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When inspecting the property of material, nondestructive testing methods are more preferable than destructive testing since they
do not damage the test sample. Nondestructive testing methods, however, might not yield the same accurate results in examining
the property of material when compared with destructive testing. To improve the result of nondestructive testing methods, this
research applies artificial neural networks and adaptive neural fuzzy inference system in predicting the concrete strength es-
timation using nondestructive testing method, the ultrasonic pulse velocity test. In this research, data from a total of 312 cylinder
concrete samples were collected. Ultrasonic pulse velocity test was applied to those 312 samples in the lab, following the ASTM
procedure. /en, the testing results of 312 samples were used to develop and validate two artificial intelligence prediction models.
/e research results show that artificial intelligence prediction models are more accurate than statistical regression models in
terms of the mean absolute percentage error.

1. Introduction

Examining concrete compressive strength in existing
structure is one of the most important issues in the con-
struction industry. /e compressive strength serves as
one of the most essential factors in quality assurance
for concrete. /ere are nondestructive and destructive
methods to test the compressive strength of concrete.
Nondestructive testing (NDT) methods will not only not
damage the concrete structure but they are also economic
and feasible. A common NDT method to inspect the
compressive strength of the concrete is ultrasonic pulse
velocity (UPV) testing. UPV testing is mainly used to
measure the pulse velocity of the concrete, and then the
compressive strength of the concrete is interpolated. UPV
testing can effectively evaluate the uniformity and relative
quality of concrete structures. Moreover, UPV testing has
a lot of advantages like low cost, easy to operate, and
convenient to carry. /e disadvantage of the NDTmethods
in general is that they are qualitative and have an average of
20% mean absolute percentage error (MAPE) when
compared with destructive methods [1]. To enhance the

accuracy in estimating compressive strength, a combina-
tion of destructive and nondestructive methods has been
proposed in [2, 3]. A combination of UPV testing and
rebound hammer test was employed in [2, 3].

With the development of artificial ntelligence (AI)
technology, incorporating AI in enhancing the accuracy of
compressive strength has become a new research approach.
Cho and Pham [4] employ AI technology including support
vector machines, artificial neural networks (ANNs), chi-
squared automatic interaction detector, and linear re-
gression to predict the compressive strength of high per-
formance concrete. Adaptive neural fuzzy inference systems
(ANFIS) is also an effective (AI) prediction method. Vakh-
shouri and Nejadi [5] have concluded that the ANFIS model
gave the best prediction of the compressive strength of self-
compact concrete. Comparing ANNs, ANFIS, and multiple
linear regression in estimating the compressive strength of
concrete, [6, 7] state that ANNs and ANFIS are suitable
prediction models. Based on the reliability of ANNs and
ANFIS, this research has chosen those two AI technologies in
enhancing the prediction of concrete compressive strength in
UPV testing.
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In concrete, the actual compressive strength is the
unconfined one or the self-compacted one [8]. One of the
NDT methods commonly used to measure the actual
compressive strength is UPV test. UPV test is done based
on the principle of measuring the travelling time of an
ultrasonic pulse in concrete sample. /en, the ultrasonic
pulse velocity is obtained. Based on the velocity in-
formation, the actual compressive strength of concrete
sample is evaluated. It is shown in previous researches that
the higher the ultrasonic pulse velocity, the better the
quality of concrete sample [9, 10].

/e compressive strength of concrete is predicted using
a constructed prediction model. Since there are many ways
to construct this prediction model, Kademi [11] stated that
using multiple linear regression to develop the model cannot
give an accurate prediction of compressive strength. Arti-
ficial neural network, on the other hand, is more suitable for
estimating the property of concrete sample [12, 13].

/is research aims to improve the prediction of concrete
compressive strength in UPV test with the help of ANNs and
ANFIS. A linear and a nonlinear regression prediction
models were developed. /en, 312 test samples that un-
derwent UPV testing from a local laboratory were collected.
252 out of the 312 test samples were randomly chosen to be
the training dataset. /e remaining 60 test samples were
used to evaluate the accuracy of the prediction model
developed.

/e rest of this paper is organized as follows: Section 2 is
the literature review, the methodology of the research is
described in Section 3, the prediction results are discussed in
Section 4, and the conclusion is discussed in Section 5.

