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Cardiovascular diseases remain the main cause of death worldwide which makes it essential to better understand, diagnose, and
treat atherosclerosis. Artificial intelligence (AI) and novel technological solutions offer us new possibilities and enable the practice
of individually tailored medicine. The study was performed using the PRISMA protocol. As of January 10, 2023, the analysis has
been based on a review of 457 identified articles in PubMed and MEDLINE databases. The search covered reviews, original articles,
meta-analyses, comments, and editorials published in the years 2009–2023. In total, 123 articles met inclusion criteria. The results
were divided into the subsections presented in the review (genome-wide association studies, radiomics, and other studies). This
paper presents actual knowledge concerning atherosclerosis, in silico, and big data analyses in cardiology that affect the way
medicine is practiced in order to create an individual approach and adjust the therapy of atherosclerosis.

1. Introduction

The perception of a human being as a structure with numer-
ous mathematical dependencies has been developed over the
centuries. First examples can be found in antiquity and among
Pythagoreans who investigated the nature of numbers and
their relationship with the world exhaustively. It is suspected
that the world-famous first computer, the Antikythera mech-
anism, was designed by Pythagoreans [1] and that the Lycur-
gus Cup made by the ancient Romans is the first example of
the use of nanotechnology [2]. Today, the most important
synthesis seems to have been published in “The fractal geom-
etry of nature” by Kirkby [3]. It introduces the concept of
fractals, connects dependencies that can be described by the
Fibonacci Sequence, and have been discovered over a long
time, such as the Julia set, the Cantor set, the Hausdorff
dimension, the Sierpiński triangle, and the Sierpiński carpet.
Similarly, the chromatin cell architecture is considered to be
fractal, as well as other biological structures and processes [4].
Their description demands artificial intelligence (AI) because

of its complexity which corresponds more to quantum than
classical physics. Quantum physics, quantum computing, and
AI are currently dynamically evolving fields of science. AI is a
perfect candidate for quantum computing as its assumptions
are mostly based on probabilistic elements, require huge
amounts of data, and significantly increase the efficiency of
already existing systems [5]. This is why quantum machine
learning (ML) is gaining popularity.

Cardiovascular disease (CVD) remains the leading cause of
death [6]. Togetherwith the Fourth Industrial Revolution andAI
solutions, new approaches are being proposed to expand the
actual risk stratification, diagnosis, and treatment of CVD; to
provide therapy tailored to an individual in the context of preci-
sion medicine; and to explain possible interactions affecting the
pathophysiology of atherosclerosis. The amount of data collected
to screen and then diagnose and treat an individual requires AI.
In the case of atherosclerosis, optimal treatment is based not only
on the experience of the physician but also on the individual
characteristics of the atherosclerotic lesions in the body.
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This paper presents current knowledge on atherosclero-
sis, in silico, and big data analysis with AI, and AI performing
other human functions that can be used in everyday medical
practice to achieve better outcomes, speed upworkflow, reduce
costs, improve diagnostics and treatment solutions, and better
understand a complex atherosclerotic disease. As atheroscle-
rosis remains the leading cause of death, optimal diagnosis and
treatment of patients are of paramount importance. Analyzed
data will be used in the context of precision medicine and its
potential application in personalized therapy.

2. Methodology

The study was performed based on the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
protocol.

2.1. Inclusion Criteria. The main inclusion criteria were the
presence of AI solutions and the connection of the topic with
personalized medicine.

2.2. Exclusion Criteria. Studies performed on animals and
concerning cardiovascular risk stratification as well as those
with no possibility of verifying applied methods were excluded
from this review.

2.3. Search Methodology. PubMed and MEDLINE databases
were searched using the Boolean operators “AND” and “OR.”
The following commands were used “artificial intelligence” OR
“AI” AND “atherosclerosis” (n= 4,458); “artificial intelligence”
OR “AI” AND “atherosclerosis” AND “cardiology” AND
“GWAS” (n= 110); “artificial intelligence” OR “AI” AND
“cardiology” AND “precision medicine” (n= 352); “artificial
intelligence” OR “AI” AND “cardiology” AND “radiomics”
(n = 31). For “artificial intelligence” OR “AI” AND
“atherosclerosis,” an additional filter was used to include
papers published in the last 10 years. Two researchers conducted
searches independently of each other. No automation tools
were applied: (1) articles with similar contents were chosen by
the publication date—the newest were included; (2) articles
written by the same author and concerning the same issue—
the newest were included. The results were divided into
subsections presented in the review. The inclusion and
exclusion criteria as well as organization of articles are
presented in Table 1.

The authors identified 4,951 records. One hundred fifty nine
records were removed due to duplication and 4,335 due to
inconsistency with the topic. As of 10 January 2023, 457 articles
were included for further analysis. Of the 457 articles, 11 were
performed on animals, 73 involved cardiovascular risk stratifica-
tion, 225 were inconsistent with the topic, and 18 were reviews.
There were seven articles in which the authors could not verify
the methods and decide whether they met the inclusion criteria.
These articles were excluded. Finally, 123 studies were included.
All articles have been divided into the following subsections
presented in the article: genome-wide-association study, radio-
mics, and other applications.

