multi-feature data with
simultaneous spatiotemporal dependence [27]. Traditional
time series biomechanical datasets are all characterized by

high dimensionality, high variability, time dependence, and
nonlinearity [38]. Therefore, with the promising findings
from this study as a foundation, future research suggests apply-
ing the Convlstm model to other analyses, such as marker
trajectories, ground reaction forces, myoelectric signals, and
other prediction and classification needs. In addition, as shown
in Table 3, the specificity of the ConvLSTM model was also
higher than that of the CNN, indicating that it could detect
fatigue gait better, while the performance of sensitivity was
consistent in both models, indicating that both models were
equally effective in predicting non-fatigue gait.

There are four limitations to this study. Possible differences
in plantar pressure distribution patterns between overground
conditions and treadmill conditions were reported by García-
Pérez et al. [39]. In this study, the running-induced fatigue
protocol was carried out on a treadmill. Thus, further investi-
gation is needed to support our findings in overground condi-
tions. The runners were evaluated under barefoot conditions,
potentially overlooking the impact of footwear on post-fatigue
running posture [40]. Additionally, we selected only two deep
learning models (CNN and ConvLSTM) for data training
based on data features, and more comparisons of classifiers
(such as deep neural network) for plantar pressure feature
discovery should be developed in future studies. At the end,
only the pedobarographic data of amateur male runners was
included in this study; whether the model developed in this
study applies to female or elite runners should be verified in
future studies.

5. Conclusions

A running-induced fatigue protocol caused different changes
in the distribution of plantar force on the dominant and
nondominant limbs. These changes may be part of the
underlying mechanism of unilateral limb overuse injuries.
Future discussions of lower limb lesions or running-related
injuries should take this into account. Furthermore, the
ConvLSTM model showed high performance (acc= 0.867)
in detecting fatigue gait, and it outperformed the CNN
model (0.800). This will broaden the possibilities for future
research on running-related gait biomechanical feature rec-
ognition and enhance the development of fatigue monitoring
tools.

Data Availability

Data are available upon request due to privacy restrictions.
The data presented in this study may be available upon
request from the corresponding author and with the autho-
rization of funding origination.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors would like to acknowledge the contributions of
all participants and staff involved in this study. This study was
supported by the Research Academy of Medicine Combining

TABLE 3: Classification metrics of total plantar pressure by two
models.

Model Accuracy Sensitivity Specificity

CNN 0.800 0.874 0.718
ConvLSTM 0.867 0.874 0.859

Applied Bionics and Biomechanics 9



Sports, Ningbo (No. 2023001), the Project of NINGBO
Leading Medical & Health Discipline (No. 2022-F15,
No. 2022-F22), Ningbo Natural Science Foundation
(20221JCGY010532, 20221JCGY010607), Public Welfare
Science & Technology Project of Ningbo, China (2021S134),
Zhejiang Provincial Natural Science Foundation of China for
Distinguished Young Scholars (LR22A020002), Zhejiang Pro-
vincial Natural Science Foundation (LTGY23H040003), Zhe-
jiang Provincial Key Research and Development Program of
China (2021C03130), the János Bolyai Research Scholarship of
theHungarian Academy of Sciences (BO/00047/21/6), and K. C.
Wong Magna Fund in Ningbo University.

References

[1] I. Buist, S. W. Bredeweg, K. A. P. M. Lemmink, W. van
Mechelen, and R. L. Diercks, “Predictors of running-related
injuries in novice runners enrolled in a systematic training
program: a prospective cohort study,” The American Journal of
Sports Medicine, vol. 38, no. 2, pp. 273–280, 2010.

[2] T. M. Willems, R. De Ridder, and P. Roosen, “The effect of a
long-distance run on plantar pressure distribution during
running,” Gait & Posture, vol. 35, no. 3, pp. 405–409, 2012.

[3] W. H. Meeuwisse, “Assessing causation in sport injury: a
multifactorial model,” Clinical Journal of Sport Medicine,
vol. 4, no. 3, pp. 166–170, 1994.

[4] F. Fourchet, L. Kelly, C. Horobeanu, H. Loepelt, R. Taiar, and
G. Millet, “High-intensity running and plantar-flexor fatigability
and plantar-pressure distribution in adolescent runners,” Journal
of Athletic Training, vol. 50, no. 2, pp. 117–125, 2015.

[5] Z. Gao, Q. Mei, L. Xiang, and Y. Gu, “Difference of walking
plantar loadings in experienced and novice long-distance
runners,” Acta of Bioengineering and Biomechanics, vol. 22,
no. 3, pp. 85–93, 2020.