2. Literature Review

Since destructive testing is not preferable in some applica-
tions, nondestructive testing methods have attracted lots of
interests in the field of concrete structure assessment. NDT
does not require much on sample preparation and its testing
equipment is quite simple [14]. /erefore, NDT can be
applied easily and economically to assess concrete structure
properties. In addition, due to the limitation of laboratory
equipment, NDTmethods are preferable for the prediction
process [15]. Based on the relationship between strength and
NDTparameters, the strength of concrete will be evaluated.
/e detail information of the empirical relationship between
strength and NDT parameters is provided by the NDT
equipment manufacturers. /e information provided is
directly related to the testing system used in NDTmethods,
and it is not always suitable for all type of concrete. Hence,
the calibration of different types of concrete is necessary
[16, 17]. UPV testing method is one of the most popular
NDT methods that is successfully used to evaluate the
property of concrete.

Ultrasonic pulse velocity (UPV) test uses the propaga-
tion of sound wave through material to measure the depth of
material. It also gives information on damages inside the
material. From the data measured by UPV test, the material
strength and low-strain elastic modulus can be calculated or
predicted [18–20]. It has been shown in [21] that UPV of

concrete is inversely proportional to the volume of pores
inside and develops with age of the concrete. /e UPV rate
of change can be used to determine the setting of concrete
and give inside information on the changes at the micro-
structural level of concrete in early ages [22, 23]. /e re-
search in [24] found the effect of microstructural variations
on UPV in mortar. /is is used to estimate the sand content
in mortar. UPV testing is also used to detect damages inside
concrete effectively in [25, 26]. UPV testing has been shown
to be the effective testing method for different types of
concrete such as lightweight or asphalt concrete in [27–29].
UPV testing measures the ultrasonic wave speed when it
penetrates through materials in order to predict the strength
of the materials, find any changes in condition of the ma-
terials, internal flaws, and other factors. UPV technique,
however, is not always practical for all types of concrete
samples. Since there is sound wave related to the method, it
is not accurate for samples that have internal water-filled
cracks and rough surfaces [30]. To increase the accuracy of
the testing, for rough surfaces, a coupling gel is applied in
between the transducer of testing equipment and roughness
samples to smoothen the contact layer. Many studies have
been conducted in detail to investigate the correlation be-
tween UPV and concrete strength; however, not many lit-
erature results on the correlation between parameters of
UPV and properties of concrete have been found
[17, 19, 20, 27]. In addition, there are many factors that affect
the one important parameter of UPV, the ultrasonic pulse
velocity. /is leads to the derivation on the relationship
between UPV parameters and concrete properties unreliable
[17]. /erefore, the risk level in the evaluating process must
be defined quantitatively. Recently, artificial intelligent
technology has been employed into predicting the com-
pressive strength of concrete. In addition to using UPV test,
the adaptive neuro fuzzy inference system (ANFIS) and the
artificial neural network (ANN) are used to give more
precise prediction on the compressive strength under var-
ious conditions of the mix proportion of concrete [24, 31]. It
states in [32, 33, 34] that inverse modelling of concrete
compressive strength has been developed with statistical
techniques or artificial intelligent techniques. Among AI
techniques, ANNs is quite popular and user friendly for the
process after the prediction model is established. One ad-
vantage of ANNs is that there is no requirement in defining
the explicit input-output relationship as in the conventional
regression. In ANNs, the neuron used is the information
processing system unit. /is system unit consists of con-
nection links and summation/activation functions. Each
neuron receives input and weights from neurons belonging
to the previous layer of this neuron in the training process
[34]. /e learning process in ANNs is adaptive. Applying
ANNs does not require any prior knowledge of the func-
tional relationship among the variables. /e distributed
processing system of ANNs is a parallel one that consists of
one input and one output layer, and one or more hidden
layers connecting by neurons. /ere are different types of
ANNs developed like the multilayer feed-forward neural
network or the cascade-forward neural network [35]. Ap-
plying ANNs in predicting the compressive strength of
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concrete has been studied by researchers and several authors
have applied ANNs in structural engineering [36, 37].