The process is presented in Figure 1. Figure 2 presents an
overview of the application of AI in the medical context.

3. Genome-Wide Associated Studies (GWAS)
and Artificial Intelligence in Atherosclerosis

Genetics is a field of medicine that connects mathematics, phys-
ics, and biology. It is complicated character and the fact that the
majority of traits are created by an interplay of various genes
resulting in a particular phenotype makes it difficult to find a
pattern for their distribution in a general population. A theory of
infinitesimal model assumes that the continual discovery of new
genes affecting particular trait contribute to a smaller causality in
each of them [7]. Precision medicine’s goal is to tailor an indi-
vidualized therapy based on, among other things, genetic profil-
ing, and to assess if there exists an increased risk for a particular
disease or a severe variant. Tools used by precision medicine
are genome-wide associated studies (GWAS) that enable the
identification of single-nucleotide polymorphisms (SNPs),
and exome sequencing. Surprisingly, these important parti-
cles of the human genome mostly reside in its noncoding part
and are often not linked to particular genes. Therefore, it is
difficult to determine the significance of some mutations
[8, 9]. It was proven that many loci susceptible to particular
disease fall within enhancers specific to disease-relevant types
of cells, for example, the 1p13 locus, rs12740374, altering
SORT1 gene hepatic expression with minimal effect in other
cells [10]. However, it is still possible that even the most
important loci have small effect sizes which explains only a
part of genetic variation. This phenomenon is called the mys-
tery of “missing heritability” and was partially solved by anal-
yses concerning SNPs [11].

TABLE 1: Methodology.

Criteria Objectives

Inclusion criteria
Presence of AI solutions

Application in personalized medicine

Exclusion criteria
Studies performed on animals

Studies concerning cardiovascular risk stratification
Verification of the methods impossible

Classification of articles

GWAS
Radiomics

Other studies
Cardiovascular risk stratification (will be given in another article)
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Not without meaning is the importance of AI as it enables
the integration of all collected high-dimensional data based on
multiomic studies. The number of analyses concerning CVDs,
mostly caused by complex and heterogeneous factors like
multiple genetic, environmental, and behavioral factors, is
constantly growing. Not least because CVD is globally the
leading cause of mortality and morbidity [6]. The nascent
amount of data gathered by various institutions to improve
the quality of healthcare, increase cost-effectiveness, workflow,

and adopt rising precision medicine assumptions needs spe-
cial measures, such as ML. In the light of these findings, new
methods of big data analysis, such as variant-Set Test for Asso-
ciation using Annotation infoRmation (STAAR) or JACUSA
software (implemented for detection of SNPs), have been
proposed [12, 13].

It should be mentioned that most genetic studies are
based on Mendelian randomization and GWAS. These are
methods that do not fit into the strict definition of AI that
exists today. They are used as hybrid methods, mostly in big
data analysis, i.e., statistics or protein–protein interaction [14].
Yet, they yield such an amount of data that is hard and time-
consuming to analyze without AI application. Nowadays,
questions arise as to whether these newly described loci are
of biological importance, and which mechanisms are con-
nected with their action and disease-relevant function. Below
we present the most relevant studies performing their analy-
ses in silico or using AI approaches and big data analyses.

Studies of human atheroma plaques have been performed
for years but have hardly resulted in the most important
knowledge during recent years. Depuydt et al. [15] exhaus-
tively analyzed the cellular landscape of human atheroma
identifying 14 main cell populations with an in silico method.
They found a predominance of T-cells in the lymphocyte
population and confirmed that the CD4+CD28 null line
plays an important role in patients with CVD, as well as found
pro- and anti-inflammatory cells, distinct endothelial cells
(this can be proof for the endothelial to mesenchymal cell
transition), and evaluated the cellular interplay within the
plaque. The authors additionally integrated GWAS data to
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Studies included in review
n = 123

Records assessed for eligibility
n = 457

Records screened
n = 4,792

(1)    (2)    (3)    (4)

Duplicated records removed
n = 159

Records excluded:
(1) Studies performed on animals (n =11)

(2) Studies concerning CV risk stratifcation (n =73)
( 3) Method verifcation impossible (n = 7)
(4) Inconsistence with the topic (n = 225)

(5) Reviews (n =18)

Included

Screening

Identifcation of new studies
via PubMed and MEDLINE 

Screening

Records sought for retrieval
n = 461 Records not retrieved

n = 4
Screening

FIGURE 1: Identification of studies search: (1) “artificial intelligence” OR “AI” AND “atherosclerosis” (last 10 years) n= 4,458; (2) “artificial
intelligence” OR “AI” AND “atherosclerosis” AND “cardiology” AND “GWAS” n= 110; (3) “artificial intelligence” OR “AI” AND “cardiol-
ogy” AND “precision medicine” n= 352; and (4) “artificial intelligence” OR “AI” AND “cardiology” AND “radiomics” n= 31.
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FIGURE 2: Artificial intelligence and its application in medical
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find cell-specific loci responsible for CVD and to determine
potential individual targets for drug intervention. Single-cell
RNA sequencing and cytometry by time of flight gave a new
insight into themacrophage population within the plaque and
their function [16]. Another study examined 7,000 human
atherosclerotic cells and exploited GWAS as a source to reveal
how specific cell types participate in particular diseases, iden-
tify cell- and tissue-specific enhancers, and genes that are
likely to be influenced by the noncoding genome, describe
transcription factors that could play an important role in
smooth muscle cell differentiation, as well as describe super-
enhancers (defined as those driving the expression of genes
important for cell identity and function) in lesion cell types, in
the context of atherosclerosis [17].

