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Effective road maintenance requires adequate periodic surveys of asphalt pavement condition. -e manual process of pavement
assessment is labor intensive and time-consuming. -is study proposes an alternative for automating the periodic surveys of
pavement condition by means of image processing and machine learning. Advanced image processing techniques including fast
local Laplacian filter, Sobel filter, steerable filter, and projection integral are employed for image enhancement and analysis to
extract useful features from digital images. Based on the features produced by these image processing techniques, adaptive
boosting classification tree is used to perform pavement crack recognition tasks. A dataset of image samples consisting of five
classes (alligator crack, diagonal crack, longitudinal crack, noncrack, and transverse crack) has been collected to construct and
verify the performance of the adaptive boosting classification tree. -e experimental results show that the proposed approach has
achieved a high crack classification accuracy which is roughly 90%. -erefore, the newly developed model is a promising al-
ternative to help transportation agencies in pavement condition evaluation.

1. Introduction

To ensure the safety and the serviceability of the road
network, periodic survey and assessment of the pavement
condition is a crucial task done by transportation agencies
around the world [1]. Based on such periodic surveys,
various pavement distresses can be identified and docu-
mented. -is information serves as important input in-
formation used in the task of determining pavement
rehabilitation methods and allocating resources for con-
currently demanding pavement maintenance projects.

Based on a recent statistics done by the Central In-
telligence Agency, the total length of road networks in the
world has amounted to 64,285,009 km; such length of roads
demands an enormous cost for maintenance and upgrading
tasks [2]. In Vietnam, according to the report of the General
Statistics Office of Vietnam in 2010, the total length of

asphalted roads has reached 93,535 km [3]. Due to a large
number of existing and road sections and the rapid ex-
tension of road networks per year, management and
maintenance of asphalt pavements become challenging
tasks.

-e aging and deterioration of pavements are mainly
caused by surface fatigue and shear development in the
subgrade, subbase, base, or surface layers [4].-emost easily
observable form of pavement deterioration is cracks. Cracks
are widely considered to be the most important indicator of
pavement condition because this type of distress directly
affects in pavement serviceability and structural integrity
[5, 6]. -erefore, timely detection of pavement cracks is
necessary to evaluate the pavement surface condition and to
develop appropriate mitigation measures in order to restore
the acceptable quality of roads. It is noted that besides cracks,
there are other forms of pavement deteriorations including

Hindawi
Advances in Civil Engineering
Volume 2018, Article ID 5989246, 17 pages
https://doi.org/10.1155/2018/5989246

mailto:hoangnhatduc@dtu.edu.vn
http://orcid.org/0000-0001-9450-4637
https://doi.org/10.1155/2018/5989246


potholes (small or medium bowl-shaped depressions), de-
pressions (depressed areas in the pavement surface), ruts
(channelized depressed areas), upheaval areas, and raveling
(disintegration of aggregate particles in the pavement sur-
face). However, the detection of these forms of pavement
damages is not within the scope of the current study.

In developing countries like Vietnam, the common
approach of the road surface condition is visual inspection
performed by human. -is method is only effective for
surveying a small quantity of road lengths. Nevertheless, the
manual process of road inspection is notorious for its low
productivity and variations in surveying outcomes due to
human subjectivity [7]. -erefore, a robust method for
automatic recognition of pavement cracks can help us to
expedite the pavement assessment process, enhance the
evaluation accuracy, and guarantee the consistency in the
assessment result. Such method is currently a pressing need
of transportation agencies in many countries.

Since images of pavements can provide a direct pre-
sentation of pavement defects related to cracks, two-
dimensional digital images have been the subject of in-
terest for many researchers and practitioners. It is because
the pavement cracks can be identified via the image pixel
intensities and the shape of the crack objects. However,
recognizing cracks from digital images is by no means an
easy task. -is fact is due to the noisy and complex back-
ground texture of the asphalt pavement, the heterogeneous
pixel intensity, and the inconsistency of the illumination
condition [7].