Combining ANNs with the fuzzy inference system,
ANFIS is a hybrid neuro-fuzzy approach. ANFIS has the
adaptive learning algorithm and the reasoning ability, which
is a well-known approach to model complex nonlinear
system [38]. Fuzzy inference system (FIS) is a linguistic rule-
based system that can represent any system with high ac-
curacy. FIS is regarded as the universal approximator [39].
/e downside of FIS is lacking self-adaptability and self-
learning ability when there is a change in the external en-
vironment. With that, ANFIS takes the learning property of
neural network in combination with FIS to create an ap-
proach for forecasting and regression [40]. Author P.J.L.
Adeodato (2011) predicted the concrete compressive
strength by applying a sensor-based forecasting model using
ANFIS. /e results showed that ANFIS gives lower error in
prediction when compared with conventional back-
propagation neural networks [41].

Prediction models take measured data as input variables
in their data-driven modelling. /e models learn through
the training step from a collection of training patterns. /is
paper uses ANN and ANFIS as two different prediction
models with the aim of predicting more accurate concrete
compressive strength in UPV tests.

3. Experiment Methodology

Two artificial intelligence models used to integrate data
in this study are ANNs and ANFIS. Using AI approach
is expected to improve the performance of predicting the
concrete compressive strength when compared with the
conventional approach. /e model development is shown in
Figure 1. According to Khademi [42], the generalization
of the predictive models can be enhanced, but their effec-
tiveness needs further examination.

In this study, data were collected from both destructive
tests and nondestructive tests using 28-day cylinder concrete
specimens. /ey are stored in standard curing conditions
before conducting the tests. /e UPV measurements are
taken against all the cylinder concrete samples with a di-
ameter of 12 cm and a height of 24 cm. Before collecting the
cylinder to the laboratory, the mixture must be cleaned and
greased to adherence between the sample and mold after
casting. After 2-3 days of casting, the specimens are slightly
demanded and carefully be transferred to store in air en-
vironment in the laboratory room. /e process is shown in
Figure 2.

3.1. Destructive Concrete Compressive Strength Test. In this
study, the actual compressive strength of concrete is in-
vestigated according to the Taiwan National CNS1232
standard. “Compressive strength of cylindrical concrete
specimens” is the method that determines the compressive
strength of cylindrical concrete samples such as monolithic
concrete sample or core drilled cylindrical concrete sample.
/e testing device, HT-8391 hydraulic machine, is able to
produce up to 200 tons of press force on the surface of the
concrete sample. /is procedure follows the study of [43].

First, measure the diameter and height of the cylindrical
concrete sample. /en, eliminate all the strange objects on
the surface of the test object and on the surface of the
pressure machine as in Figure 3./e test object will be placed
concentrically with the surface of the pressure machine. /e
compressive force will be increased from 1.50 kfg/cm2

(0.150MPa) to 3.50 kfg/cm2 (0.35MPa) per second. For the
first half of the test, the highest compressive force will be
predicted to increase the force until the test sample is
broken. /en, the maximum compressive force for that test
sample will be recorded.

3.2. Ultrasonic Pulse Velocity. Ultrasonic pulse velocity
(UPV) in concrete is an important parameter in evaluating
concrete’s properties [44]. UPV testing measures the ultra-
sonic wave speed when it penetrates through materials in
order to predict the strength of the materials, find any changes
in condition of the materials, and find any internal flaws, and
the travelling distance has a full report on the correlation
between the compressive strength [45]. UPV technique,
however, is not always practical for all types of concrete
samples. Since there is sound wave related to the method, it is
not accurate for samples that have internal water-filled cracks
and rough surfaces [46]./e unconfined compressive strength
(UCS) is the maximum longitudinal axial compressive stress
of the sample [47]./e relationship between pulse velocity and
compressive strength is also identified. In [41], Yu, L.Y., and
Yong. S (2008) propose an empirical equation on the re-
lationship between the unconfined compressive strength and
the pulse velocity as follows:

UCS � a.e
bV

, (1)

where the properties of material will determine a and b, and
V is the speed of ultrasonic pulse.