Recent years have brought important knowledge of non-
coding RNAs (ncRNAs) as cardiovascular risk factors and
regulators of human cells. They can be divided into long non-
coding RNAs (lncRNAs), micro-RNAs (miRNA), and small
interference RNAs (siRNAs) [18, 19]. Imprinting represents
epigenetic marks common to genes requisite for early devel-
opment and growth of the placenta. Its loss leads to the expres-
sion ofmiRNA-regulated genes.MicroRNAs, small noncoding
single-stranded molecules repressing gene expression at the
posttranscriptional level, are not less important in the patho-
physiology of atherosclerosis. An epigenomic study of altered
DNA methylation was performed finding a hypomethylated
imprinted chromosomal locus 14q32 encoding over 60 mRNAs
and 70 snoRNAs. The most relevant seems to be the RTL-1
gene (RTL1AS encodes for the hsa-mir-431, -433, -127, -432,
and -136) and has-mir-127 as both are upregulated in athero-
sclerotic plaques and may become potential drug targets [20].
Other studies try to identify new pharmacological targets for
CVDs [21, 22]. The influence of monocyte ncRNA on the
underlying cardiovascular disorders, including atherosclero-
sis, was evaluated in a study by Pérez-Sánchez et al. [23]
gathering patients with antiphospholipid syndrome. Studies
using AI to describe the pathophysiology of atherosclerosis
have been performed, i.e., to analyze the impact of ncRNA on
the immune response, and find out that the immune system
and smooth muscle cell cytoskeleton dysregulation accelerate
atherosclerosis progression [24].

Since 2007 and the breakthrough discovery of 9p21 locus
by four independent groups of researchers, over 163 loci have
been identified and another 300 are suspected to be connected
with coronary artery disease (CAD) risk. They implicate the
same pathways in atherosclerosis etiology-vascular tone, blood
pressure, low-density lipoprotein (LDL-C), triglyceride-rich
lipoproteins, inflammation, cellular migration, smooth mus-
cle cell proliferation, and vascular remodeling, lipoprotein
(a), neovascularization and angiogenesis, and NO/cGMP sig-
naling. Moreover, a lot of CAD risk loci exhibit an association
with other diseases and traits and are designated as pleiotro-
pic. It is estimated that combined they are responsible for
30%–40% of CAD heritability but particular mechanisms
remain unknown [25, 26].

Locus 8q24, containing the gene TRIB1, has been associ-
ated with the therapeutically beneficial lipid profile and seems

to play a key role in plasma lipid homeostasis [27–29].
PHACTR1 gene regulation was proven to have a huge impact
on the severity of vascular calcifications in a murine model
[30] and the impact of genetic variation can be seen in vascu-
lar smooth muscle cells function [31].

A study by Meng et al. [32] presented potential key genes
(C3AR1, CCR1, CCR2, CD33, CD53, CXCL10, CXCL8, CXCR4,
CYBB, FCER1G, FPR2, ITGAL, ITGAM, ITGAX, ITGB2,
and LILRB2) for atherosclerosis pathology that may become
potential drug targets. Additionally, a thorough analysis indi-
cated immunity, chemokines, and cell adhesion molecules as
the most important biological factors in atherosclerosis.

In 2021, Levin et al. [33] presented a large study identi-
fying 116 SNPs associated with stroke, 107 with CAD, and
105 with peripheral artery disease (PAD). In their study,
authors suggest that smoking had an atherogenic effect in
all the vascular beds as well as show that the genetic liability
for smoking can influence other, already identified cardio-
vascular risk factors [33].

Lipoprotein A level is linked to atherosclerosis, although
its atheroprotective role is still being discussed [34]. A study
by Zekavat et al. [35] showed that knowledge of particular
lipoprotein A genotype enables more specific CVD risk pre-
diction and that the heritability is high in European and
African American populations (75% and 85%, respectively).
Recently, APOH was identified as a novel locus for lipopro-
tein A encoding ß2-glycoprotein I [36]. Another study per-
formed GWAS analysis of 441,016 UK Biobank participants
to find out that apolipoprotein B has the highest correlation
with coronary heart disease of all studied lipid particles [37].
Holliday et al. [38] found an extensive genetic overlap between
large artery atherosclerosis and small vessel ischemic stroke
which suggests a potential shared genetic pathogenesis, based
on GWAS of 12 389 ischemic stroke patients. Awan et al. [39]
investigated genetics of familial hypercholesterolemia.

