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Step length estimation (SLE) is the core process for pedestrian dead reckoning (PDR) for indoor positioning. Original SLE requires
accurate estimations of pedestrian characteristic parameter (PCP) by the linear update, which may cause large distance errors. To
enhance SLE, this paper proposes the Sage–Husa adaptive Kalman filtering-based PCP update (SHAKF-PU) mechanism for
enhancing SLE in PDR. SHAKF has the characteristic of predicting the trend of historical data; the estimated PCP is closer to
the true value than the linear update. Since different kinds of pedestrians can influence the PCP estimation, adaptive PCP
estimation is required. Compared with the classical Kalman filter, SHAKF updates its Q and R parameters in each update period
so the estimated PCP can be more accurate than other existing methods. The experimental results show that SHAKF-PU reduces
the error by 24.86% compared to the linear update, and thus, the SHAKF-PU enhances the indoor positioning accuracy for PDR.

1. Introduction

Pedestrian dead reckoning (PDR) [1] is designed for indoor
positioning while pedestrians walking dynamically. PDR col-
lects the pedestrian walking movement data, called pedestrian
characteristic parameter (PCP), such as acceleration, gyroscope,
and magnetometer. PDR utilizes PCP to perform step length
estimation (SLE) to achieve indoor positioning. The original
PCP is an empirical value, so cumulative errors occur over
update periods.

To avoid cumulative errors, a dead reckoning algorithm
based on Bluetooth and multiple sensors (DRBM) [2] estab-
lishes the positioning observation intervals for SLE by the
initial and final positions based on the timing of the maxi-
mum received signal strength indication (RSSI). In each
interval, DRBM updates PCP in real time instead of a fixed
value to avoid cumulative errors. To update PCP, DRBM
adopts a linear update, which directly updates PCP for the

next interval. However, the PCP in each interval can be dif-
ferent, and positioning errors occur for DRBM.

The classical Kalman filter (CKF) is a popular approach
to estimating suitable PCP in each interval [3–5]. Several
works adopt an extended Kalman filter (EKF) to estimate
the acceleration [6–8] for SLE in PDR. However, the accel-
eration can be very dynamic, so the PCP estimation by CKF
can be used without focusing on the acceleration and velocity
by EKF [3–5].

For pedestrians having different heights, walking speeds,
and terrain, their step lengths are different. CKF in DRBM
estimates the step length for the current pedestrian in the
experiment and utilizes linear updates to estimate the length
in each positioning interval. For different pedestrians, CKF
can estimate their steps. Although DRBM assumes the pedes-
trians walk in a constant pattern, the walking styles of differ-
ent kinds of pedestrians can influence their PCP estimations
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in each interval. The adaptive PCP estimation in each interval
is required, and the linear update in DRBM is insufficient.

Besides, CKF and EKF usually adopt two fixed empirical
parameters, Q and R. To achieve adaptive Q and R in each
positioning interval, the Sage–Husa adaptive Kalman filter
(SHAKF) is an ideal solution, and many related applications
adopt SHAKF to estimate their core parameters [9–14].
These applications show the SHAKF can adaptively estimate
core parameters in real time. Thus, SHAKF is ideal for esti-
mating PCP for SLE but is not adopted in current PDR-
related works.

Therefore, this paper proposes a SHAKF-based PCP update
(SHAKF-PU)mechanism for SLE in PDR. SHAKF can estimate
PCP based on adaptiveQ and R in each positioning interval of
PDR instead of static linear update in DRBM. Since SHAKF
can adaptively estimate PCP for different kinds of pedestrians,
SHAKF performs better PCP updates than CKF. As the exper-
iment results, SHAKF-PU enhances the step estimation accu-
racy and reduces the indoor position errors based on SHAKF.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the related works for PDR, CKF, SHAKF,
and their applications. Section 3 introduces SLE, which is the
enhancement target for SHAKF-PU. Section 4 shows the
proposed SHAKF-based PCP update mechanism. Section 5
illustrates the enhanced SLE based on SHAKF-PU. Section 6
shows the experiment results of SHAKF compared with the
other PCP update methods. Section 7 concludes the work.