In this study, the UPV test used follows the ASTM C597-
16: the standard test method for pulse velocity through
concrete./e instrument used forUPV test is a TICO concrete
ultrasonic detector developed by Proceq Company in Zurich,
Switzerland. As shown in Figure 4, the instrument can per-
form the calculation and evaluation on functions of concrete
uniformity, column hole, crack depth, elastic modulus, and
concrete strength./e ultrasonic pulse velocity test conducted
in this study is described as follows: the measurement was
taken four times for each of the cylindrical concrete sample
with a diameter of 12 cm and height of 24 cm as shown in
Figure 5. For typical 3000 psi (210 kgf/cm2) concrete, for each
cubic meter, the material properties are as follows: 325 kg
cementingmaterial (including 227.5 kg cement, 65 kg slag, and
32.5 kg fly ash), 180 kg water, 940 kg sand, 900 kg aggregate,
and 3.25 kg chemical admixture.

/e ultrasonic pulse velocity test was conducted for each
of 312 test samples. First, one transducer was placed against
one end of the test sample. /e other transducer was placed
at the other end of the test sample. /e distance between the
two transducers was measured as L. After the excitation
measurement, the first Vaseline was applied between the
transducer and the concrete surface, and the pressure wave
was received.
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UPV test equipment consists of three parts: the ultrasonic
pulser, the receive amplifier, and the time measurement
device that indicates that the time of ultrasonic wave travel
through themedium and the receiving transducer receives the
signal. /e measurement data are displayed and recorded in
the control host.

To determine the velocity of ultrasonic pulse wave, two
quantities are measured: the transmission distance and the
duration ultrasonic pulses transmitted./e ultrasonic velocity
(v) was determined as follows:

v �
l

t
103, (2)

where l is the specimen length (peat-cement-sand brick
with length measured in millimetres (mm)), v is the ve-
locity of ultrasound (m/s), and t is the actual travelling time

through medium of the ultrasonic pulse, measured in
microseconds (µs).

3.3. General Linear Regression. General linear regression
(GLR) is used to estimate the correlation between input and
output variables. /e correlation that GLR estimates is
between one response variable, which is a dependent vari-
able, and two or more predictors, which are independent
variables [48]. General linear regression has 2 categories:

(i) Linear regression: in the training data input, the
margin is maximized by using the best hyperplane,
that is, to define the hyperplane boundary as the
training sample, and its range is the shortest distance
between {+1, −1} and the hyperplane.

(ii) Nonlinear regression: can use the nonlinear function
to classify when the linear classification cannot be
used. /is type of data is transformed into a feature
space by transforming it into a high-dimension
feature space through a nonlinear mapping func-
tion Φ.

/e GLR form of a model uses a link function based on
its distribution pattern which gives the relationship be-
tween X, as the predictor variable, and y, as the response
variable [49].

/e (X-y) relational model is shown in the following
equation:

g(E(y)) � X × β + Ο, y ∼ F, (3)

with selected link function g(·), offset variable O, the dis-
tribution model F of y, predictor X, response variable y, and
regression coefficient β.

3.4. Artificial Neural Networks. Artificial neural networks
(ANNs) are simulations of the human brain with the ability
of learning, adapting, and multivariate analyzing. With the
advantages over traditional statistical methods, ANNs have

Research data Prediction method Final model

�e ultrasonic value of concerte
cylindrical specimen

+
actual compressive strength of

concrete column

Model (linear, nonlinear)

Simulation model
(ANN, ANFIS)

Comparison of prediction
results

Figure 1: Model development.

Figure 2: Cylinder collection process by the laboratory.

Figure 3: Concrete compressive strength test.
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the ability to do multiple regression analysis and give out
complex interrelationships between dependent/independent
variables through simple process elements [49, 50]. /e
neuron used in ANNs is an information processing system
unit that consists of connecting link, summation, and ac-
tivation function [51]. As shown in Figure 6, for each
neuron, it receives inputs and weights from neurons of the
previous layer in the training process. /en, the weighted
sum becomes an argument for the activation function in
order to form the output [52]. Using mathematic modelling,
a neuron output is calculated by using (4), (5), and (6) il-
lustrated as follows:

u � 􏽘
m

j�1
wjxj + b, (4)

y � f(u), (5)

f(u) �
1 + e−u

1− e−u
, (6)

where xj(j � 1, 2, ..., m) is the input signal from the previous
layer, wj(j � 1, 2, ..., m) is the weight associated with xj, m is
the number of inputs, b is the bias, and f(u) is the activation
function.