Among 8,536 patients of African and European ancestry
with type 2 diabetes mellitus a GWAS study has been per-
formed. Diabetic patients tend to have higher coronary artery
calcification (CAC) and common carotid intima-media thick-
ness (cIMT). The authors have identified a new locus rs8000449
near CSNK1A1L at 13q13.3 for association with CAC, two
other loci have been confirmed for CAC and one for cIMT.
Locis rs2891168 near CDKN2B-AS1 at 9p21 and rs11170820
near FLJ12825 at 12q13.13 for CAC; rs7412 near APOE at
19q13.32 for cIMT have been correlated with a CAD [40].

Last but not least is the analysis of big data described by
Shendre et al. [41] who performed GWAS of 682 HIV-
positive and 288 HIV-negative black women and measured
carotid intima-media thickness to define whether European
ancestry and SNPs may affect the cIMT. The study showed a
possible influence of the local European ancestry on athero-
sclerosis, yet did not define particular SNPs associations with
cIMT. Two SNPs within the ryanodine receptor (RYR3) gene
were associated with cIMT among HIV patients treated with
highly active antiretroviral therapy [42]. Table 2 presents
studies included in this analysis.
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4. Radiomics and Artificial Intelligence
in Atherosclerosis

A standard in cardiologic procedures includes visualization
of the heart, coronary arteries, and aorta with echocardiog-
raphy, computed tomography, and magnetic resonance.

Echocardiography is a method of visual estimation of the
heart—muscle, valves, and aorta—and it does not only depend
on precise calculation. It owes its status as a basic diagnostic
tool in cardiology mostly to modern AI-based solutions. The
road from the PipieLined Image Processing Engine (PIPE) in
1985 through automated strain measurements 20 years later
to the current multichamber automatic analyses has been
long. ML was introduced to assess the ejection fraction (EF)
and longitudinal strain [43, 44]. In heart failure (HF), ML was
applied to diagnose HF with preserved EF, classify symptom-
atic, and asymptomatic patients using strain technology, predict
hospitalization risk, exercise tolerance, E/e’ measurements,
define isolated diastolic dysfunction, and left ventricle filling
pressure [45, 46]. Madani et al. [47] presented an algorithm
to classify echocardiogram images with a 97.8% accuracy
and no overfitting. No less important is the application of
ML-based methods in the detection of wall motion abnor-
malities, assessment of the response of the cardiac muscle to
the resynchronization therapy, prediction of major adverse
cardiac events (MACEs) or coronary artery calcium (CAC),

recognition, and assessment of valvular heart disease, classifi-
cation of echocardiograms, differentiation of hypertrophic
cardiomyopathy (HCM) and physiological hypertrophy of
the athletes, or restrictive cardiomyopathy (RCM), and con-
strictive pericarditis [43, 48–51].

Yet, some limitations cannot be omitted. First, echocar-
diography is a subjective test. Second, the problem of repeat-
ability is created by the fact that input data are highly
dependent on the person performing an examination. Third,
AI can detect and characterize valvular and anatomic pathol-
ogy as well as enhance the quality of existing echocardiograms
but is certainly unable to accurately assess all cardiac pathol-
ogies that could be noticed and described by a clinician [52].

The importance of cardiovascular computed tomography
(CCT) has grown since the 1990s when it was used to assess
stenotic regions of arteries and occlusion of bypass grafts.
Nowadays, with new diagnostic methods and AI, it has
become possible to create visual simulations helpful in plan-
ning surgeries, assessing postsurgical complications, predicting
outflow tract obstruction, and other hemodynamic complica-
tions, or identifying the high-risk phenotype of left ventricular
hypertrophy [53, 54]. Computational fluid dynamics (CFD)
and finite element (FE) simulations have been used in trans-
catheter aortic valve replacement, transcatheter mitral valve
implantation, thoracic endovascular aortic repair, left atrial
appendage occlusion, and to assess myocardial strains

TABLE 2: Studies included in the GWAS-section analysis and AI methods applied.