2. Related Works

To avoid cumulative errors, dead reckoning is an ideal approach
for PDR. DRBM [2] establishes the positioning intervals with
or SLE by the initial and final positions based on the timing of
the maximum RSSI. While the pedestrian enters the initial
position and leaves the final position, a positioning interval
occurs with several steps for SLE. In the interval, SLE requires
PCP collected during the interval for indoor positioning.
Thus, PCP update is critical for SLE, and DRBM adopts linear
update, which uses the current PCP for the next interval.

Kalman filter is a popular approach for SLE [3–5]. These
three works adopt the CKF as their zero-velocity update for
SLE to resist dynamic changes of acceleration. On the other
hand, several works [6–8] adopted an EKF to deal with the
acceleration for SLE in PDR. For these works, collecting
reliable acceleration data values is challenging, though they
use EKF to resolve this issue.

For both CKF and EKF, they use static Q and R values to
estimate the errors of each estimation interval. SHAKF pro-
vides adaptive Q and R values, which can be adjusted by
historical values in each estimation interval. Thus, SHAKF
is adopted in many applications [9–14], such as frequency
scanning interferometry [9], motor sensor position [10], slop
estimation [11], strapdown inertial navigation [12], radar
target tracking [13], and vessel path-following control [14].
These applications require estimating critical values in real
time from a noisy environment. SHAKF can reflect the real-
time offsets by adaptive Q and R values, so SHAKF is a better
choice than CKF and EKF. However, SHAKF is not adopted

in PDR for SLE, especially for PCP updates. Thus, this work
adopts SHAKF for better PCP update estimation for enhanc-
ing SLR in PDR.

3. SLE

In SLE for PDR [2], two Bluetooth chips are set up, one as the
reference point for the starting point and the other as the
reference point for the endpoint. The user holds the sensor
and walks from the start point to the endpoint. The sensor
provides ground vertical acceleration values, and the Blue-
tooth chips provide the respective RSSI values. The ground
vertical acceleration calculates the step length through the
SLE formula as follows [2]:

L¼ s ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
amax − amin

4
p

: ð1Þ

In Equation (1), L is the step length, s is the PCP value,
amax is the maximum ground vertical acceleration, and amin
is the minimum ground vertical acceleration.

To define a step length segment from the ground vertical
acceleration, it is necessary to set up a high threshold and a
low threshold for the acceleration. When the ground vertical
acceleration is higher than the high threshold, the state value
is 1. When the ground vertical acceleration is between the
high threshold and the low threshold, the state value is 0.
When the ground vertical acceleration is below the low
threshold, the state value is −1.

The process of state value going through 1→ 0→−1→ 0
→ 1 is defined as one step, as shown in Figure 1. According to
Equation (1), amin is the minimum ground vertical accelera-
tion when the step is at the state value −1, and amax is the
maximum ground vertical acceleration when the state value
is at 1.

The original values of the ground vertical acceleration
may involve the noise, so the periodicity is not obvious.
Therefore, an average filter is needed to reduce the noise.
When the ground vertical acceleration is processed by the
average filter, its periodicity becomes obvious, which helps
split the step length.

PDR needs to have an initial position reference. When
the RSSI reaches its maximum value, the pedestrian position
is closest to the reference point. In other words, when the
RSSI reaches its maximum value, the pedestrian arrives at the
reference point. Therefore, the sum of the step length, Lsum,
between the two reference points can be known.