To develop the ANN model, this paper used Neuro
Solutions 7.0 software to construct a neural network model,

speed of training, and host of neural network architectures.
Backpropagation network (BPN) was also adopted for the
prediction of concrete compressive strength. BPN super-
vised the training process. BPN used the gradient descent as
the algorithm to find out the minimum mean of the error
function in weight space.

With the testing data of 312 testing samples from the
data testing laboratory, 252 industrial samples were ran-
domly chosen as the training models set for the prediction.
20 samples were extracted from 252 training group data and
they were set as the cross validation group./en, the training
process is used to find out the best prediction model. Finally,
60 remained data of 312 samples were used to evaluate the
accuracy of the prediction model. As shown in Figure 7, the
input layer in this study was the average ultrasonic pulse
wave velocity. /e output was the compressive strength of
the concrete.

After setting the properties of the predictive model, the
model was trained and tested to obtain the predictive value
of the model. /e result of the predictive model was judged
by the mean absolute error percentage (MAPE), as shown in
Figure 8.

/e average velocity of the four ultrasonic waves ob-
tained from each specimen was an independent variable./e
compressive strength of the concrete was used to carry on
the neural network analysis. Various modes have been tried
to different training times. MAPE of the concrete strength
and actual strength predicted by the model under different
parameter settings is shown in Table 1.

Bias b

Activation
function

Output
y

Summing
function

Inputs Weights

∑ f (•)

w1

w2

wm

x1

x2

xm

Figure 6: Model of network block [32].

Figure 4: Ultrasonic pulse velocity test and TICO ultrasonic pulse velocity.

Receive amplifier

Ultrasonic Plulser

Ø = 12cm
L = 24cm

L: �e Specimen length

Figure 5: Model of schematic diagram of pulse velocity testing
circuit.
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3.5.AdaptiveNeural Fuzzy Inference System. Adaptive neuro
fuzzy inference system (ANFIS) is an adaptive network used
to find responses for complex problems. In ANFIS, super-
vised learning is adopted. ANFIS is comprised of a learning
algorithm, multilayer and feed-forward networks that in-
clude input/output variables, and a fuzzy rule.

/e ANFIS multilayer contains 5 layers that work dif-
ferently from each other; nodes in the same layer work

similar to each other [53]. Figure 9 shows the framework
structure of ANFIS with two input variables.

/e fuzzy rule is illustrated as follows:

(i) Rule 1: if x is A1, y is B1, then j� f1 � p1 x + q1 y + r1
(ii) Rule 2: if x is A2, y is B2, then j� f2 � p2 x + q2 y + r2

where A1, A2; B1, B2; and C1, C2 are the membership
functions of each input x and y as part of the premises; p1, q1,
r1 and p2, q2, r2 are linear parameters in the consequent part
of Takagi-Sugeno fuzzy inference model [53].

In this study, the ANFIS modelling was performed in
MATLAB to train and test data. 252 experimental data were
used as the training group data (train data) of the neuron-
based fuzzy inference system. /e best predictive model was
found by the model training process. 60 remained data were
used as the test data into the best prediction model to
calculate the average absolute error percentage./e concrete
strength predicted by the model was compared with the
compressive strength obtained from the destructive test.
/en, the verification of the established model with the
actual strength of concrete cylindrical test was made. /e
development of the ANFIS model in MATLAB follows the
below steps:

Step 1. Import the training group and test group data using
import instruction syntax as follows:

Traindata� xlsread(“traindata.xlsx”)
Testdata� xlsread(“testdata.xlsx”)

Step 2. Create the ANFIS prediction model. /is study at-
tempts 32 different setups for the ANFIS prediction model:
four membership functions with eight different types. /is
study uses the membership functions available in MATLAB
like triangle, trapezoid, bell, gauss, bilateral Gaussian, double

1
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12
13
14
15
16
17

336
332
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309
336
346
351
374
364
370
184
288
291
283
300
298
277

252
253
254
255
256
257
258
259
260
261
262
263
264
265
256
267
268

4057.5
4042.5
4060
3970
4095
4050
4090
3975

4007.5
3890

3757.5
4025
4005

4002.5
4060

3977.5
3895

287
291
296
292
165
172
170
337
333
303
305
299
153
153
284
286
262

3982.50
3945.00
4007.50
4012.50
3560.00
3577.50
3515.00
3987.50
4000.00
3970.00
3955.00
3945.00
3527.50
3582.50
4072.50
4037.50
3812.50

Number Average wave
speed

Concrete strength
(kgf/cm2)

252 training group data

Input Output

Number Average wave
speed

Concrete strength
(kgf/cm2)

Input Output

60 testing group data

Figure 7: ANNs model data collection process.
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Figure 8: Predictor of absolute error percentage in inverted
transmitter ANNs.
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S-shaped, double S-shaped, and so on during the estab-
lishment of the prediction model.