References Method of data analysis AI approaches

Musunuru et al. [10] SPSS Machine learning
Shi et al. [11] HAPGEN Transfer learning
Li et al. [12] STAAR Machine learning
Piechotta et al. [13] JACUSA Machine learning
Yazdani et al. [14] — Bayesian causal network
Depuydt et al. [15] Custom R scripts, Seurat Machine learning
Örd et al. [17] HOMER Support vector regression
Aavik et al. [20] Ingenuity Machine learning
Folkersen et al. [21] PLINK Machine learning
Plens-Galaska [22] GraphPad Prism Machine learning
Pérez-Sánchez [23] Ingenuity Machine learning
Liu et al. [24] R package Machine learning
Zekavat et al. [35] WGS, logistic regression Machine learning
Nelson et al. [26] CARDIoGRAMplusC4D Machine learning
Manichaikul et al. [28] SMARTPCA, KING Machine learning
Aherrahrou et al. [30] GraphPad Prism Machine learning
Aherrahrou et al. [31] PLINK, R package, GraphPad Prism Machine learning
Meng et al. [32] R package, Cytoscape Machine learning
Karjalainen et al. [34] CARDIoGRAMplusC4D Machine learning
Richardson et al. [37] CARDIoGRAMplusC4D Machine learning
Hoekstra et al. [36] PLINK Machine learning
Holliday et al. [38] PLINK, METAL Machine learning
Awan et al. [39] R package, MCODE Machine learning
Lu et al. [40] LDhat package, METAL Machine learning
Shendre et al. [41] LAMPLD, PLINK Machine learning
Shrestha et al. [42] PLINK Machine learning
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[55–59]. All simulations have been helpful to make personal
predictions and assumptions concerning treatment. How-
ever, ML does not need CFD or FE simulations to result in
excellent outcomes.

Studies by Hu et al. [60] and Gupta et al. [61] proposed
a radiomic tool to improve the diagnostic performance of
cardiovascular computed tomography angiography (CCTA).
Atkov et al. [62] diagnosed CAD based on clinical and labo-
ratory data combined with SNPs and CCTA with 64%–94%
accuracy. CT and AI solutions have been applied in the
identification of hemodynamically significant coronary artery
stenosis, also by computing fractional flow reserve (FFR) [63]
which is arising as a noninvasive alternative in diagnosing
chest pain. Recently, culprit lesions have been studied using
ML models based on CCTA of 60 patients with an acute
myocardial infarction. The authors have shown that culprit
lesions and severe stenosis present some characteristic fea-
tures [64].

ML–FFR was found to be a better tool than CCTA to
detect and quantify CAC [44]. Interestingly, a performance
test between CFD-FFR and ML-FFR was found to be equal
[65]. Prediction of obstructive CADwas performed byAl’Aref
et al. [66] based on 35,281 patients from the CONFIRM reg-
istry. ML was also applied in CCTA to assess volumes of
ventricles and atria, detect plaques and identify culprit lesions
in acute coronary syndromes (ACS), measure CAC, prepare
and segmentation CT images, phenotype coronary plaques,
and predict cardiovascular risk [43, 67–69]. As an alternative,
a ML method with intravascular ultrasound (IVUS) was pro-
posed to assess FFR in intermediate coronary lesions [70] or
to classify the components of an atherosclerotic plaque [71].
Interestingly, the action connective matrixes have been devel-
oped to extract potentially invisible features from IVUS images
and reduce the image noise [72].

In the recent years, the role of perivascular adipose tissue
(PVAT) has been connected with an increased cardiovascu-
lar risk. Hypotheses concerning the influence of the inflam-
matory process within PVAT on worsened CVD outcomes
have been broadly discussed in the literature [73]. Thus, it is
of high importance to create appropriate and repetitive tools
to assess the plaque-associated risk. Oikonomou et al. [74]
presented an AI-based tool, the fat radiomic profile (FRP), to
assess cardiovascular risk based on CT scans of periadventi-
tial fat. The FRP enabled observation of changes that are
dynamic and reversible, including fibrosis, vascularity, and
tissue homogeneity. These factors influence adipose tissue
health in obesity as well and altogether have created a non-
invasive tool to assess the cardiovascular risk better than
already established risk factors like age, sex, diabetes, systolic
blood pressure, body mass index, obstructive CAD, total
cholesterol level, high-density lipoprotein level, and Agatston
calcium calcification score (CCS) [74]. A study by Comman-
deur et al. [75] proposed an AI approach to quantify epicar-
dial and thoracic adipose tissue based on non-contrast CT
scans. Eisenberg et al. [76] stated that the epicardial adipose
tissue volume is positively correlated with an increased risk
of major adverse cardiovascular events (MACE), while atten-
uation was inversely associated.

Cardiac magnetic resonance (CMR) was highly affected
by technological advancements which have boosted its diag-
nostic and risk stratification capabilities [43]. According
to the ESC guidelines, it is the gold standard to assess volumes,
mass, and EF of both the left and right ventricles [77].
Together with ML, it was used to assess ventricular volumes,
strain, filling, and ejection rate, predict an all-cause death in
HF patients, analyze and describe cardiac structures, scars in
HCM patients, diagnose HCM, differentiate HCM and hyper-
tensive heart disease, diagnose pulmonary artery hypertension,
predict outcomes in newly diagnosed pulmonary hypertension,
segmentate, and diagnose carotid atherosclerosis [43, 77–82].

Another approach used CMR in patients with ST-elevation
myocardial infarction (STEMI) and stated that radiomics
could provide higher diagnostic accuracy for detecting micro-
vascular obstruction [83] as well as become a new tool to
predict MACEs [84]. However, the first clinical application
of ML-based algorithms in everyday practice might be an
algorithm estimating volumes of the left ventricle in CMR
[62].

