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+e contact surface of the rough joint has geometrical parameters as the joint matching coefficient (JMC) and the distribution
pattern of the contact segments. +e specimen used in the modified SHPB test got the artificial joint by sawing some notches on
the surface contacted to the output bar. Different assemblies of the notches formed various contact areas and distribution patterns.
Using the modified SHPB tests data, the altered thin-layer interface model was used to analyze the effects of geometrical pa-
rameters on one-dimensional stress wave transmission and energy dissipation across a single rough joint. It revealed that the
transmission coefficient decreased with the diminution of JMC, and it increased with the scattered distribution pattern as the
similar trend for each JMC set. As for the energy coefficients, with the decrease of JMC, the transmission energy coefficient
reduced sharply, but it increased very slowly with the reflection energy coefficient and irreversible energy coefficient. It revealed
that the JMC of 0.5 was the critical point of the energy dissipation. More energy transmitted across the joint rather than reflecting
back and dissipating, when JMC> 0.5. Nevertheless, the irreversible energy coefficient was much larger than the transmission and
reflection coefficients, when JMC< 0.5.

1. Introduction

Due to the existence of joints, fractures, faults, and so on,
rock masses have properties such as discontinuity, anisot-
ropy, and nonlinearity [1, 2]. Rock dynamics has applica-
tions in earthquakes, mining, energy, environmental, and
civil engineering, when dynamic loads are encountered [3].
Earthquake, rockburst, and other disasters are scientific
issues about stress wave propagation in jointed rock masses
[4]. Formed the discontinuous interfaces in rock masses,
joints have significant effects on stress wave propagation. It
has been one of the research focuses in rock mechanics and
rock engineering in recent years.

+e surface topography of the joint demonstrates its
spatial geometrical attribute, which is the key factor affecting
the deformation of the rock mass. Only the dynamical

models with surface topography parameters could overall
illustrate the actual mechanical behavior of the rock mass.
Fractal description of the joint asperity, relationship between
JRC and fractal dimension, and the effect of fractal di-
mension on shear strength and friction angle of joints were
discussed [5]. Tatone et al. developed a roughness evaluation
methodology for 2D roughness profiles to objectively
quantify JRC [6]. Rasouli et al. presented a new parameter
for quantitative roughness determination based on the
distribution of unit normal vectors to a rock profile [7].
Zhang et al. proposed a new method for accurate JRC es-
timation [8]. Li and Huang developed numerous empirical
equations to estimate the joint roughness coefficient (JRC) of
a rock fracture based on its fractal dimension (D) [9]. Park
and Song found a numerical method to determine the
contact areas of a rock joint under normal and shear loads
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[10]. Zheng and Qi found that all mathematical relationships
of surface inclination of surfaces dipping opposite to shear
direction with JRC satisfy the power law equation (11).

It has been generally recognized that joints would result in
the attenuation of the amplitude and velocity of the stress
wave, and the attenuation of the amplitude could react the
properties of the jointed rockmass better [12, 13]. Perino et al.
reviewed and compared theoretical methods of the dis-
placement discontinuity model and the equivalent medium
method, and considerations about the advantages and dis-
advantages of these methods were given [14]. Li et al. pre-
sented an analytical and experimental study on a longitudinal
wave (P-wave) transmission normally across a filled rock joint
[15]. Li et al. proposed an equivalent viscoelastic medium
model to analyze longitudinal wave propagation through
discontinuous media with parallel joints [16]. Park and Song
established a joint surface model which enabled quantitative
evaluation of the steepness of contact areas, as well as their
location and size [17]. Gong et al. provided a reference
method to determine sample size for actual test conditions
[18]. Huang et al. conducted experiments to study the re-
lationship between the transmission ratio (TR) and normal
stress, joint roughness, joint number, and frequency of in-
cident waves, respectively, when ultrasonic waves pass across
a rock mass with one joint and multiple parallel joints ori-
ented normally [19]. Wu and Zhao revealed that the atten-
uation factor in a filled fracture increases with higher water
content from an air-dry state to a saturated state [20]. Wei
et al. proposed a set of systematic experimental methods to
research the influence of discontinuity roughness on strength
and deformation of discontinuity [21].

Zhao proposed a joint matching coefficient (JMC) based
on the percentage of joint surface area in contact as an
independent joint surface geometrical parameter [22]. Chen
et al. studied the effects of JMC and spatial geometries of the
joint on wave transmission by the modified SHPB experi-
ment [23]. Li et al. modeled the fracture as a thin-layer
interface by two smooth surfaces separated by square col-
umn asperities with different heights, and the wave prop-
agation equation is established by analyzing the interaction
between a stress wave and the rough fracture [24]. In this
study, geometrical parameters refer to JMC and the notches
quantity of the artificial joint, which represent the contact
area ratio and the distribution pattern of the joint, re-
spectively. Combing the above research findings, this study
input the test parameters and incident wave of the modified
SHPB tests into the altered thin-layer interface model, and
the effects of geometrical parameters of the joint on wave
transmission and energy dissipation were analyzed.

