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The lower extremity exoskeleton can enhance the ability of human limbs, which has been used in many fields. It is difficult to
develop a precise force tracking control approach for the exoskeleton because of the dynamics model uncertainty, external
disturbances, and unknown human–robot interactive force lied in the system. In this paper, a control method based on a novel
recurrent neural network, namely zeroing neural network (ZNN), is proposed to obtain the accurate force tracking. In the
framework of ZNN, an adaptive RBF neural network (ARBFNN) is employed to deal with the system uncertainty, and a fixed-
time convergence disturbance observer is designed to estimate the external disturbance of the exoskeleton electrohydraulic system.
The Lyapunov stability method is utilized to prove the convergence of all the closed-loop signals and the force tracking is
guaranteed. The proposed control scheme’s (ARBFNN-FDO-ZNN) force tracking performances are presented and contrasted
with the exponential reaching law-based sliding mode controller (ERL-SMC). The proposed scheme is superior to ERL-SMC with
fast convergence speed and lower tracking error peak. Finally, experimental tests are conducted to verify the efficacy of the
proposed controller for solving accurate force tracking control issues.

1. Introduction

When natural disasters such as earthquakes occur in remote
mountainous areas, traffic is interrupted, which forces rescuers
to enter the disaster area on foot [1]. The rescuers were unable
to carry more relief supplies due to physical limitations. By
combining the endurance of mechanical device and the intelli-
gence of control system, the lower extremity exoskeletonmakes
up for human insufficiency in endurance, providing an effec-
tive way to accomplish the rescue task [2]. Therefore, the
research on lower extremity exoskeleton has scientific signifi-
cance and great social application requirement in the rescue [3]
as well as rehabilitation [4, 5], aid to the disabled [6].

Under load-bearing conditions, each joint of the human
lower limbs needs timely active assistance. A lower extremity
exoskeleton is presented in Figure 1, where the exoskeleton
has seven degree of freedoms (DOFs) for each leg. The exo-
skeleton directly connects the actuator in parallel to the cor-
responding joints of the lower limbs. Then, the lower
extremity exoskeleton exerts force on the lower limbs

through the connection point to achieve active assistance.
Timely assistance to active joints is essential to reduce energy
consumption of the pilot. As the control of one joint can be
easily extended to that of the whole exoskeleton system, for
simplicity, only the control problem of a knee joint is con-
sidered in this paper.

In rescue scenarios, the payloads carried by the operators
are usually quite heavy that high-power supplies are expected.
Hydraulic fluid power systems are well-known for their high-
power density, many exoskeletons in this direction have been
developed, for instance we can refer to the study by Chen et al.
[7]. Among them, hydraulic actuators are usually used due to
their large values of power/mass ratio [8–10]. However, the
dynamics of hydraulic actuators is characteristic with high
nonlinearity and time variation, which poses challenges to
its corresponding controller design.

Force control is widely used in power augmentation exo-
skeleton robot due to the fact that its implicitly guarantees a
safe and smooth operation for human–robot interaction [11].
Zhang et al. [12] proposed a hierarchical Lyapunov-based
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cascade adaptive control scheme for lower limb exoskeleton
to follow the hydraulic force reference. In view of both cogni-
tive and physical human–robot interaction forces, Lang et al.
[13] exhibited a unified framework for scale force control of
human-bearing augmentation exoskeleton. Cheng et al. [14]
proposed a novel robust adaptive sliding mode control strat-
egy of an electrohydraulic force loading system with consid-
eration of external disturbances and parameter uncertainties.
Chen et al. [15] presented an adaptive robust force control
algorithm for a lower limb hydraulic exoskeleton to handle
the problem of passive joints and holonomic constraints. Song
et al. [16] implemented force tracking control of electrohy-
draulic servo system based on sliding mode control.

However, the force tracking control method mentioned
above cannot fully cope with the time-varying challenges of
the system. Zhang et al. [17, 18] have formally proposed a novel
framework for solving time-varying nonlinear problems, namely
zeroing neural network (ZNN). Much related works has been
reported in the recent years. Li et al. [19] designed a ZNNmodel
with predefined-time convergence to solve inequality con-
strained time-invariant quadratic problems. To solve the time-
varying super determination problem, Zhang et al. [20] proposed
a new variable–parameter convergence differential neural

network, which can obtain the least squares solution. An error
redefined neural network is proposed in [21] to control the
mobile redundant manipulator to perform the tracking task
with the redefined error monitoring function taken into account
[20]. Zheng et al. [22] and Dai et al. [23] proposed a new con-
troller design based on adaptivemultilayer neurodynamics in the
ZNN framework, implemented the time-varying trajectory
tracking task with external interference and model uncertainty.
Besides the predefined-time convergence ZNN [19], and intelli-
gent fuzzy robustness ZNN [24], are also studied to solve the
time-varying questions.