Although databases containing medical information are
still being discussed in the ethical context of sensitive data,
their need has been highlighted in many fields [85]. Also,
nuclear cardiology expressed the proposition of building large
image databases which could help to speed up the workflow,
reduce costs, and create appropriate prognostic models [85, 86].
Artificial neural networks have been used to detect myocardial
ischemia using 99mTc-methoxyisobutylolisonitryle myocardial
perfusion images [86]. In the case of nuclear cardiology, AI has
been applied to assess cardiac perfusion, predict obstructive
CAD, early revascularization, and MACEs, as well as auto-
matically localize the mitral valve plane to prevent image
artifacts. Moreover, implemented methods can outperform
current clinical approach results [62, 86–92].

The basic goal of radiomics is to present clinically impor-
tant features incorporated in medical images. Implemented
to support genomic data with an AI-based analysis yields pre-
cise radiogenomic results. Although it has mostly been applied
with outstanding success in oncology, it can be implemented
into practice in most medical disciplines, including cardiology
[85, 92]. Table 3 presents studies included in this analysis.

5. Artificial Intelligence and Atherosclerosis in
Other Studies

Zhao et al. [99] proposed a tool for ECG autodiagnosis of
ST-elevation myocardial infarction (STEMI). His algorithm
achieved results highly comparable with those achieved by an
experienced cardiologist and better than medical doctors
[99]. Similarly, a deep learning-based algorithm to recognize
myocardial infarction by Makimoto et al. [100] was tested in
comparison to physicians. Another idea from the Mayo
Clinic enabled the prediction of whether the patient is in
danger of AF during a sinus rhythm [101]. Recently, Sakli
et al. [102] have presented an AI-based tool to classify 27 ECG
features, and Elias et al. [103] have proposed a method to
identify aortic stenosis, regurgitation, andmitral regurgitation
in ECG. Implementation of AI-based ECG analysis does not
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only concern these cases. It has also helped to analyze if
patients suffer from asymptomatic HF and to detect antiar-
rhythmic drugs and abnormal electrolyte levels, ventricular
extrasystoles, atrial fibrillation, and left ventricular hypertro-
phy [104–108].

Antiplatelet therapy is important for cardiology patients
who have undergone percutaneous coronary intervention
(PCI). A population of 541 patients was studied to compare

the effectiveness of treatment with ticagrelor or clopidogrel.
Using a ML approach, the researchers found no difference in
major adverse events, rehospitalization, or bleeding. How-
ever, ticagrelor showed better effects in patients with single-
vessel disease [109].

Over 12,000 Caucasian patients were analyzed to deter-
mine the influence of aspirin intake on the prevalence of
STEMI. Aspirin was connected with a decreased incidence

TABLE 3: Studies included in the radiomics-section analysis and AI methods applied.

References Method of data analysis AI approaches

Huang et al. [44] — Convolutional neural networks
Sanchez-Martinez et al. [46] — Machine learning, clustering
Madani et al. [47] — Convolutional neural networks
Soto et al. [48] — Deep learning
Duffy et al. [49] — Deep learning
Yuan et al. [50] — Deep learning
Liu et al. [51] — Deep learning
Kay et al. [54] — Machine learning, logistic regression
Hu et al. [60] — Logistic regression
Gupta et al. [61] — Deep neural network
Atkov et al. [62] — Deep neural network
Lin et al. [64] — Machine learning
Coenen et al. [65] — Machine learning
Al’Aref et al. [66] — Machine learning
von Knebel Doeberitz et al. [68] — Deep learning
Lee et al. [70] — Machine learning
Bajaj et al. [71] — Machine learning
Amato et al. [72] — Unsupervised machine learning
Oikonomou et al. [74] — Machine learning
Commandeur et al. [75] — Deep learning
Eisenberg [76] — Deep learning
Chen et al. [78] — Unsupervised machine learning
Wu et al. [79] — Deep neural networks
Antonopoulos et al. [80] — Machine learning
Sengupta et al. [81] — Machine learning
Sparapani et al. [82] — Bayesian additive regression trees
Ma et al. [83] — Machine learning
Durmaz et al. [84] — Machine learning
Laudicella et al. [86] — Deep neural networks
Nakajima et al. [87] — Deep neural networks
Hu et al. [88] — Machine learning
Betancur et al. [89] — Deep learning
Betancur et al. [90] — Machine learning
Arsanjani et al. [92] — Machine learning
Lin et al. [93] — Machine learning
Baumann et al. [94] — Machine learning
Suinesiaputra et al. [95] — Deep neural networks
Lossnitzer et al. [96] — Machine learning
Lossnitzer et al. [97] — Machine learning

Lee et al. [70] SPSS
Machine learning (binary class L2 penalized logistic
regression, deep neural networks, random forest,
AdaBoost, CatBoost, and support vector machine)

Ji et al. [98] SPSS Deep learning
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of STEMI in patients with hypertension, hypercholesterolemia,
and in smokers but not among patients with diabetes [110].