State 1

State 0

State –1

FIGURE 1: Step state value.
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As shown in Figure 2, the sum step length Lsum between
the start point and the end point in this example is L2+ L3+
L4. In the traditional PDR, PCP is the empirical value. In
DRBM, PCP is updated through the real distance D and Lsum
and no longer relies on the empirical value. DRBM named
this update method as linear update.

stþ1 ¼ st ×
D

Lsum
: ð2Þ

4. SHAKF-PU: SHAKF-Based PCP
Update Mechanism

In Equation (1), the setting of PCPs affects the accuracy of
the SLE. Equation (2) gives the linear update formula, st+ 1

can be regarded as the true value Rs of this positioning, and st
can be regarded as the estimated value of this positioning.

In the actual operation, the s value for each update is
different. It means that the estimated value is different from
the true value, which causes distance errors. When the esti-
mated value is not equal to the true value, the distance error
occurs.

When the estimated value can be adjusted to make the
estimated value close to the true value, the distance error can
be reduced compared with the linear update. SHAKF-MU
uses SHAKF to adjust the estimated value. Because SHAKF
has the characteristics of forecasting based on historical data,
the estimation of s value is close to the true value, Rs, in order
to reduce the distance error.

Rs¼ st ×
D

Lsum
; ð3Þ

stþ1 ¼ SHAKF Rs; stð Þ: ð4Þ

To estimate the PCP value by SHAKF, the true value
Rs is the measured value, and st is the current predicted PCP
value. They are the inputs for SHAKF to estimate the next
predicted PCP value stþ1.

Equation (5) is the base Kalman filter system equation [3]:

Xt ¼ FXt−1 þ HUt þ BWt: ð5Þ

In Equation (5), t is the time variable, X is the predicted
value, U is the system control variable, B, F, and H are the
system parameters, and W is the noise.

The process formula of SHAKF [11, 13] shows as fol-
lows:

Xt t−1j ¼ FXt−1 t−1j þ HUt þ Bqt−1; ð6Þ

Pt t−1j ¼ FPt−1 t−1j FT þ BQt−1BT ; ð7Þ

Kgt ¼ Pt t−1j HT= HPt t−1j HT þ Rt−1

À Á
; ð8Þ

et ¼ Zt − HXt t−1j − rt−1; ð9Þ

Xt tj ¼ Xt t−1j þ Kgtet; ð10Þ

Pt tj ¼ I − kgtHð ÞPt t−1j : ð11Þ

In these equations, F, H, and B are system parameters,
and I is the identity matrix. Xtjt−1 is the result of using the
previous state prediction, Xtjt−1 is the result of the system in
the previous state, and Ptjt−1 is the covariance corresponding
to Xtjt−1. Pt−1jt−1 is the covariance corresponding to Xt−1jt−1,
Kg is Kalman gain, and et is the residual. Q is the covariance
of the predicted value, and R is the covariance of the mea-
sured value. The real value Rs is input as the measured value
Z, and SHAKF gives the output predicted value X as the new
estimated value stþ1.

Q is regarded as a weight between the measured value
and the predicted value. The large Q value shows the mea-
sured values are trustable. The small Q value shows the high
confidence of the predicted values. R is used to control the
speed of convergence. The small R values lead to the fast
system converges.

In CKF, Q and R remain constant after setting the initial
value. If Q and R are not set properly, the effect may be worse
than the effect without filtering. In SHAKF, Q and R can be
updated in real time through a recursive estimator of time-
varying noise statistics. It solves the problem that Q and R
may be manually set incorrectly. Because Q and R can be
updated automatically, it is more flexible than CKF.

The recursive estimator of time-varying noise statistics
shows as follows [11, 13]:

dt ¼
1 − b

1 − btþ1 ; 0<b<1; ð12Þ

qt ¼ 1 − dt−1ð Þqt−1 þ dt−1 Xt tj − FXt−1 t−1j
À Á

; ð13Þ

Qt ¼ 1 − dt−1ð ÞQt−1 þ dt−1 Kgtetet
TKgT þ Pt tj − FPt−1 t−1j FT

À Á
;

ð14Þ

rt ¼ 1 − dt−1ð Þrt−1 þ dt−1 Zt − HXt t−1j
À Á

; ð15Þ

Rt ¼ 1 − dt−1ð ÞRt−1 þ dt−1 etetT − HPt t−1j HT
À Á

: ð16Þ

In these equations, b is the attenuation parameter. d is the
weighting coefficient, and q and r are the noise factors. The
measured value Z of SHAKF is the input, and the predicted

True distance
Start End

Lsum

L1 L2 L3 L4 L5

FIGURE 2: Sum of the step lengths.
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value X is the output. F, H, B, I, and b are system parameters
that need to be set.