In addition, the presence of model uncertainties and the
unknown external interference has an impact on the stability
of the control system. Neural network methods are wildly
utilized to deal with uncertainties in recent years [25].
RBFNN method was proposed to handle the problems of
the unknown dynamic model of coordinated dual arms robot
and the saturation nonlinearity of the motor [26]. The uncer-
tainties of the robot was approximated by RBFNN [27]. As
for the external disturbance, the disturbance observer tech-
nology is usually employed in the system for its clear physical
significance and simplicity in the engineering implementa-
tion [28]. Song et al. [29] proposed a new adaptive neural
network control method based on disturbance observer for
hydraulic knee exoskeleton. A disturbance observer is
designed and integrated into the controller to compensate
for external perturbations and equivalent interaction forces
acting on the piston rod of the hydraulic actuator.

Based on the analysis above, this paper proposes a new
ZNN framework for the exoskeleton with an adaptive
RBFNN (ARBFNN) and the fixed-time disturbance observer
(FDO) employed to enhance the robustness and force track-
ing performance of the system. ARBFNN is used to compen-
sate the uncertainty in the model, and the FDO is utilized to
estimate the perturbation as well the ARBFNN estimation
error.

The rest of this paper is organized intofive sections. Section 2
presents the mathematical model of the servo system and the
implicit zeroing dynamic of the system. Section 3 designs the
control law with disturbance considered, in the meanwhile,
the stability and other properties are also analyzed. Section 4 illus-
trates the simulation results of the proposed method. Section 5
shows the corresponding experimental results. Section 6 con-
cludes the entire paper.

The main contributions of this paper are concluded as
followed:

(1) ARBFNN-FDO-ZNN control scheme is proposed for
solving exoskeleton force tracking control issues,
which builds the bridge among ZNN, observer, and
RBFNN.

(2) The problems of model uncertainties, external dis-
turbances, and human–robot interactive force are all
considered to enhance the robustness of the system.

(3) The simulation results are carried out for the control
scheme and compared with an exponential reaching
law-based sliding mode control (ERL-SMC) to track
the desired load force to perform its superiority.
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FIGURE 1: Mechanical structure of the lower extremity exoskeleton:
1-Hip, 2-Thigh, 3-Thigh drive cylinder, 4-Shank, 5-Bound device,
6-Shank drive cylinder, 7-Ankle, and 8-Sole.

2 Applied Bionics and Biomechanics



2. Description of the Model

2.1. Mathematical Model. The electrohydraulic system
shown in Figure 2 is composed of an oil pimp, a relief valve,
a spool valve, a cylinder, an accumulator, etc. The oil pump
provides the required high-pressure oil. The accumulator is
designed to restore energy during high pressure and supple-
ments the necessary oil to the hydraulic loop during low
pressure. The relief valve is introduced to keep the oil pres-
sure stable. A brief introduction to the principle of the
hydraulic system is in the following. The piston is pushed
by the high-pressure oil from the oil pump. The spool valve
position controlled by voltage decides the piston in the cyl-
inder heading left or right. The cylinder displacement reacts
accurately as the spool valve displacement varies. In this way,
the controller is designed to control the electric current u to
gain our ends.

The control objective of the hydraulic exoskeleton is to
regulate the voltage of the valve u so that the angle of the
exoskeleton joint can track the pilot’s trajectory as closely as
possible. In the servo system, the voltage u is the control
input and the opening degree of the valve is based on it.
And the load force FL is the output. The control voltage is
adjusted according to the error between the expected value
and the actual value, so that the load force reaches the desired
value. Since it is not clear the change in oil temperature and
the specific situation of pollution, some simplification is
essential. It is assumed that the lower extremity exoskeleton
can reach the corresponding angle when the force reaches
the desired value. Besides, valves and fluids are considered
ideal.

In the following, the model of the hydraulic system is
introduced as follows [30]:

φ̈ ¼ 1
J

M FL þ Ff
À Á

−mgrosin φð ÞÀ Á
Ḟ L ¼ n1xv − n2ẋc − n3FL þ n4

ẋv ¼
1
τ

ksu − xvð Þ

8>>>><>>>>: ; ð1Þ

where

Ff ¼ ½ FC þð FS − FCÞe−ðẋ c=vsÞ2 �sgnðẋcÞþ μẋc
n1 ¼ βðA1þA2ÞKq

V0

n2 ¼ βðA1þA2Þ2
2V0

n3 ¼ βð2Kcþ2CinþCexÞ
V0

:

The nomenclature appearing in Formula (1) is listed in
Nomenclature Section.

2.2. Force Tracking Dynamic. In this paper, we explore force
tracking control. Therefore, the load force is the subsystem.
Let x be ½ FLxv �T , and a subsystem Formula (2) is defined as
follows:

F x; uð Þ ¼
n1xv − n2ẋc − n3FL þ n4

1
τ
ksu −

1
τ
xv

24 35: ð2Þ

Model (2) can be transformed into the following forms:

ẋ tð Þ ¼ Ax þ G x; uð Þ
y tð Þ ¼ Cx tð Þ

(
; ð3Þ

where A is selected such that A is Hurwitz stable and the pair
ðC;AÞ is observable.

An error function is given as eðtÞ¼AxþGðx; uÞ− ẋdðtÞ.
The evolution of the error function is defined as ėðtÞ¼ −

γeðtÞ, where γ>0 is the design parameter. Thus, a conven-
tional ZNN model is completed.