To overcome the aforementioned challenges, a large
proportion of the research works have been dedicated in
developing automatic pavement crack detection models
using image filtering methods. In image processing and
computer vision, filtering is a popular approach specifically
used to alter the presentation of images and enhance certain
features of images. Mahler et al. [8], Kirschke and Velinsky
[9], and Cheng et al. [10] proposed algorithms based on
intensity thresholding for crack detection; these models rely
on the assumption that cracks have a lower intensity value
than those of the pavement background. Lee and Kim [11]
proposed a simplified method for crack category realization
based on the concept of crack-type index; this method relies
on the image thresholding technique and information ob-
tained from neighboring pixels to determine the state of
crack and noncrack.

An improved Canny edge detection algorithm and an
edge preservation filtering algorithm for pavement edge
recognition had been proposed by Zhao et al. [12]. Zou et al.
[13] put forward a function to measure the difference of
image intensity and used this function to enhance the image
thresholding outcome. Zhang et al. [14] employed a set of
predesigned filters to extract cracks from the background.
Salman et al. [15] and Eduardo et al. [16] have proposed
automatic crack detection models based on the Gabor filter.
Li et al. [17] employed two techniques of steerable matched
filtering and active contour model for the task of crack
detection and segmentation.

It is noted that besides image filtering methods, there are
many other potential algorithms used for crack detection

investigated by various scholars; these algorithms include
wavelet transform [18], beamlet transform [19], wavelet-
morphology-based detection [20], weighted neighborhood
segmentation [21], deep learning [2, 22–24], fuzzy Hough
transform [25], probabilistic generative model [7], and
optimized minimal path selection [5]. However, these
aforementioned algorithms are not within the focus of the
current study.

In addition, recent literature reviews show an increasing
trend of combining image filtering and machine learning to
develop an intelligent model capable of not only detecting
cracks but also categorizing the types of cracks. Rababaah
[26] carried out a comparative work which investigated the
performance of multilayer perceptron neural network, ge-
netic algorithms, and self-organizing maps in pavement
crack classification. Mokhtari et al. [27] recently employed
neural network models to tackle the problem of interest; this
study concluded that neural network models are more ca-
pable than other learning strategies of decision tree and k-
nearest neighbor. Banharnsakun [28] combined the ad-
vantage of metaheuristic and neural network for pavement
surface distress detection and classification; the meta-
heuristic of artificial bee colony was used in the phase of
image segmentation, and the subsequent classification task
was performed by neural network.

Recently, an efficient approach which can perform both
detection and classification of pavement cracks was pro-
posed by Cubero-Fernandez et al. [29]; this study in-
corporated various image processing techniques of
logarithmic transformation, bilateral filter, Canny algo-
rithm, and a morphological filter in the feature extraction
phase; a classification tree is utilized to construct the crack
categorization model using the extracted features. Fujita
et al. [30] and Wang et al. [31] proposed crack classification
models that employed the support vector machine. Hoang
and Nguyen [32] relied on the steerable filter to extract
useful features from pavement images and employed ma-
chine learning algorithms including support vectormachine,
neural network, and random forest to classify the images
into categories of longitudinal, transverse, and alligator
cracks, as well as the status of the intact pavement.

Based on recent review works [33, 34], there is an in-
creasing trend of applying image filtering and machine
learning approaches in pavement crack classification.
However, due to the aforementioned challenges of crack
detection from noisy and complex background texture of
asphalt pavements, other advanced image processing tech-
niques should be investigated to improve the accuracy of the
automatic crack recognition process. -is study constructs
and compares the performances of four feature extraction
methods that rely on image filtering techniques of fast local
Laplacian filter (FLLF), Sobel filter (SBF) for edge detection,
and steerable filter (STF) as well as projection integral (PI).
-e fast local Laplacian filter (FLLF) is applied as a pre-
processing step to better smooth the image and highlight
edges in the image. SBF and STF are employed to create
crack prominent maps. PI finally utilizes these prominent
maps to produce a vector of features. -e adaptive boosting
classification tree (Adaboost CTree) is selected to use the
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feature vectors extracted from the image for categorizing the
pavement crack status. -e aforementioned hybrid filtering
approaches (FLLF-based SBF and FLLF-based STF) have
demonstrated positive effects on the classification perfor-
mance of Adaboost CTree.