It is expected that atherosclerotic tissue presents different
biomechanical properties than healthy tissue. An AI-based
study by Karimi et al. [111] presented a model to biomechan-
ically characterize atherosclerotic coronary arteries. Fuzzy
logic was used to prepare a risk score for the onset of ische-
mic chronic leg ulcers in PAD patients and natural language
processing to better diagnose PAD patients [112, 113]. AI
methods have also been used among patients suffering from
PAD to link them with potential limitations and symptom
severity [114]. ML has been implemented to diagnose PAD
based on gait analysis [115]. Age, diabetes mellitus and its
complications, congestiveHF, comorbidities, and earlier revas-
cularisation are factors increasing an in-hospital mortality in
PAD [116].

The aortic diameter might be connected with an occlu-
sive vascular disease [117, 118]. Pirruccello et al. [119] pre-
sented GWAS of thoracic aorta describing 104 new loci and
their association with aortic aneurysm or dissection. The
study was performed on 39,688 individuals from a UK Bio-
bank and is definitely a new direction in identifying asymp-
tomatic patients at risk for an acute aortic syndrome.

Plasma lipids are a modifiable risk factor for CAD. Guo
et al. [120] presented a novel marker—the atherogenic index
of plasma (AIP)—that may become a novel predictor of
CAD in Chinese postmenopausal women. Interestingly, the
ILLUMINATE study of torcetrapib, a cholesterol ester trans-
fer protein inhibitor, was closed after 550 days because of the
increased rate of cardiovascular events (1.2%) and mortality
(0.4%). Artificially created nanoparticles may be helpful in a
new drug development [121]. The study of Williams et al.
[122] was designed to analyze and explain the harmful mech-
anism of the drug and to determine whether it would have
been possible to predict such outcomes earlier. Proteomics,
the protein-based risk score, turned out to be a proper tool to
predict the harm within 3 months. Benincasa et al. [123]
proposed a digitalized way to individualize the treatment
of dyslipidemia and Tsigalou et al. [124] presented a ML
method to assess LDL plasma levels. Another study created
a method to identify patients with familial hypercholesterol-
emia [125]. Interestingly, nondiabetic patients with chronic
kidney disease may present a hidden proatherogenic lipid
profile [126]. Stem cells play an important role in the patho-
genesis of atherosclerosis. Their release into the bloodstream
during acute myocardial infarction results in atherosclerosis
progression. Li et al. [127] designed Atherosclerosis-risk
Modules to better understand the pathophysiology of ath-
erosclerosis from the perspective of the system’s biology.
Connecting AI, gene expression and human networks (signal-
ing and inflammatory pathways) derived valuable informa-
tion from a stem cell point of view. Biological networks were
also investigated by other authors [128, 129]. Dan–Shen–Yin
(DSY), a traditional Chinese formula comprising Salvia Mil-
trorrhiza, Fructus Amomi, and sandalwood, is broadly used
in diabetes and CAD; however, the mechanism of action
remains unknown. The study proposed integration of biology,
proteomics, and experimental pharmacology to understand

its influence on atherosclerosis [128]. Molecular understand-
ing of pathophysiological pathways and genes with bioinfor-
matics was performed in other studies as well [130–133]. They
can be also used to identify new biomarkers for atherosclerosis
[134–138], biomarkers connected with a particular ischemic
stroke type [139], and determine if the plaque is rupture-prone
[140]. Serum markers for diabetes, CAD, and diabetes associ-
ated with CAD were studied using AI as well [141]. The topic of
AI in pediatric cardiology has also been raised [142, 143].

The role of the opportunistic imaging concept has also
been raised in the literature. Examinations of knee MRI of
osteoarthritis patients [144] and standardized kneeMRI [145]
were a focus of a study of atherosclerosis development within
the popliteal artery using ML. AI-based studies which investi-
gated plaque distribution and composition predicted the pla-
que progression [146, 147]. Table 4 presents studies that are
included in this analysis.

6. Discussion

Precision phenomapping and ML will constantly gain in
popularity. Crosstalk between various “omic” fields shows
new paths that may be helpful in better understanding and
treating CVDs. The multiomic approach generates big data
impossible to analyze without AI solutions as most genetic
studies are being conducted with combined methods, using
software and other programs incorporating AI. Big data has
been called the greatest untapped resource of mankind [85].
AI-based algorithms have made a substantial impact in better
understanding of atherosclerosis, genetics, diagnosing CAD,
and cardiovascular imaging. Some of them are descriptive
studies that create a problem of repeatability of what was
already mentioned above.

These new omic fields have been developed to better
understand the genomic causes of atherosclerosis. New genes
(inherited and de novo mutations) are still being discovered.
Similarly, the extraction of radiomic features based on CT or
MRI images to build AI-based systems dedicated to speeding
up the workflow and providing accurate diagnosis is of par-
amount importance. Other analyses related to lipidology,
PAD, drug discovery, and their interactions are included in
the multiomic fields. Attempts are being made to overcome
the problem of the black box phenomenon. Other ethical
issues such as the “human factor” or the subjectivity and
experience of a physician are currently being discussed. Will
AI take over human tasks? These are the questions that have
been raised, and there is still no proper and unequivocal
answer. A simplified schema of intelligent data processing is
presented in Figure 3.