Aẋ tð Þ þ Ġ x; uð Þ − ẍd tð Þ ¼ −γ Ax þ G x; uð Þ − ẋd tð Þ½ �:
ð4Þ

3. Controller Design

However, the force tracking model is ideal. Actually, distur-
bance and errors often lie in the model implementation, such
as differentiation error. Thus, the robustness of this subsys-
tem should be taken into account.

In the noise-free case, the conventional ZNN converges
to the desired result globally and exponentially (Theorem 1).
Therefore, the polluted design formula of ZNN is explored in
this paper. Besides, Figure 2 indicates the piston displace-
ment xc is crucial to the whole hydraulic system and easily
affected by the external factors. In this section, the control
input u is designed with polluted ZNN design formula and
the differentiation error of xc considered. Besides, the system

M
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Controller
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FIGURE 2: Schematic diagram of hydraulic system.
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uncertainty and external disturbances are inevitable in prac-
tical. The structure of force tracking system is shown in
Figure 3.

3.1. Polluted ZNN Controller Design. u is implicited in For-
mula (4). For convenience, we perform the explicit conver-
sion. The mathematical model introduced can be regarded as
a one-dimension matrix. The selection of different variables
has a direct effect on the derived control law. We define x1 ¼
FL, x2 ¼ Ḟ L, and x3 ¼ xv. Then, the system Formula (1) is
transformed into the following form with model uncertain-
ties, external disturbances, and human–robot interaction
force considered [5] as follows:

ẋ1 ¼ x2

ẋ2 ¼ n1ẋ3 − n2 ẍc þ Δd 2ð ÞÀ Á
− n3x2 þ g1 þϖ1

ẋ3 ¼
1
τ

ksu − x3ð Þ þ g2 þϖ2

y ¼ x1

8>>>>><>>>>>:
; ð5Þ

where ΔdðnÞ ðn¼ 1; 2…Þ denotes the corresponding differen-
tiation error of xc, g1, and g2 denote the system uncertainty;
ϖ1 and ϖ2 denote the unknown human–robot interactive
force and the external disturbance, respectively.

Remark 1. During the movement, human–robot interaction
force is inevitable in the system. Mathematically, the interac-
tive force ϖ1 can be depicted as follows:

ϖ1 ¼ kp FL − Fdð Þ þ kd ḞL − Ḟ d

À Á
; ð6Þ

where parameters kp and kd are constant values that amplify
the differences between machine and human, Fd is the
desired force.

Assumption 1. For system Formula (5), there are bounded
positive constantsϖ1,ϖ2, g1, and g2 that satisfy the inequal-
ity jϖ1j≤ϖ1, jϖ2j≤ϖ2, jg1j≤g1, and jg2j≤g2.

First step: according to the design process of ZNN, the first
Zhang function (ZF) is constructed and applied as follows:

e1 ¼ x1 − xd; ð7Þ

where xd denotes the desired force Fd .

ėi ¼
dėi
dt

¼ −γϕ eið Þ þ Δfi; i¼ 1; 2…; ð8Þ

where the design parameter γ>0 scales the convergence rate
and Δfi represents the bounded noise with each entry Δfi ≤ f .
Different values of γ puts various influences on the tracking
performance as well Δf .

Within the hydraulic system that can afford, the higher
γ is set, the better the tracking performance is exhibited.
ϕð⋅Þ is an activation function. In theory, an arbitrary odd
monotonically increasing activation functions can be used
for the ZF construction. Zhang et al. have discussed the
different activation functions. Considering the simplicity
of the controller, the linear function ϕðeiÞ¼ ei is selected.
Then we can obtain

ė1 ¼ ẋ1 − ẋd: ð9Þ

The design Formula (8) is applied, and we get

ẋ1 − ẋd ¼ −γ x1 − xdð Þ þ Δf1: ð10Þ

Since ẋ1 ¼ x2, we have

x2 þ γ x1 − xdð Þ − ẋd − Δf1 ¼ 0: ð11Þ

Second step: in general, e1 and ė1 does not always equal
zero when t= 0. Besides, no explicit expression of u is con-
tained in Formula (11), the further consideration of the con-
troller design is necessary. Then the second ZF is constructed
as follows:

ZNN controller Dynamics of  hydraulic
exoskeleton 

RBFNN

Fd

FL

FL

xv

g 

uΣ
+

–

D̂g

W̃T h(e–)

Ŵ  = –η–1
h(e–)

Disturbance
observer

FIGURE 3: Control diagram of hydraulic exoskeleton.
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e2 ¼ x2 þ γ x1 − xdð Þ − ẋd − Δf1: ð12Þ

ZNN design Formula (8) is applied again. Then, we get

x2 þ γx1 − ẍd − γẋd ¼ −γ x2 − γx1 − γxd − ẋd − Δf1ð Þ þ Δf2:

ð13Þ

Then,

ẋ2 ¼ n1ẋ3 − n2 ẍc þ Δd 2ð ÞÀ Á
− n3x2 þ g1 þϖ1: ð14Þ

Substituting it into the equation above, the control law
for the hydraulic system Formula (5) can be depicted below

u¼ τ

n1ks
− γ2x1 þ n3 − 2γð Þx2 þ γ2xd

h
þ2γẋd þ ẍd þ n2 ẍc þ

n1x3
τ

i
þ gþϖ;

ð15Þ

where g¼ τ
n1ks

ðγΔf1 þΔf2 þ n2dð2Þ −g1 − n1g2Þ can be
regarded as the internal disturbance in the system, ϖ¼
τ

n1ks
ðϖ1 þ n1ϖ2Þ is considered as the lumped external

disturbance.