-e rest of the study is organized as follows: Section 2
reviews the research methodology, followed by the section
that describes the collected dataset of asphalt pavement
images (Section 3). Section 4 describes the proposed ap-
proach of automatic pavement crack detection, followed by
the experimental results (Section 5). Section 6 summarizes
the current study with several remarks.

2. Research Methodology

2.1. Image Filtering Approaches

2.1.1. Fast Local Laplacian Filter (FLLF). FLLF is an edge-
preserving image filtering technique [35]. -is image pro-
cessing technique is an improved version of the standard
local Laplacian filter (LLF) which was developed by Paris
et al. [36]. LLF is the algorithm based on the Laplacian
pyramid which is widely employed in the tasks of decom-
posing images into multiple scales and image analysis. In
image processing field, pyramid representation is a form of
multiscale signal representation in which a digital image is
processed by repeated smoothing and subsampling. In FLLF,
the output image is obtained by collapsing the output
pyramid. To implement FLLF, one first needs to specify
a remapping function r and intensity threshold Sr. Ac-
cordingly, the process of FLLF can be divided into three
major steps [37]:

(i) First, FLLF uses point-wise nonlinearity function
r(.) which depends on the Gaussian pyramid co-
efficient g �Gl[I] (x, y) where l denotes the level of
the Gaussian pyramid and (x, y) represents the
position of the pixel to process input image I. For
various values of g, this approach obtains a large
number of intermediate images.

(ii) Second, FLLF integrates all of these intermediate
images, and computes each output coefficient Ll[O]
(x, y) of the Laplacian pyramid of the transformed
image.

(iii) -ird, the method collapsed the output pyramid
L(O) to obtain the output image O.

Paris et al. [36] proposed the remapping functions in the
following formula:

􏽥r(i) �

g + sign(i−g)Sr(|i−g|)α

Sr
if i≤ Sr,

g + sign(i−g) β|i−g|− Sr( 􏼁 + Sr if i> Sr,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where g denotes the coefficient of the Gaussian pyramid. α
determines the amount of detail increase (0≤ α< 1) or de-
crease (α> 1), β governs the dynamic range compression
(0≤ β< 1) or expansion (β> 1), and Sr represents the in-
tensity threshold to separate details in the image from edges.

Aubry et al. [35] stated a general form of the function r(.)
as follows:

r(i) � i−(i−g)f(i−g), (2)

where f denotes a continuous function. In fact, Equation (1)
is a special case of Equation (2) in which f(i) � (i− 􏽥r(i))/
(i−g).

For the purpose of image enhancement and image
smoothing, Aubry et al. [35] defines the function f as

f(i−g) � −mfGSR
(i−g), (3)

where GSR
(i−g) denotes the Gaussian function expressed in

the following form:

GSR
(i−g) � exp

−(i−g)2

2S2r
􏼠 􏼡, (4)

where mf is a parameter denoting the amplitude magnifi-
cation factor.

In essence, mf affects the smoothing of details, and Sr
characterizes the amplitude of edges in I [38]. -e effects of
FLLF on asphalt pavement images with different scenarios of
the amplitude magnification factor mf and the intensity
threshold Sr are illustrated in Figure 1. It is noted that before
being analyzed by FLLF, the images are preprocessed by the
median filter to remove the dot noise. In this study, based on
several trial and error experiments, the median filter with
a window size of 5× 5 pixels has been selected for noise
suppression.

2.1.2. Steerable Filter. -e steerable filter (STF), proposed in
the previous work of Freeman and Adelson [39], is a popular
technique for image processing. -is technique relies on
orientation-selective convolution kernels to highlight edges
in digital images. STF is highly helpful for the task of an-
alyzing patterns existing on the surface of asphalt pave-
ments; this technique has been successfully employed in
crack classification [17, 29, 32] as well as other types of
pavement distress [40].