Step 3. /e model is set to be trained by the hybrid train FIS
method with zero error tolerance and an epoch of 5000.

Step 4. When the training model is completed, prediction
value is exported using command syntax as follows:

Out_value� evalfis (testdata, fis1)

A total of 32 ANFIS prediction models are established.
With the prediction results obtained and the actual com-
pression strength, the absolute percentage of error of themodel
and the prediction accuracy of the model can be calculated.

4. Prediction Results

Among the 312 test samples collected in the lab, 252 of them
are randomly selected as the training dataset and 60 selected
as testing dataset. /e prediction accuracy is measured by
the mean absolute percentage error (MAPE) illustrated in
the following equation:

MAPE �
1
n

􏽘

n

i�1

Ai −Pi

Ai

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (7)

where Ai is the actual concrete sample compressive strength
and Pi is the predicted strength.

In this research, there are two different AI-based pre-
diction models: (a) the artificial neural network (ANN) and
(b) the adaptive neural fuzzy inference system (ANFIS). For
these models, the actual compressive strength is setup as the

output variable. /is experiment includes a total of 312
samples. Among them, 252 are sample data in the training
dataset. /e prediction model was used as the training data of
the model. /en, 60 samples as the model of the test group
data into the best predictionmodel, after the completion of the
test with the actual compressive strength to do the accuracy of
the model. /e model is tested with a different number of
studies (epoch). /e default value is set to 5000 increments
until the convergence is complete, and the error tolerance is
expected to be closer to the actual compressive strength.

4.1. Prediction of ANNs Model Parameters. /e mean ab-
solute percentage error (MAPE) of the concrete strength and
actual strength predicted by the model under different pa-
rameter settings is obtained as shown in Table 2. /e
minimum MAPE obtained are 10.48% and 10.46% for one-
input and two-input network types, respectively. /e most
accurate prediction made using neuro network is as follows:

(i) For one-input, the network type recommended is 1-
3-1 as one-input—three input layer processing
units—one hidden layer processing unit that is
trained 2000 times./eminimumMAPE strength of
concrete is 10.48%, as the number of hidden layer
manufacturing unit increases. Once the number of
processing units exceeds a certain number, the
training time of the model will increase during the
training, and the average absolute error percentage
will not be improved.

(ii) For two-input, the network type recommended is 2-
3-1 as two-input—three hidden layer processing
units—one output layer processing unit that is
trained 2000 times, the best percentage of the average
predicted concrete intensity is 10.46%. It can be seen
that as the number of hidden layer processing unit
increases, the average absolute error percentage
obtained by them can reach a smaller error value. If
the number of hidden layer processing units exceeds
a certain number, it will increase the model in the
training process. During training time, the average
absolute error percentage will not be improved, so
the best predictive model for this type of neural
network is the network type 2-3-1.

Table 1: Network model parameter setting.

Network parameters of the project Explanation
Internet usage examples model Backpropagation neural network

Sample selection (exemplars)
Training group 232 set of data

Cross validation group 20 set of data
Test group 60 set of data

/e number (hidden layers) Layer 1 and layer 2
Transfer Tanh Axon
Learning rule Levenberg Marqua
Maximum epochs /e default value is 200, increased by the amount

Termination (1) /e minimum tolerable range (MSE)
(2) /e maximum training period (epochs)

Cumulative weights update method Batch

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

X

X

X

Y

Y

Y

W2

W1 W1

W2

W1

W2

f

f2

f1

A1

A2

B1

B2

N

N

∏

∏

∑

∑
∑

Figure 9: Structure of ANFIS model used in this study.
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Table 3 gives the result when inserting the remaining 60
sets of data as the test group data of the model into the best
predicted model of this research. /e MAPE is 10.94% for
one-input and 10.87% for two-input. /e absolute error rate
can be reduced by increasing the model input, for example,
the average ultrasonic velocity and the standard deviation.