Theorem 1. (Global and exponential convergence without
noise) Given the necessary parameters, if linear activation
and design formula are used, the solution error e1 ¼ x1 − xd
converges to zero globally and exponentially at any randomly
generated initial state FLð0Þ.

Proof. ZNN design formula is as ė1 ¼ − γϕðe1Þ. Then, a Lya-
punov function candidate for the system is defined as
follows: □

V1 ¼
e21
2
: ð16Þ

It is obvious that the Lyapunov function is positive-
definite, because for any ė1 ≠ 0 and V1>0. Besides, V1 ¼ 0
exists only for ė1 ¼ 0. Next, its time derivative can be obtained
below. Since the linear activation function ϕðeiÞ¼ ei is uti-
lized, we have,

V1 ¼ −γe1ϕ e1ð Þ ¼ −γe21 ≤ 0; ð17Þ

which guarantees the negative-definite of V̇ 1. The equation
sign makes sense if and only if the condition that e1 ¼ 0 is
satisfied. Based on Lyapunov theory, e1 globally converges to
zero. In view of this, the proof of global convergence is thus
completed.

Next, we verify the exponential convergence. In consid-
eration of ZNN error function, its analytic solution can be
obtained as follows:

e1 ¼ e1 FL 0ð Þð Þ exp −γtð Þ: ð18Þ

Evidently, with t →1, the tracking error converges to
zero exponentially with convergence rate γ, and the proof is
done. It is worth pointing out that, it follows from Formula
(18) that the larger γ is used, the faster convergence rate is
obtained.

Theorem 2. (The error bound with noise) The polluted ZNN
design Formula (7) is given. Whether the constant or time-
varying noise, the absolute steady-state error of the system
satisfies the following equality:

limt→1 e1j j< 1
γ
f : ð19Þ

Proof. A Lyapunov function candidate V2 ¼ 1
2 je1j2 ≥ 0 is con-

sidered for the system Formula (5). Taking the derivation of
it, we can obtain □

V̇ 2 ¼ e1j jsgn e1ð Þ −γ e1j jsgn e1ð Þ þ Δf1ð Þ
¼ − γ e1j jsgn e1ð Þ − 1

2γ
Δf1

� �
2
þ 1
4γ

Δf 21 ;
ð20Þ

where sgnð⋅Þ is the symbolic function. Besides, the following
inequality yields

e1j jsgn e1ð Þ − 1
2γ

Δf1

���� ���� ≥ e1j j − 1
2γ

f : ð21Þ

According to the results above, Formula (20) falls into
the following two situations.

(1) If e1>
f
γ, then V̇ 2 ≤ 0, indicating the value of V2

decrease over time. Such that V2 → 0 with t → þ
1. Therefore, je1j will return to its upper bound f

γ.
(2) If e1<

f
γ, then the sign of V̇ 2 is uncertain. If V̇ 2 ≤ 0,

the tracking error decreases or remains unchanged.
Even though V̇ 2 ≥ 0, the tracking error will increase
with time. The tracking error does not exceed its
upper bound f

γ. Once the tracking error exceeds the
upper bound, it falls into the first situation. Then we
can readily obtain limt→þ1je1j< f

γ.

The proof is thus completed.

3.2. Adaptive RBFNN and Fixed-Time Convergence Disturbance
Observer Design. Clearly, the control law cannot achieve for the
disturbance in the system.

First, the internal disturbance is approximated. It has been
noted that a three-layer RBFNN with only one single-hidden
layer is sufficient to approximate any degree of nonlinear
system [31]. Then, RBFNN is introduced for estimating the
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unknown part of u. Δfi is bounded as well the system uncer-
tainty and it can be substituted by the corresponding upper
bound, which is conservative. Therefore, RBFNN is utilized
to approximate g to enhance the performance of the
controller.

Lemma 1. RBFNN can be utilized to approximate any con-
tinuous function FðxÞ:Rm → R arbitrarily [31].

F xð Þ ¼ cWTh xð Þ þ ε; ð22Þ

where cW is the weight matrix, x¼ ½x1; x2; …xn�T is the input
vector, hðxÞ¼ ½h1ðxÞ; h2ðxÞ; …; hjðxÞ�T is the radius basis
function, ε is the approximation error, j is the number of
neuron nodes. The ideal weight matrix is defined as follows:

W∗ ¼ argminbW2ΩF

sup
x2Ωx

cWTh xð Þ − F xð Þ
 " #

; ð23Þ

where ΩF ¼fcWjkcWjj≤Mg is the effective estimation
domain, M is the design parameter, and Ωx 2Rm is the feasi-
ble region for states vector, respectively. hiðxÞ is defined as
follows:

hi xð Þ ¼ exp −
x − ck k2
2b2

� �
; ð24Þ

where c is the coordinate vector of the basis function center
point, and b is the width of the basis function, i¼ ½1; 2; 3…; j�.