2. Theoretical Analysis

Regarded as the one-dimensional P-wave propagating across
the elastic joint with rough surface, effects of the geometrical
parameters of the modified SHPB experiment could be
analyzed based on the thin-layer interfacemodel altered with
JMC, as shown in Figure 1.

At time ti, the relation of the velocity of the right-running
wave before the jth interface vr, j (t), the velocity of the

right-running wave after the jth interface vr, j (t), the velocity
of the left-running wave before the jth interface v−(t), and
the velocity of the left-running wave after the jth interface
v+(t) can be expressed as
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m �

1 1

S+
j

S−j
−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

n �

1 1

1 −
s+

j

s−j

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(2)

At the nominal contact surface S′ of the joint, where j� 0,
the incident wave vI(t) is

vI(t) � v
−
r,0(t). (3)

+e reflected wave vR(t) is
vR(t) � v

−
l,0(t), (4)

S+
0

S−0
� JMC. (5)

At the contact surfaces S/O (surface S is of the input side
and surface O is of the output side, respectively, as shown in
Figure 1(b)), where j�N, the transmitted wave vT(t) is

vT(t) � v
+
r,N(t), (6)

S+
N

S−N
� JMC−1. (7)

+en, transmission energy coefficient eT and the re-
flection energy coefficient eR of the joint can be calculated,
respectively, as
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+us, the irreversible energy coefficient eJ of the joint can
be calculated as

eJ � 1− eT − eR. (10)

3. Effects ofGeometrical Parameters of the Joint

3.1. Essential Parameters. As for the modified SHPB ex-
periment [23], the apparatus consisted of a loading bar, an
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input pressure bar, an output pressure bar, and a specimen
between the pressure bars. All bars have the same diameter,
as well as the specimens. 
e physical parameters of the
aluminum specimens are shown in Table 1.

Tables 2–5 show the geometrical parameters of the
specimens in 4 sets. As shown in Table 2, specimens #1-1 and
#1-2 in #Set 1 have a JMC about 0.81, but with di�erent
quantities of notches which refer to di�erent distribution
patterns of the notches. With bigger quantity of the notches,
the distribution pattern of the notches is more scattered.
Whereas, the distribution pattern of the notches is lumped
with less quantity of the notches. Hence, the quantity of the
notches could denote contact pattern of the jointed surface
as scattered or lumped. #Set 2, #Set 3, and #Set 4 have the
same situation, that is, specimens in each set have the nearly
equal JMC but distribution patterns varied from scattered to
lumped.


e test data were recorded based on the Gen3i platform.

en, the data processing method was adopted to obtain the
incident wave and re�ected wave at the nominal contact
surface S′. According to Equations (1)–(7), the transmitted
wave at the contact surfaces S/O could be acquired.

erefore, the transmission energy coe�cient, re�ection
energy coe�cient, and irreversible energy coe�cient could
be got by Equations (8)–(10) respectively.

3.2. E�ect on Transmission Coe�cients. Figure 2 demon-
strates the relation between the quantity of the notches and
transmission coe�cients under di�erent JMC sets. It is

obvious that the transmission coe�cient declined as JMC
decreased. For each JMC set, the relation of transmission
coe�cient and the quantity of notches has the similar trend,
which could be �tted by the allometric function:

y � a · xb, (11)

where the parameters are listed in Table 6.
As shown in Figure 2, the transmission coe�cient was

relatively higher, as the quantity of notches increased, while
the transmission coe�cient was relatively lower, as the
quantity of notches decreased. It indicated that more waves
transmitted across the joint when the distribution pattern of
the joint was scattered, and less waves transmitted through
when the distribution pattern of the joint was lumped. It
revealed that relatively scattered distribution of the joint
surface could result in relatively higher transmission e�ect,
and relatively lumped distribution of the joint surface could
result in relatively lower transmission e�ect. 
us, it dem-
onstrated the relation between the geometrical parameters
and the transmission coe�cients.

3.3. E�ect on Energy Dissipation. According to Equations (8)
and (9), the transmission and re�ection energy coe�cients
could be obtained, respectively, and the irreversible energy
coe�cient could be obtained by Equation (10). Figure 3 shows
the relation of JMC with the 3 above energy coe�cients.
When JMC is 0.81, the transmission energy coe�cient is
about 0.8, while the re�ection energy coe�cient is near 0, and
the irreversible energy coe�cient is about 0.2. It expresses that
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Figure 1: P-wave propagates through a rough joint. (a) An arti�cial rough surface of a specimen in the modi�ed SHPB tests. (b) P-wave
separation when propagating across the joint.
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energy transmitted mostly without any reflection, but dissi-
pated by permanent deformation partly, under a JMC of 0.81.
With the decrease of JMC, the transmission energy coefficient
decreases sharply, but the reflection and irreversible energy
coefficients increase slowly. +e fitted curves in Figure 3,
respectively, could be expressed as

y � m · x
2

+ n · x + l, (12)

where the parameters are in Table 7.