To implement the SF technique, a linear combination of
the Gaussian second derivatives is employed as the basic
filter. A 2D Gaussian at a certain pixel coordination (x, y)
within an image I is demonstrated in the following equation:

G(x, y, r) �
1
���
2πr

√ exp
− x2 + y2( 􏼁

2r2
􏼠 􏼡, (5)

where r is a free parameter which is the variance of the
Gaussian function.

Applying the STF technique with different values of the
angle θ, a set of different filters can be obtained as follows:

F(x, y, r, θ) � Gxx cos
2
(θ) + 2Gxy cos(θ) sin(θ)

+ Gyy sin
2
(θ),

(6)

where Gxx, Gxy, and Gyy denote the Gaussian second de-
rivatives. -e formulas of these derivatives are presented as
follows [32]:
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Gxx(x, y, r) �
x2 − r2( 􏼁 exp − x2 + y2( 􏼁/2r2( 􏼁

���
2π

√
r5

,

Gyy(x, y, r) �
y2 − r2( 􏼁 exp − x2 + y2( 􏼁/2r2( 􏼁

���
2π

√
r5

,

Gxy(x, y, r) � Gxy(x, y, r) �
xy exp − x2 + y2( 􏼁/2r2( 􏼁

���
2π

√
r5

.

(7)

It is noted that the value of θ is often varied from 0° to
360°. Figure 2 provides examples of STF responses of
a pavement image with different selections of r. In this figure,
the original image has been preprocessed by the median
filter with the window size of 5× 5 pixels. As can be seen
from the examples, a too small value of r leads to very weak
signal of crack patterns. On the contrary, if r is too large
(e.g., r� 2.0), the background texture of the asphalt pave-
ment becomes more visible and this may hinder the crack
detection and classification process.

In addition, the resulting STF response of a digital image
I is calculated compactly in the following equation:

R(x, y) � F(x, y, σ, θ)∗I(x, y), (8)

where “∗” denotes the convolution operator.

2.1.3. Sobel Filter for Edge Detection. As described in the
previous work of Sobel [41], the Sobel filter (SBF) is a widely
used technique for detecting edges in digital images. -is
technique reveals edges in an image by smoothing the image
before computing the derivatives in the direction which is
perpendicular to the derivative. To implement SBF, the filter
hx is employed to smooth the image in the x direction:

hx �

1 1

2 2

1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (9)

-e convolution and the smoothing operators are both
linear and can be combined in the following way:

hSobel,x �

1 0 −1

2 0 −2

1 0 −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (10)

In the same manner, the filter that computes the partial
derivative in the y direction is computed as follows:

hSobel,y �

1 2 1

0 0 0

−1 −2 −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (11)

At each pixel within a digital image, the resulting gra-
dient approximations are combined to yield the gradient
magnitude which is calculated in the following way:

hSobel �
��������������
hSobel,x2 + hSobel,y2

􏽱
. (12)

It is worth noticing that a threshold value Ts must be
prespecified to obtain the image with detected edges. If the
Sobel gradient values of pixels are smaller than the threshold
value Ts, they are replaced by these threshold values [42].
Figure 3 presents the analysis results of edge detection using
the Sobel algorithm of a pavement image in which different
values of the threshold Ts are attempted. As can be seen from
the examples, if Ts � 0.01, the resulting image is filled with
edges detected from the background texture. On the con-
trary, if Ts> 0.1, virtually no signal of edges are captured by

Pavement image Sr = 0.10, mf = 1.00 Sr = 0.10, mf = 2.50 Sr = 0.10, mf = 5.00

(a)

Pavement image Sr = 0.01, mf = 1.50 Sr = 0.10, mf = 1.50 Sr = 0.50, mf = 1.50

(b)

Figure 1: Image processed by FLLF with different values of parameters.
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the algorithm. It deems that Ts � 0.05 is the right value
because the edges of the true crack existing in the image has
been revealed.