According to Lemma 1, RBFNN is utilized to estimate
the unknown function g as follows:

g¼W∗Th eð Þ þ ε∗; ð25Þ

where W∗, e¼ ½ x1 x2 e1 ė1 � are the perfect output
weights vector and the input of RBFNN, respectively, ε∗ is
the neural network functional approximation error that is
bounded, jε∗j≤ ε0, ε0 is a small positive constant and in
principle can be arbitrarily small by adjusting RBFNN, hð⋅Þ
is RBFNN activation function. The output can be approxi-
mated by

bg ¼cWTh eð Þ; ð26Þ

where cWT is the actual weight matrix.
Next, we design the disturbance observer and the adap-

tive law for RBFNN weight matrix. The structure of
ARBFNN is given in Figure 4.

The approximation error of RBFNN ε∗ and the external
disturbance ϖ consist of the compound disturbance. We let
D¼ ε∗ þϖ. Considering Assumption 1 and Lemma 1, the
compound disturbance is bounded, that is to say, there is a
positive constant which satisfies the inequality jDj≤D.

Because D is unknown, the disturbance observer is designed
to approximate this term.

First, define a variable Ξ¼ x2 − z where z is the auxiliary
variable. And the derivate of z is shown as follows:

ż ¼ n1ẋ3 − n3x2 − n2 ẍc þ cWTh eð Þ
� �
þL Ξ þ Ξr þ Ξ

1
r þ sigmoid Ξð ÞÀ Á

;
ð27Þ

where r 2 ð0; 1Þ is a positive constant, L is the gain parame-
ter. Based on Formula (27) and Formula (5), we have,

Ξ̇ ¼ ẋ2 − ż ¼ D − L Ξ þ Ξr þ Ξ
1
r þ sigmoid Ξð ÞÀ Á

− fWh eð Þ;
ð28Þ

where W̃T ¼cWT
−W∗T . The specific form of disturbance

observer is given as follows:

bD ¼ L Ξ þ Ξr þ Ξ
1
r þ sigmoid Ξð ÞÀ Áþ fWh eð Þ: ð29Þ

The control law for u is given as follows:

u¼ τ

n1ks
½− γ2x1 þ n3 − 2γð Þx2 þ γ2xd þ 2γẋd þ ẍd þ n2 ẍc

þ n1x3
τ

þcWTh eð Þ þ bD �:
ð30Þ

Further, the observer error is defined as follows:

eD ¼ D − bD ¼ −L Ξ þ Ξr þ Ξ
1
r þ sigmoid Ξð ÞÀ Á

−fWh eð Þ þ D¼ Ξ̇
:

ð31Þ

Lemma 2. If a continuous radial bounded function V :Rn →
Rþ ∪ f0g satisfies [32]:

ĝ
Σ

W7

W2

W1

h7

h2

h1

e–2

e–1

e–3

e–4

FIGURE 4: ARBFNN structure.
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(1) VðxÞ¼ 0⇔ x¼ 0
(2) For any xðtÞ satisfying the inequality

V̇ xð Þ ≤ −k1Va xð Þ − k2Va1 xð Þ þ ϑ; ð32Þ

then the system is globally stable and converges in fixed time,
where k1; k2>0, 0<a<1, a1>1, and ϑ2 ð0; þ1Þ. The con-
vergence time T satisfies the inequality as follows:

T ≤ Tmax≔
1

k1ψ 1 − að Þ
1

k2ψ a1 − 1ð Þ ; ð33Þ

where ψ is a constant with 0<ψ<1

Theorem 3. (Fixed-time stable disturbance observer) If the
disturbance observer Formula (29) is adopted, the compound
disturbance D could be estimated in fixed time T, and the
disturbance error is 0.

Proof. From Formula (31), it is obtained that if Ξ̇ converges to
zero, its corresponding derivative converges to 0 as well D̃. □

A Lyapunov candidate is chosen as follows:

V3 ¼ 0:5Ξ2 þ 0:5ηfWTfW: ð34Þ

The derivate of V3 is as follows:

V̇ 3 ¼ ΞΞ̇ þ ηfWTḟW
¼ Ξ −L Ξ þ Ξr þ Ξ

1
r þ sigmoid Ξð ÞÀ Á

− fWTh eð Þ þ D
� �

−ηfWTċW
≤ − LΞrþ1

− LΞ
1
rþ1 þ DΞ − LΞsigmoid Ξð Þ�� ��

−fWT Ξh eð Þ þ ηċW 1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

set¼0

:

ð35Þ

The adaptive law for RBFNN is given as follows:

ċW ¼ −η−1Ξh eð Þ; ð36Þ

where η>0 is the design parameter. Such that,

V̇ 3 ≤ −L 2V3 − ηfWTfW� � rþ1ð Þ
2
− L 2V3 − ηfWTfW� � rþ1ð Þ

2r

þ DΞ − LΞsigmoid Ξð Þ�� ��:
ð37Þ

For the analysis, r is taken as 1/3 in the paper. Notice,
W̃TW̃ ≥ 0, η>0 and 2V3 − ηW̃TW̃ ≥ 0. Then, Formula (37)

is rewritten as follows:

V̇ 3 ≤ −L 2V3 − ηfWTfW� �
2
− L 2V3 − ηfWTfW� �2

3

þ DΞ − LΞsigmoid Ξð Þ�� ��
≤ − 4LV2

3 − L 2V3 − ηfWTfW� �2
3

þ DΞ − LΞsigmoid Ξð Þ�� ��þ 4LηV3
fWTfW − L ηfWTfW� �

2
:

ð38Þ

Clearly, 4LηV3W̃TW̃ − LðηW̃TW̃Þ2 ≥ 0. Besides, for the
term − Lð2V3 − ηW̃TW̃Þ23, we have the following analysis.

We construct a continuous function f ðxÞ.

f xð Þ ¼ −Lx
2
3; x 2 0;þ1½ Þ: ð39Þ

Based on Lagrange mean value theorem, there exists a
positive constant α satisfying as follows:

f 0 αð Þ ¼
f 2V3ð Þ − f 2V3 − ηfWTfW� �

ηfWTfW ≤ 0; ð40Þ

where α2 ð2V3 − ηW̃TW̃; 2V3Þ.
Then, − Lð2V3 − ηW̃TW̃Þ23 can be expressed in the fol-

lowing form:

−L 2V3 − ηfWTfW� �2
3 ¼ −2

2
3LV

2
3
3 − f 0 αð ÞηfWTfW: ð41Þ

Formula (38) is reformulated as follows:

V̇ 3 ≤ −4LV2
3 − LV

2
3
3 þ ϑ; ð42Þ

where ϑ¼ − f 0ðαÞηW̃TW̃þ jDΞ − LΞsigmoidðΞÞj þ
4LηV3W̃TW̃ − LðηW̃TW̃Þ2 ≥ 0. From Lemma 2, we can
obtain the following inequality:

T ≤ Tmax≔
1

k1ψ 1 − að Þ
1

k2ψ a1 − 1ð Þ ; ð43Þ

where k1 ¼ 2
2
3L; k2 ¼ 4L; a¼ 2

3 ; a1 ¼ 2, respectively.
The proof is completed.

Theorem 4. (Robustness analysis) Considering the system
Formula (5) with uncertainties and external disturbances, if
RBFNN Formula (26), its adaptive law Formula (36),
disturbance observer Formula (29) are employed, the system
tracking error e1, e2 are fixed time stable.

Proof. A Lyapunov function candidate is selected as
follows: □

Applied Bionics and Biomechanics 7



V4 ¼ V1 þ V3 þ 0:5e22: ð44Þ

The derivative of V4 is described by

V̇ 4 ¼ 0:5e1ė1 þ 0:5e2ė2 þ V̇ 3

¼ − γ e21 þ e22ð Þ þ V̇ 3

≤V̇ 3 ≤ −4LV2
3 − 2

2
3LV

2
3
3 þ ϑ:

ð45Þ

We construct a continuous function

f1 xð Þ ¼ −4Lx2 − 2
2
3Lx

2
3; x 2 0;þ1½ Þ: ð46Þ

It is common to find that f1ðxÞ is a monotonically
decreasing function. Since V4 ≥V3, we have,

f1 V3ð Þ ¼ f1 V4ð Þ þ ρ; ð47Þ

where ρ≥ 0.
Then, Formula (45) is converted to

V̇ 4 ≤ −4LV2
3 − 2

2
3LV

2
3
3 þ ϑ

  ¼ −4LV2
4 − 2

2
3LV

2
3
4 þ ϑþ ρ:

ð48Þ

Therefore, the tracking error e1, e2 are fixed time stable.
From Lemma 2, the convergence time T1 satisfies as follows:

T ≤ Tmax≔
1

k1ψ 1 − að Þ
1

k2ψ a1 − 1ð Þ ; ð49Þ

where k1 ¼ 2
2
3L; k2 ¼ 4L; a¼ 2

3 ; a1 ¼ 2, respectively.

4. Simulation Studies

The simulation is presented in this section to demonstrate
the effectiveness and superiority of the proposed control
scheme. It has been discussed in Section 2 that the desired
force is determined by the angle joint and the actuator dis-
placement. There is a functional relationship between joint
angle φ and load force FL. Considering the simplicity of the
system, the desired load force is chosen as the reference
quantity.