[6] X. Zhang, W. Wang, G. Chen, A. Ji, and Y. Song, “Effects of
standing and walking on plantar pressure distribution in
recreational runners before and after long-distance running,”
Journal of Biomechanics, vol. 129, Article ID 110779, 2021.

[7] T. M. Willems, D. De Clercq, K. Delbaere, G. Vanderstraeten,
A. De Cock, and E. Witvrouw, “A prospective study of gait
related risk factors for exercise-related lower leg pain,” Gait &
Posture, vol. 23, no. 1, pp. 91–98, 2006.

[8] A. Nagel, F. Fernholz, C. Kibele, and D. Rosenbaum, “Long
distance running increases plantar pressures beneath the
metatarsal heads: a barefoot walking investigation of 200
marathon runners,” Gait & Posture, vol. 27, no. 1, pp. 152–
155, 2008.

[9] R. Weist, E. Eils, and D. Rosenbaum, “The influence of muscle
fatigue on electromyogram and plantar pressure patterns as an
explanation for the incidence of metatarsal stress fractures,”
The American Journal of Sports Medicine, vol. 32, no. 8,
pp. 1893–1898, 2004.

[10] M. Bisiaux and P. Moretto, “The effects of fatigue on plantar
pressure distribution in walking,” Gait & Posture, vol. 28,
no. 4, pp. 693–698, 2008.

[11] J. D. Willson and T. W. Kernozek, “Plantar loading and
cadence alterations with fatigue,” Medicine and Science in
Sports and Exercise, vol. 31, no. 12, pp. 1828–1833, 1999.

[12] N. G. Z. Hesar, A. Van Ginckel, A. Cools et al., “A prospective
study on gait-related intrinsic risk factors for lower leg overuse
injuries,” British Journal of Sports Medicine, vol. 43, no. 13,
pp. 1057–1061, 2009.

[13] M. Anbarian and H. Esmaeili, “Effects of running-induced
fatigue on plantar pressure distribution in novice runners with
different foot types,” Gait & Posture, vol. 48, pp. 52–56, 2016.

[14] S. J. Hodges, R. J. Patrick, and R. F. Reiser, “Effects of fatigue
on bilateral ground reaction force asymmetries during the
squat exercise,” The Journal of Strength & Conditioning
Research, vol. 25, no. 11, pp. 3107–3117, 2011.

[15] Z. Gao, Q. Mei, L. Xiang, J. S. Baker, J. Fernandez, and Y. Gu,
“Effects of limb dominance on the symmetrical distribution of
plantar loading during walking and running,” Proceedings of
the Institution of Mechanical Engineers, Part P: Journal of
Sports Engineering and Technology, vol. 236, no. 1, pp. 17–23,
2022.

[16] H. Dong, I. Ugalde, N. Figueroa, and A. E. Saddik, “Towards
whole body fatigue assessment of human movement: a fatigue-
tracking system based on combined semg and accelerometer
signals,” Sensors, vol. 14, no. 2, pp. 2052–2070, 2014.

[17] Y. Jiang, V. Hernandez, G. Venture, D. Kulić, K. Chen, and B,
“A data-driven approach to predict fatigue in exercise based
on motion data from wearable sensors or force plate,” Sensors,
vol. 21, no. 4, pp. 1499–1515, 2021.

[18] L. Xiang, Y. Gu, Q. Mei, A. Wang, V. Shim, and J. Fernandez,
“Automatic classification of barefoot and shod populations based
on the foot metrics and plantar pressure patterns,” Frontiers in
Bioengineering and Biotechnology, vol. 10, pp. 1–10, 2022.

[19] L. Xiang, A. Wang, Y. Gu, L. Zhao, V. Shim, and J. Fernandez,
“Recent machine learning progress in lower limb running
biomechanics with wearable technology: a systematic review,”
Frontiers in Neurorobotics, vol. 16, pp. 1–20, 2022.

[20] Q. Mei, Y. Gu, L. Xiang et al., “Foot shape and plantar pressure
relationships in shod and barefoot populations,” Biomechanics
and Modeling in Mechanobiology, vol. 19, no. 4, pp. 1211–
1224, 2020.

[21] Z. Gao, G. Fekete, J. S. Baker, M. Liang, R. Xuan, and Y. Gu,
“Effects of running fatigue on lower extremity symmetry
among amateur runners: from a biomechanical perspective,”
Frontiers in Physiology, vol. 13, pp. 1792–1804, 2022.

[22] M. Cifrek, V. Medved, S. Tonković, and S. Ostojić, “Surface
EMG based muscle fatigue evaluation in biomechanics,”
Clinical Biomechanics, vol. 24, no. 4, pp. 327–340, 2009.