4.2. Prediction of Adaptive Neural Fuzzy Inference System
(ANFIS). /e MATLAB environment and command win-
dow for ANFIS model development and process are setup
with four different numbers of attribution functions to each
input (this research uses 2, 3, 4, and 5) and eight kinds of
attribution function types: trimf, trapmf, gbellmf, gaussmf,
gauss2mf, pimf, dsigmf, and psigmf. A total of 32 ANFIS
prediction models are established. In order to observe
whether there is a better predictive result, this study attempts
three things. First is to increase the input of the model: the
average ultrasonic wave velocity and the standard deviation
as inputs of the ANFIS predictive concrete strength model.
Second is to compare the different attributive function types.
/ird is to compare the MAPE of the actual concrete
strength and the strength predicted by the model. Table 4
shows the MAPE when examining the accuracy in pre-
diction. /e average value of the ultrasonic wave is used as
the input variable of ANFIS. Result shows that one-input
with 5 attribution functions gives smallest MAPE of 9.37%
and 9.18% for two-input model.

Similar to ANN model validation, the same 60 test data
are used to validate the best ANFIS training model for
validation purpose. /e obtained MAPE from these 60 test
data is shown in Table 5.

4.3. Result Analysis. /e outputs that predict the estimated
concrete compressive strength are compared directly with
the actual compressive strength obtained./emean absolute
percentage error MAPE of the linear and nonlinear re-
gression are 11.17% and 17.66%, respectively, and the ac-
curacy is not enough. /e best predictive model is based on
the adaptive neurocognitive fuzzy inference system, and the
average absolute error percentage MAPE is 9.86%. /e re-
search results can provide valuable information when UPV
tests are used to estimate concrete compressive strength. It is
also proved that the accuracy of the prediction is higher

when using the artificial intelligence algorithm./e artificial
intelligence method used to establish the prediction model
does improve the prediction accuracy of concrete com-
pressive strength, as shown in Table 6.

Table 7 is the result of the prediction model established
by different methods in this study. /e artificial intelli-
gence method does improve the prediction accuracy of
concrete compressive strength prediction model. /is
study attempted to increase the input variable of the model,
for example, the average velocity of the ultrasonic pulse
velocity and standard deviation. As shown in Table 7,
by increasing the number of input variables, from one to
two, the prediction results from both ANN and ANFIS
models are slightly improved. In order to understand the
type of model and parameter settings and the concrete
strength prediction accuracy, it is necessary to compare
the result using the linear regression and nonlinear re-
gression. /e mean absolute percentage error MAPE ob-
tained by linear regression and nonlinear regression are
11.17% and 17.66%, respectively. And, the ANN is 10.940%
for one-input and 10.87% for two-input. /e best pre-
dictive model is based on the adaptive neurocognitive
inference system with the average absolute error percentage
MAPE of 9.86%.

/e results in Table 7 show that the model does improve
the prediction accuracy of concrete compressive strength.
When attempting to increase the input of the model, the
results show that the minimum error rate of the concrete is
less than 10.87% and 9.79%, respectively, for ANN and
ANFIS. /e results are better than the predictions of the
single input, which proves that the increase in the input of
the model can reduce the absolute error percentage.

5. Conclusions

To improve the result of nondestructive tests, the average
velocity of ultrasonic waves obtained from each specimen
was calculated. Adaptive neurocognitive inference system
(ANFIS) and the neural network (ANN) method are used
to predict the compressive strength of concrete. Within 312
test samples, 252 test samples are randomly chosen to be
the train data in this study. /e remaining 60 test samples
are set as the test data to evaluate the prediction model
accuracy.

Table 2: Artificial neural network model training result.