To avoid adverse effects caused by simulation parame-
ters, the main parameters are selected as shown in Table 1.
The considered disturbances in this paper are shown in
Table 2, including four different common disturbances
[33]. In this work, the ERL-SMC controller is used as a
contrast control strategy. The corresponding controller with-
out considering disturbances is given as follows:

uERL-SMC¼
τ

n1ks
ẍd þ n2 ẍc þ n3x2 þ δ ẋd − x2ð Þ½

þksþ ζ tanh sð Þ�;
ð50Þ

where s is the sliding function, δ, ζ, and k are positive con-
stants, respectively. Similar to γ, k is used to adjust the con-
vergence rate.

The simulation is repeated to observe the effects of the
controller with various load forces and frequencies. We set
the desired force as Fd ¼ 200× sinð4πtÞ and Fd ¼ 200×
sinð20πtÞ, respectively. The external disturbance and inter-
active force related terms are given as ϖ¼ sinð2πtÞþ 1þ
expð− 0:1tÞ and g¼ 0:05x1 þ 10−3x2. The control law (30),
ARBFNN (26), its adaptive law (36), and FDO (29) are
employed. ZNN design parameter γ is set to be 100, 200, and
300, respectively. The structure of ARBFNN is 4-7-1.
ARBFNN parameters are given as ci ¼ 103½− 2:5; − 1:7; −
0:9; 0; 0:9; 1:7; 2:5�, b¼ 103, and η¼ 0:005. The disturbance
observer parameters L, r are set to be 1 and 1/3, respectively.
The initial condition is set to be FLð0Þ¼ 0. As for ERL-SMC
controller, the corresponding parameters are selected as δ¼
15, ζ¼ 10, and k¼ 100; 200; 300. The sampling period is
selected as 0.001 s. All simulation experiments are conducted
on MATLAB/Simulink R2020b. The ode 3 solver is selected.

The blue dot dash line in Figure 5(a) shows that the
proposed controller can track the desired force quickly. As
presented in Figure 5(c) blue solid line, the maximum force
tracking error for the proposed is 9.24N. After 0.113 s, the
tracking error reaches stable state. From Theorem 1, the

TABLE 1: The main parameters of the electrohydraulic servo system.

Parameters Units Value

m kg 50
β s−1 1.517e9

μ Ns/m 10,000
ps MPa 8
τ s 0.0035
FC N 4
2Cin þCex – 3e−14

Kc m3 s/Pa 2.0e−11

Kq m3 s ·A 18.2e−3

ks m/MPa 1.54
A1 m2 3.25e−4

A2 m2 2.1e−4

TABLE 2: The disturbances forms.

No. Disturbance forms Expression

1 Constant form 1
2 Random form randð1Þ
3 Sine form sinð2πtÞ
4 Exponential-decay form expð− tÞ

8 Applied Bionics and Biomechanics



maximum tracking error can be reduced by adjusting the
design parameter γ. Then, γ is set to be 200 in Figure 6.
Compared to Figure 5(c), the maximum tracking error of
the proposed scheme reduces to 4.62N in Figure 6(c),
reduced by 50% and the convergence time drops from
0.113 to 0.47 s. Evidently, the increased γ leads to the dimin-
ishing peak value and convergence time.

Furthermore, frequency can affect performance of the pro-
posed controller. The blue dot dash line in Figures 6(c) and 7(c)
indicates the increased frequency leads to a significant increase in
maximum tracking error. Accordingly, the design parameter γ
can be adjusted to enhance the control quality.

To demonstrate the superiority of the ARBFNN-FDO-
ZNN framework, we compare it with ERL-SMC in terms of
maximum tracking error and convergence time. The key
parameters γ and k are kept same for fair comparison. The
comparative results are listed in Tables 3 and 4. Besides,
partial enlargements (red solid line) in Figures 5(c)–8(c)
illustrate the stable tracking error of ERL-SMC still oscillates
with time. On the contrary, the tracking error of ARBFNN-
FDO-ZNN is relatively smooth. There is no doubt the pro-
posed control scheme performs its excellence. The evolution
of the adaptation weights cW by ARBFNN are shown in
Figure 9.
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FIGURE 5: The simulation comparison results with Fd ¼ 200 sinð4πtÞ, γ¼ 100; k¼ 100. (a) Represents the overall simulation results, (b)
represents the partial enlargement of (a), (c) is the tracking error, and (d) reveals the control input signal.
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5. Experimental Results

The effectiveness of the controller is further validated in
experiments on the robot servo system. The block diagram
is depicted in Figure 10. The proper hydraulic cylinder and
servo valve are selected to meet the specific requirements.
The computer disposition is Intel Core I7/2.8 G Hz, 8G
memory, 250G solid state disk with a 32-bit A/D converter,
a 32-bit D/A converter, and an amplifier. The desired force
signal is generated by the computer. The controller is
adopted to control the servo system. The experimental
results are demonstrated in Figures 11–14.

Comparing Figure 11(c) with Figure 8(c), the maximum
tracking error of experimental results is 1.38N higher than

that of simulation results, a increase of 14.9%. Considering
the given reference is Fd ¼ 200 sinð4πtÞ, the maximum track-
ing error of the algorithm is within the allowable range of
engineering applications. To observe the influence of the
design parameter, we increase the design parameters from
100 in Figure 11 to 200 in Figure 12. Correspondingly, it is
found that the peak value is reduced from 10.62 in to 5.24N.