It could be noted that the transmission energy coefficient
equals to the irreversible energy coefficient with a JMC of
0.5. +is denotes that the energies of transmission and
dissipation are equivalence, when the joint surface has half of
the surface area in contact.+e irreversible energy coefficient
continues to increase when JMC reduces. When JMC is less
than 0.5, the irreversible energy coefficient is larger than the
transmission energy coefficient. Hence, more energy dissi-
pates by the permanent deformation rather than trans-
mission when less than half of the surface is in contact.

Table 1: Physical parameters of the aluminum specimens.

Density (kg/m3) Young’s modulus (GPa) Poisson’s ratio Diameter of the cross section (mm) Depth of the joint (mm)
2,700 70 0.33 40 1

Table 2: Geometrical parameters of the specimens: #Set 1.

JMC
0.81

0.82 0.81
Specimen no. #1-1 #1-2
Quantity of notches 4 1

Distribution patterns

Table 3: Geometrical parameters of the specimens: #Set 2.

JMC
0.64

0.64 0.65 0.65
Specimen no. #2-1 #2-2 #2-3
Quantity of notches 8 4 1

Distribution patterns

Table 4: Geometrical parameters of the specimens: #Set 3.

JMC
0.49

0.47 0.49 0.50 0.50
Specimen no. #3-1 #3-2 #3-3 #3-4
Quantity of notches 12 4 2 1

Distribution patterns
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When JMC reduces to 0.36, the irreversible energy co-
e�cient is around 0.5, and the energy coe�cients of
transmission and re�ection are approximately equal. It
demonstrates that almost half of the incident energy dis-
sipated when JMC is 0.36.

4. Discussions


e altered thin-layer interface model could be used on the
analysis of modi�ed SHPB experiment, which had taken
geometrical parameters of the joint into account. According
to the calculation results, comparisons were made among
various arti�cial jointed specimens with diverse JMCs and
notches quantities. 
e transmission coe�cient decreased

with the diminution of JMC, and it also decreased with the
diminution of notch quantity with the similar trend for each
JMC set. It illustrated that both JMC and distribution pattern
have obvious in�uence on stress wave transmission e�ect. As
for the energy coe�cients, with the decrease of JMC, the
transmission energy coe�cient reduced sharply from about
0.8 to 0.2, but re�ection and irreversible energy coe�cient
increased very slowly with only 20% and 30%, respectively. It
revealed that JMC a�ected the energy dissipation when
stress wave propagated across the rough joint. With more
than half of the surface area in contact, more energy
transmitted rather than dissipated by the permanent

Table 5: Geometrical parameters of the specimens: #Set 4.

JMC
0.36

0.37 0.35 0.36 0.36
Specimen no. #4-1 #4-2 #4-3 #4-4
Quantity of notches 16 4 2 1

Distribution patterns

Table 6: Parameters of the �tted curves (T-distribution pattern).

Parameters
JMC set

0.81 0.64 0.49 0.36
a 0.97536 0.94891 0.91781 0.89029
b 0.00368 0.00423 0.00451 0.00267
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Figure 2: Relations of the geometrical parameters and trans-
mission coe�cients.

Table 7: Parameters of the �tted curves (energy coe�cients: JMC).

Curves of
Parameters

m n l
eT −0.07524 1.24669 −0.15927
eR 0.96141 −1.58772 0.66732
eJ −0.88624 0.34111 0.49193
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Figure 3: Relations of JMCs with eJ, eR, and eT.
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deformation. On the contrary, more energy dissipated rather
than transmitted with less than half of the surface area in
contact. It demonstrated that the JMC of 0.5 is the critical
point which affects the energy dissipation.

5. Conclusions

+is paper studied the geometrical parameters of the joint,
including JMC and the quantity of notches, which represent
contact area ratio and the distribution pattern of the joint.
+e altered thin-layer interface model with JMC could be
used to analyze one-dimensional stress wave propagation
across the elastic joint with rough surface.

It has been revealed that geometrical parameters have
significant influence on one-dimensional wave transmission
and energy dissipation of the joint.

(1) As JMC reduced, both transmission coefficient and
transmission energy coefficient decreased sharply by
around 60%, while the reflection energy coefficient
and irreversible energy coefficient increased slowly
by about 20%–30%.

(2) JMC-0.5 has been discovered as the critical point that
affected the energy dissipation. At this point, the
transmission energy coefficient equaled to the irre-
versible energy coefficient. When JMC> 0.5, that is
more than half of the surface in contact, energy had
mostly transmitted through the joint, rarely reflected
back, and the rest dissipated by permanent de-
formation. Inversely, when JMC< 0.5, that is less
than half of the surface in contact, energy had dis-
sipated more than transmitted and reflected
increasingly.

(3) +e transmission coefficient varied accordingly to
distribution pattern of the joint with the similar
trend under the same JMC. For each JMC set,
transmission coefficient was relatively higher when
the distribution pattern was scattered, and it de-
creased with the lumped distribution pattern.
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