[23] S. Liang, Y. Liu, G. Li, and G. Zhao, “Elderly fall risk prediction
with plantar center of force using convlstm algorithm,” in
IEEE International Conference on Cyborg and Bionic Systems
(CBS), pp. 36–41, IEEE, 2019.

[24] Y. Song, X. Cen, H. Chen et al., “The influence of running shoe
with different carbon-fiber plate designs on internal foot
mechanics: a pilot computational analysis,” The Journal of
Biomechanics, vol. 153, Article ID 111597, 2023.

[25] J. Wen, Q. Ding, Z. Yu, W. Sun, Q. Wang, and K. Wei,
“Adaptive changes of foot pressure in hallux valgus patients,”
Gait & Posture, vol. 36, no. 3, pp. 344–349, 2012.

[26] A. Sherstinsky, “Fundamentals of recurrent neural network
(RNN) and long short-termmemory (LSTM) network,” Physica
D: Nonlinear Phenomena, vol. 404, pp. 132306–132334, 2020.

[27] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and
W. C. Woo, “Convolutional LSTM network: a machine learning
approach for precipitation nowcasting,” Advances in Neural
Information Processing Systems, vol. 28, pp. 1–9, 2015.

[28] I. F. Koblbauer, K. S. van Schooten, E. A. Verhagen, and
J. H. van Dieën, “Kinematic changes during running-induced
fatigue and relations with core endurance in novice runners,”
Journal of Science and Medicine in Sport, vol. 17, no. 4,
pp. 419–424, 2014.

10 Applied Bionics and Biomechanics



[29] Z. Gao, Q. Mei, G. Fekete, J. S. Baker, and Y. Gu, “The effect of
prolonged running on the symmetry of biomechanical variables of
the lower limb joints,” Symmetry, vol. 12, no. 5, pp. 720–731,
2020.

[30] G. Borg, Borg’s Perceived Exertion and Pain Scales, Human
Kinetics, 1998.

[31] N. L. Griffin and B. G. Richmond, “Cross-sectional geometry
of the human forefoot,” Bone, vol. 37, pp. 253–260, 2005.

[32] A. Arndt, I. Ekenman, P. Westblad, and A. Lundberg, “Effects of
fatigue and load variation onmetatarsal deformation measured in
vivo during barefoot walking,” Journal of Biomechanics, vol. 35,
no. 5, pp. 621–628, 2002.

[33] H. Shiotani, T. Mizokuchi, R. Yamashita, M. Naito, and
Y. Kawakami, “Acute effects of long-distance running on
mechanical and morphological properties of the human
plantar fascia,” Scandinavian Journal of Medicine & Science in
Sports, vol. 30, no. 8, pp. 1360–1368, 2020.

[34] S. D. Perry and M. A. Lafortune, “Influences of inversion/
eversion of the foot upon impact loading during locomotion,”
Clinical Biomechanics, vol. 10, no. 5, pp. 253–257, 1995.

[35] A. Vijayvargiya, B. Dhanka, V. Gupta, and R. Kumar,
“Implementation of machine learning algorithms for automated
human gait activity recognition using sEMG signals,” Interna-
tional Journal of Biomedical Engineering and Technology, vol. 42,
no. 2, pp. 150–166, 2023.

[36] J. Dempster, F. Dutheil, and U. C. Ugbolue, “The prevalence of
lower extremity injuries in running and associated risk factors:
a systematic review,” Physical Activity and Health, vol. 5,
no. 1, pp. 133–145, 2021.

[37] K. E. Gerlach, S. C. White, H. W. Burton, J. M. Dorn,
J. J. Leddy, and P. J. Horvath, “Kinetic changes with fatigue
and relationship to injury in female runners,” Medicine and
Science in Sports and Exercise, vol. 37, no. 4, pp. 657–663,
2005.

[38] S. Wang, “Pattern-matching kinematic analysis of glide phase
after start with different techniques in medley swimming: an
olympic champion case,” Physical Activity and Health, vol. 6,
no. 1, pp. 246–256, 2022.

[39] J. A. García-Pérez, P. Pérez-Soriano, S. Llana, A. Martínez-
Nova, and D. Sánchez-Zuriaga, “Effect of overground vs
treadmill running on plantar pressure: influence of fatigue,”
Gait & Posture, vol. 38, no. 4, pp. 929–933, 2013.

[40] L. Xiang, Y. Gu, A. Wang, V. Shim, Z. Gao, and J. Fernandez,
“Foot pronation prediction with inertial sensors during running: a
preliminary application of data-driven approaches,” Journal of
Human Kinetics, vol. 88, pp. 29–40, 2023.

Applied Bionics and Biomechanics 11