Besides, we have investigated the effect of frequency var-
iation on the control effect. All else being equal, the higher
frequency has the negative impact on the experimental track-
ing performance (Figures 12 and 13), which is consistent
with the simulation results. To resist the negative effects of
frequency variations and enhance the control performance
shown in Figure 13, we have increased the design parameter
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FIGURE 6: The simulation comparison results with Fd ¼ 200 sinð4πtÞ, γ¼ 200, and k¼ 200. (a) Represents the overall simulation results, (b)
represents the partial enlargement of (a), (c) is the tracking error, and (d) reveals the control input signal.
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FIGURE 7: The simulation comparison results with Fd ¼ 200 sinð20πtÞ, γ¼ 200, and k¼ 200. (a) Represents the overall simulation results, (b)
represents the partial enlargement of (a), (c) is the tracking error, and (d) reveals the control input signal.

TABLE 3: The comparison results with Fd ¼ 200 sinð4πtÞ.

Controller
ARBFNN-FDO-ZNN ERL-SMC

γ¼ 100 γ¼ 200 k¼ 100 k¼ 200

Maximum tracking error 9.24N 4.62N 11.41N 7.58N
Convergence time 0.113 s 0.047 s 0.403 s 0.385 s

TABLE 4: The comparison results with Fd ¼ 200 sinð20πtÞ.

Controller
ARBFNN-FDO-ZNN ERL-SMC

γ¼ 200 γ¼ 300 k¼ 200 k¼ 300

Maximum tracking error 23.14N 15.4N 47.45N 33.58N
Convergence time 0.054 s 0.037 s 0.436 s 0.389 s
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to 300. The result is presented in Figure 14. The maximum
tracking error decreases from 25.54 to 16.82N, a decrease
of 34.14%.

Figures 11–14 demonstrate that the tracking error does
not strictly converge to 0. First, the theoretical analysis indi-
cates the tracking error converge to 0 with infinite time.
Besides, the friction model established in this paper based
on the existing friction theory is still different from the prac-
tical. Furthermore, due to the uncertainty and disturbance of
the system parameters, although the nominal values have
been given or estimated in the paper, the changes in the
parameters are still unavoidable. Finally, some minor factors
such as signal noise affect the performance of the system.

Therefore, the actual tracking error and the theoretical dif-
ferences, a normal phenomenon actually.

Generally, the experimental results indicate the effective-
ness of the proposed framework.

6. Conclusions

In this paper, the ARBFNN-FDO-ZNN control scheme has
been proposed for the accurate force tracking control of the
exoskeleton. Primarily, the ARBFNN is introduced to solve
themodel uncertainty in the ZNN framework. Then, the FDO
is adopted to handle the compound disturbance. The asymp-
totic stability of the coupled dynamics while applying the
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FIGURE 8: The simulation comparison results with Fd ¼ 200 sinð20πtÞ, γ¼ 300, and k¼ 300. (a) Represents the overall simulation results, (b)
represents the partial enlargement of (a), (c) is the tracking error, and (d) reveals the control input signal.
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FIGURE 10: Block diagram of servo system for force tracking control.
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FIGURE 11: The experimental results with Fd ¼ 200 sinð4πtÞ and γ¼ 100. (a) Represents the overall simulation results, (b) represents the
partial enlargement of (a), (c) is the tracking error, and (d) reveals the control input signal.
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FIGURE 12: The experimental results with Fd ¼ 200 sinð4πtÞ and γ¼ 200. (a) Represents the overall simulation results, (b) represents the
partial enlargement of (a), (c) is the tracking error, and (d) reveals the control input signal.
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FIGURE 13: The experimental results with Fd ¼ 200 sinð20πtÞ and γ¼ 200. (a) Represents the overall simulation results, (b) represents the
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proposed control has been ensured using the Lyapunov the-
ory. Compared with ERL-SMC, the simulation results present
the superiority of the proposed scheme. Finally, the experi-
mental results have been conducted to present the effective-
ness of the scheme.

We incorporated ZNN with observer and RBFNN for the
first time. From simulation and experimental results, it has been
presented that the proposed approach is effective in fulfilling the
force control objective in presence of model uncertainties, exter-
nal disturbances, and human–robot interaction force. Future
work will focus on the extension to the approach to switched
control of the lower extremity exoskeleton.

Nomenclature

φ: Joint angle
xc: Piston displacement
J: System inertia
τ: Mechanical time constant of the spool
M: Moment arm
k
s : DC gain of the valve
FL: Load force
u: Control variable
Ff : Friction force
A1;A2: Areas of piston corresponding to A and B
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FIGURE 14: The experimental results with Fd ¼ 200 sinð20πtÞ and γ¼ 300. (a) Represents the overall simulation results, (b) represents the
partial enlargement of (a), (c) is the tracking error, and (d) reveals the control input signal.
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m: Mass
pA; pB: Pressure of chamber A and B
ro: Mass center
Cin;Cec: Hydraulic internal and external leakage of the

system
xv: Spool displacement
V0: Initial volume of cylinder
μ: Viscous friction coefficient.
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