5. Enhanced SLE Based on SHAKF-PU

SHAKF-PU is designed to compute the accurate estimated
value s to be close to the true value Rs. Algorithm 1 shows the
new SLE is enhanced based on SHAKF-PU.

First, the real distance D between the start point and the
endpoint is known. Through the RSSI of the start point and
the endpoint, it can be known that the reference point posi-
tion state, RPstate, is before the start point, between the start
point and the endpoint, or after the endpoint.

When the position is before the starting point (RPstate=
−1), the sum step length Lsum is always 0. When the position
is between the starting point and the ending point (RPstate= 0),
the calculated step length Lsum is added to the sum of the
current step length. When the position is after the endpoint
(RPstate= 1), PCP is updated.

When PCP is updated, the true value Rs is obtained.
Then Rs is the input as the measured value Z into SHAKF-
PU to obtain the predicted value X. The predicted value X is
the output as the new estimated value s. Because SHAKF has
the characteristic of predicting the direction of historical
data, as long as the number of positioning is sufficient, the
estimated value s gets close to the true value Rs, and the
distance error becomes small. Algorithm 2 shows the process
of SHAKF-PU as follows:

In Algorithm 2, F, H, B, I, and b need to be given param-
eter values; the input is Z, and the output is X. In SHAKF-
PU, it sets F= 1,H= 1, B= 1, I= 1, b= 0.99. Rs is the input as
the measured value Z, and s is the output as the predicted
value X.

6. Experimental Results

6.1. Experiment Setting. The experimental equipment in this
paper includes nine-axis sensors and Bluetooth chips. The
nine-axis sensor is MPU9250. The Bluetooth chip is a low-
power Bluetooth chip produced by Broadcom, and the model

is BCM92073X_LE_KIT. The experimental environment is
in the corridor of the National Taipei University building.
The distance between the two Bluetooth chips at the receiv-
ing end is 12m. Hold a nine-axis sensor and two Bluetooth
chips as the transmitter. The nine-axis sensor collects data
and converts it into vertical acceleration on the ground
through quaternion. The Bluetooth chip collects RSSI, and
the transmitting frequency between Bluetooth chips is
10 times per second. One end of the Bluetooth chip is used
as the starting point, and the other end is used as the endpoint.

This experiment compares four ways of updating PCP:
(1) Linear: linear updating; (2) AVG (5): the average of the last
five PCP samples; (3) CKF: classical KF; (4) AKF: SHAKF.
When the estimated value of PCP is close to the true value, the
distance error is reduced. CKF presents those relative works
that adopt the Kalman filter for PCP updates [3–5].

6.2. Distance Error Comparisons. The difference between the
estimated value of PCP and the true value causes distance
error. The distance error is the difference between the real
distance D and the sum of the step length Lsum.

Distance error¼ D − Lsumj j: ð17Þ

In the experiment, the true distance D is defined as 12m.
When the difference between the estimated value of PCP and
the true value is large, the distance error is also large. This
section compares the distance errors of linear update, AKF,
average filtering, and CKF.

Figure 3 shows that linear update and average filtering
are worse than CKF and AKF in general. After the number of
positioning times is above 5, AKF is better than KF. So, AKF
is the best of the four methods in general.

To compare AKF and CKF, Figure 4 shows that the
cumulative error of AKF is smaller than CKF when the
number of positioning times reaches more than 10 times.
The performance of average filtering in this experiment is
very close to AKF. Figure 5 focuses on comparing AKF and
AVG (5) to compare them effectively.