One-input (single entry) Two-input (double entry)
Network type Hidden layer Number of training R2 MAPE (%) Network type Hidden layer Number of training R2 MAPE (%)
1-1-1 1 200 0.73 14.79 2-1-1 1 200 0.73 12.85
1-1-1 1 500 0.74 11.37 2-1-1 1 500 0.74 10.63
1-1-1 1 1000 0.74 14.52 2-1-1 1 1000 0.74 12.43
1-3-1 1 2000 0.73 10.48 2-3-1 1 2000 0.75 10.46
1-5-1 1 2000 0.75 10.98 2-2-1 1 2000 0.74 10.58
1-1-1 1 2000 0.74 10.93 2-7-1 1 2000 0.73 10.96
1-1-1 1 3000 0.74 12.91 2-1-1 1 3000 0.74 10.61
1-1-1 1 5000 0.74 13.49 2-1-1 1 5000 0.73 14.79
1-1-1 1 7500 0.74 13.08 2-1-1 1 7500 0.74 12.84
1-1-1 1 15000 0.74 14.31 2-1-1 1 15000 0.75 13.23
1-1-1 1 20000 0.74 11.45 2-1-1 1 20000 0.74 11.01
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/e results show that traditional concrete compressive
strength estimations have an average of over 20% mean
absolute percentage error when compared with the actual
compressive strength obtained by destructive tests. /e
MAPE in predicting the compressive strength for linear and
nonlinear regression models are 11.17% and 17.66%, re-
spectively. Based on the result obtained, the combined two
different artificial intelligence methods in establishing
a predictive strength model becomes more reliable, and the

prediction is more accurate. When compared with the
predictions from the other two models with one-input
(average ultrasonic pulse wave velocity), the best MAPE
values of 10.94% and 9.86% were obtained by the ANN test
and ANFIS test, respectively. In addition, the prediction
results from two-input (average ultrasonic pulse wave ve-
locity and standard deviation) show that the minimum error
rates of the concrete are 10.87% and 9.79%, which imply that
the results are better than the predictions of the one input.

Table 5: Results of the test group data into the ANFIS.

Attribution function Number of function Standard deviation Input type
MAPE (%)

Training Testing
Gbellmf 5 13.90 Single entry 9.37 9.86
Trapmf 5 13.95 Double entry 9.18 9.79

Table 6: Comparison of ANFIS, ANN, linear, and nonlinear regression model prediction accuracy.

Forecasting model Prediction formula and parameter setting Standard deviation Single entry (MAPE %)
Linear regression fc � 0.3713V− 1162.8 16.80 11.17
Nonlinear regression fc � 0.8648 exp(0.0015V) 23.13 17.66

AI
ANN test Network type (1-3-1) 16.42 10.94

ANFIS test /e number of functions: 5 13.90 9.86Function type: Gbellmf
∗fc is the compressive strength and V is the average wave speed.

Table 7: ANN and ANFIS model prediction accuracy.

Forecasting model Parameter setting Standard deviation
MAPE (%)

One-input Two-input
ANN model Hidden layer 16.34 10.94 10.87

ANFIS model /e number of functions: [5 5] 19.95 9.86 9.79Function type (trapmf)

Table 3: Results of the test group data into the ANN.

Network type Hidden layer R2 Standard deviation Input type
MAPE (%)

Training Testing
1-3-1 1 0.74 16.42 Single entry 10.48 10.94
2-3-2 1 0.75 16.34 Double entry 10.46 10.87

Table 4: Adaptive neuro-fuzzy inference system (ANFIS) model.

Attribution function
MAPE (%) MAPE (%)

One-input: number of functions Two-input: number of functions
[2] [3] [4] [5] [2 2] [3 3] [4 4] [5 5]

Trimf 10.04 9.80 9.66 9.80 9.98 9.94 10.05 10.46
Trapmf 10.26 10.94 9.48 10.00 10.52 10.94 10.43 9.18
Gbellmf 9.73 9.89 9.46 9.37 9.68 9.89 10.40 9.56
Gaussmf 9.76 10.01 9.41 9.76 9.77 10.85 10.28 9.94
Gauss2mf 9.78 10.01 9.49 9.88 10.18 10.54 10.26 10.98
Pimf 10.48 10.50 10.50 10.50 10.73 10.66 10.31 10.49
Dsigmf 10.15 9.97 9.46 9.69 10.11 10.56 10.67 10.58
Psigmf 10.15 9.91 9.46 9.43 10.11 10.57 10.67 10.56
Trimf 10.04 9.80 9.66 9.80 9.98 9.94 10.05 10.46
Trapmf 10.26 10.94 9.48 10.00 10.52 10.94 10.43 9.18
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For the collected sample, the research results have shown
that the increase in the input of the model can reduce the
mean absolute percentage error.
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