7. Limitations

In the era of big data, special measures are required. There
are also questions of boundaries with other areas, not strictly
classified as AI and presented in this review. Some reviews
concerning AI solutions implemented in the cardiovascular
system are available [42, 46, 53]. However, the authors of this
work aimed to present a broader point of view and included
studies implementing AI in data analysis. For example,
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TABLE 4: Studies included in the other studies-section analysis and AI methods applied.

References Method of data analysis AI approaches

Zhao et al. [99] — Deep neural networks
Makimoto et al. [100] SPSS Deep neural networks
Attia et al. [101] — Deep neural networks
Sakli et al. [102] — Deep neural networks
Elias et al. [103] — Deep neural networks
Sangha et al. [105] — Deep neural networks
Chang et al. [106] — Deep neural networks

Liu et al. [107] —

Machine learning (decision tree, K-means, back
propagation neural network)

Tutuko et al. [108] — Deep neural networks
Xue et al. [109] — Decision tree

Burgiardini et al. [110] SPSS
Supervised machine learning (k nearest neighbor

algorithm)
Karimi et al. [111] — Deep neural networks
Serra et al. [112] — Fuzzy logic
Weissler et al. [113] — Natural language processing
Baloch et al. [114] — Supervised machine learning
Al Ramini et al. [115] — Machine learning
Zhang et al. [116] — Machine learning
Laughlin et al. [117] SPSS Machine learning
Pirruccello et al. [119] — Deep learning
Guo et al. [120] SPSS Machine learning
Williams et al. [122] Ingenuity Machine learning
Tsigalou et al. [124] — Machine learning

Paragh et al. [125] —

Deep neural networks (natural language processing-
word2vec)

Bermudez-Lopez et al. [126] — Machine learning (random forest analysis)
Li et al. [127] — Human signaling networks, ClusterONE
Yang et al. [128] Cytoscape, MCODE Machine learning
Wang et al. [129] DAVID, SPSS Machine learning
Tan et al. [130] Cytoscape, MCODE Machine learning
Zhang et al. [131] Cytoscape, MCODE Machine learning
Nai et al. [132] Cytoscape, R package Machine learning
Huang et al. [134] Cytoscape Machine learning
Yagi et al. [135] GeneSpring Machine learning
Liu et al. [136] Cluster 3.0 genes, Python Machine learning
Johno et al. [137] — Machine learning
Wei and Quan [138] DAVID Machine learning
Wang et al. [139] Clustering, DAVID, Cytoscape, MCODE Machine learning
Wang et al. [140] DAVID, R package, Cytoscape, MCODE Machine learning
Adela et al. [141] — Random forest analysis
Canton et al. [144] — Deep neural networks
Chen et al. [145] — Deep neural networks
Jurtz et al. [146] — Deep learning
Kigka et al. [147] — Machine learning
Wang et al. [148] — Machine learning
Xu et al. [149] — Machine learning
Forrest et al. [150] — Machine learning
Yang et al. [151] — Machine learning
Sharma et al. [152] — Machine learning
Chen et al. [153] — Machine learning
Jones et al. [154] — Machine learning
Jiang et al. [155] — Machine learning
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Depuydt et al. [15] presented big data analysis with the R 3.5
environment and Seurat 3.0 [15, 33]. “R” is a free software for
statistical analysis and graphics and the R method is widely
used in new-style AI, involving ML. Seurat uses ML for cell
classification. Also, other studies implement SPSS [94, 110],
PLINK [31, 38, 41, 42], CARDIoGRAMplusC4D [26, 34, 37],
or Ingenuity [20, 23, 112] that are strictly correlated with AI.
The search biases are unavoidable as well and the authors are
aware of this. Moreover, the topic is extensive so the decision
was made to exclude papers concerning an AI-based cardio-
vascular risk stratification as this will be given in another
article. Also, the implementation of AI in PAD could be
discussed more broadly [164]. Recently, an article raising a
topic of AI in atherosclerosis has been published [165]. The
article above however, discusses the problem more exhaus-
tively, has been carefully planned and additionally focuses on
precision medicine. Other articles present an insight into AI
itself [166–170], discuss an application of a “Digital Twin”
[171, 172] or an AI-application in various medical fields like
nuclearmedicine [173], genetics of CVDs [174], cardio-oncology
[175–178], oncology [179], electrophysiology [180], assessment
of a valvular heart disease [181], chronic diseases [182], and
Alzheimer’s [183]. This review was not reported and has no
official protocol.

8. Conclusions

Personalized diagnostics and therapy have already changed
the way we practice medicine. The potential of applying AI to
the already overburdened healthcare system, with ever-
increasing amounts of big data, seems inevitable. This article

shows that the application of AI solutions in the light of the
4th industrial revolution has already begun. However, many
complications need to be overcome. Not only cardiovascular
risk stratification but also therapy and reduced time to diag-
nosis have become the benchmark in the diagnosis and treat-
ment of atherosclerosis. This branch is still being developed.
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