Input: RAz, RSSI1, RSSI2

Output: Location point LP

(1) RPstate ← ISpassRP (RSSI1, RSSI2)

(2) if (RPstate==−1) {
(3) Lsum ← 0

(4) return Lsum }

(5) if (RPstate== 0) {

(6) Lsum ← Calculate_step_length (RAz, s)+ Lsum

(7) return Lsum }

(8) if (RPstate== 1) {

(9) Rs ← s×D/Lsum;

(10) s ← SHAKF-PU (Rs, s, K, e, P, d, q, Q, r, R, t)

(11) return D }

ALGORITHM 1: Enhanced SLE based on SHAKF-PU.
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Figure 5 shows that the cumulative distance error of AKF
is smaller than AVG (5) at the 17th, 18th, and 20th position-
ing, but AKF is higher than AVG (5) filtering at the 19th
positioning. To compare them with more experiment results,

we repeated this experiment five times to confirm that AKF is
indeed better than average filtering, as shown in Figure 6.

From Figure 6, it is clear that after the cumulative dis-
tance error of five experiments is added and averaged, the

Input: Z, X, K, e, P, d, q, Q, r, R, t

Output: X

(1) Xold ← X

(2) Pold ← P

(3) Xf ← F× X+B× q

(4) Pf ← F×P× F+B×Q×B

(5) K ← Pf×H/(H×Pf×H+R)

(6) e ← Z−H×Xf−r
(7) X ← Xf+K× e

(8) P ← (I−K×H)×Pf

(9) d ← (1−b)/(1−pow (b, t+ 1))

(10) q ← (1−d)× q+ d× (X–F×Xold)

(11) Q ← (1−d)×Q+ d× (K× e× e×K+ P-F×Pold× F)

(12) r ← (1−d)× r+ d× (Z−H×Xf )

(13) R ← (1−d)×R+ d×(e× e−H× Pf×H)

(14) return X

ALGORITHM 2: SHAKF-PU.
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FIGURE 3: The process of distance error in four update methods.
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FIGURE 6: Cumulative distance error over five experiments.
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cumulative distance error of AKF is less than that of the
average filter. It shows that AKF is indeed effective in pre-
dicting PCP. When the number of positioning is higher than
10 times, the cumulative distance error of AKF is the smallest
compared with the other three.

Table 1 shows that the distance error of AKF is less than
average filtering, CKF, and linear update. The average dis-
tance error of AKF is 2.36m. It is 0.11m less than the average
filter, 0.42m less than the CKF, and 0.65m less than the
linear update. In summary, AKF is indeed the best of the
four update methods. The numbers in bold are best results in
the four methods, and AKF is the best in the results.

6.3. Distance Error in Different Positioning Times. AKF has
the characteristics of historical data trend prediction. As the
number of positioning times increases, the distance error should
be smaller. Four hundred positionings were performed in this
section. This experiment shows the distance error of PCP is
reduced by AKF when the number positioning times increases.

Figure 7 shows that AKF is unstable when the number of
positioning times does not exceed 10 times. After the number
of positioning times exceeds 10 times, the distance error of
AKF is the smallest of the four methods. Besides, as the
number of positioning increases, the distance error of AKF
becomes small because of its accurate prediction.

Table 2 shows that when AKF has only 20 positioning
times, the average distance error is 2.33m.When the number
of positioning times becomes 400, the average distance error
is 2.16m. This shows that AKF’s prediction is getting accu-
rate, and the distance error is getting smaller. The numbers
in bold are best results in the four methods, and AKF is the
best in most of the results.

In addition, the standard deviation of AKF positioning
error decreases as the times of positioning increase. The
reduction of the standard deviation means that the fluctua-
tion of the positioning error is reduced because the estimated
value given by AKF is getting close to the true value.

When the number of positioning times is less than 40,
the standard deviation of the average filtering is smaller than
AKF. Because the characteristic of average filtering is smooth-
ing, it is inevitable that the standard deviation can be reduced.
When the number of positioning times becomes more than
100, since the predicted trend of AKF starts to approach the
true value, the advantage of the average filter no longer
exists.

Compared with the original linear update method, AKF
has reduced the distance error by 24.86%. In the meanwhile,
average filtering reduces the distance error by 19.98%, and
CKF reduces the distance error by 13.10%. Therefore, by
adopting SHAKF, SHAKF-PU provides the best positioning
accuracy than the linear update, the average, and the Kalman
filter.

6.4. Experimental Result Summary. According to the experi-
mental results, PCP filtering methods are better than the
linear update. AKF is slightly inferior to CKF when the num-
ber of positioning times is less than 10, and the effect is close
to the average filtering. Between 10 and 20 positioning times,
AKF and average filtering are close, while KF performs poorly.
When the number of positioning becomesmore than 20, AKF
performance is the best of the three.

AKF has the characteristic of forecasting based on his-
torical data. When the number of positioning time increases,
the distance error becomes small. When the number of
positioning time is 20, the average distance error is 2.33m.
When the number of positioning time becomes 400, the
average distance error is reduced to 2.16m. In addition,
the standard deviation of distance error also decreases

TABLE 1: Cumulative distance errors in five 20-times tests.

AKF AVG (5) CKF Linear

1st 49.52312 49.97666 56.33625 69.66213
2st 44.38289 48.17956 60.03855 55.87052
3st 49.17905 50.18651 59.16382 54.69721
4st 46.21081 49.91435 50.06121 60.90114
5st 46.82417 48.89955 52.34962 60.08161
Average 47.22401 49.43133 55.58989 60.24252
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FIGURE 7: Average distance error.

TABLE 2: Sum, average, and standard deviation (SD) of distance
errors in 20–400 times.

Experiments AKF AVG (5) CKF Linear

20
Sum 46.6 55.5 57.3 62.5

Average 2.33 2.78 2.86 3.13
SD 1.9 1.77 2.23 2.41

40
Sum 89.3 96.2 96.5 124

Average 2.23 2.41 2.41 3.09
SD 1.64 1.59 1.9 2.33

100
Sum 220 239 280 285

Average 2.20 2.39 2.8 2.85
SD 1.50 1.73 1.97 2.49

200
Sum 436 456 502 555

Average 2.18 2.28 2.51 2.78
SD 1.17 1.62 1.92 2.47

400
Sum 863 919 998 1,148

Average 2.16 2.3 2.5 2.88
SD 1.15 1.6 1.95 2.38
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when the number of positioning times increases. This shows
the AKF prediction is getting close to the true value, and the
fluctuation of the distance error is getting small.

Compared to the linear update proposed by DRBM, AKF
reduces the distance error by 24.86%, and the effect is obvious.
The experiment also compares the average filter and CKF,
which reduces the distance error by 19.98% and 13.10%,
respectively. Thus, SHAKF-MU is the best choice in PCP
update mode.

7. Conclusion

This paper proposes SHAKF-MU that adopts SHAKF to
update PCP. Based on the characteristic of SHAKF to predict
the trend of historical data, the estimated PCP value is get-
ting close to the true value, and the distance error can be
reduced. The experimental results show that SHAKF-MU
has the smallest distance errors. Compared with the original
linear update, SHAKF-MU reduced the distance error by
24.86%. The average and Kalman filter only reduced the
distance errors by 19.98% and 13.10%, respectively. In addi-
tion, because SHAKF has predictive characteristics, the dis-
tance error becomes small as the number of positioning
times increases. When the number of positioning times is
20, the average distance error for every 12m walked is 2.33
m. When the number of positioning times is 400, the average
distance error for every 12m walked is 2.16m. Thus,
SHAKF-PU provides better results with 400 positioning
times than 20 times without cumulative errors.
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