2.1.4. Projection Integral Technique. -e projection integral
technique (PIT) is an effective technique used in shape and
texture recognition [43]. -is image analysis technique has
been recently successfully employed in pavement crack
classification [29, 32]. Using this method, the image is first
converted from color image to grayscale image. -e average
value of gray intensity at each location of the image along an
axis is computed to obtain a projection integral (PI).
-erefore, PI is always associated with a certain axis. PIs
along the horizontal and vertical axes are often computed
and employed in object recognition. Horizontal PI (HPI)
and vertical PI (VPI) are calculated in the following way:

HPI(y) � 􏽘
i∈xy

I(i, y),

VPI(x) � 􏽘
j∈yx

I(x, j),
(13)

where HPI and VPI are the horizontal and vertical PIs,
respectively. xy and yx represents the set of horizontal pixels
at the vertical pixel y and the set of vertical pixels at the
horizontal pixel x of an image I(x, y), respectively.

Besides the two commonly employed HPI and VPI, the
diagonal PI (DPI) can also be helpful in the task of
pavement crack classification. It is noted that, for each
image of pavement, there are two DPIs. To compute these
two DPIs, the map of the SF response is rotated with the
angles of +45 and −45 to create two rotated SF maps. -e
two DPI1 and DPI2 are obtained by computing the HPIs
of the two rotated SF maps. -e illustrations of PIs of the
pavement images are provided in Figures 4 and 5. It is
noted that, in Figure 4, the four PIs of an image are
produced from the STF response. In Figure 5, the salient
crack map created by SBF is employed to compute the four
PIs.

2.2. Adaptive Boosting Classification Tree. Classification tree
(CTree), developed by Breiman et al. [44], is an effective data

(a) (b)

(c) (d)

(e) (f )

Figure 2: Examples of image enhancement with STF. (a) Pavement image. (b) Median filter enhancement. (c) GTF with r� 0.5. (d) GTF
with r� 1.0. (e) GTF with r� 1.5. (f ) GTF with r� 2.0.
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mining approach widely employed for data categorization
[45, 46]. -e CTree algorithm automatically reveals the
hidden structural patterns in data and expresses the dis-
covered patterns of the data as tree-like structures [47, 48].
CTree belongs to the group of supervised learning methods.
-erefore, a training phase that requires a set of labeled data
must be performed to construct the data categorization
model. During the training phase of CTree, the training
dataset is splitted into subsets using all predictor variables to
create two child nodes in the tree-like structure [44]. It is
noted that the most suitable predictor variables used for
splitting operation is chosen by computing the value of an
impurity function.

-e data splitting process occurred in the training phase
has the purpose of putting data into subsets that are as
homogeneous as possible for each data category. -e Gini
impurity function is widely used to quantify the data ho-
mogeneous property; the Gini impurity is shown in the
below equation [47]:

P � G1G2, (14)

where a Gini impurity index of data subset k is computed as
follows [49]:

Gk � 1− 􏽘

nkc

i�1
p
2
ki, (15)

where nkc represents the number of data categories and pki

denotes the ratio of present of class i in this set.
When the training phase is successfully accomplished,

a CTree model is represented by a root node, a set of internal
nodes, and a set of terminal nodes. It is noticed that each
node in the tree is essentially a binary decision that cate-
gorizes the predictor variable into either one of the two class
labels. -us, CTree carries out the data classification process
in a top-down manner from the root node to the terminal
node.

Moreover, in data mining, adaptive boosting [50], or
AdaBoost for short, is a well-known ensemble learning
strategy for enhancing the classification accuracy of
a classifier through the process of adaptive reweighting
and combining a set of individual models [51]. AdaBoost

(a) (b)

(c) (d)

(e) (f )

Figure 3: Examples of image enhancement with SBF. (a) Original image. (b) Median filter enhancement. (c) SBF: TS � 0.01. (d) SBF:
TS � 0.05. (e) SBF: TS � 0.10. (f ) SBF: TS � 0.50.
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Figure 4: PIs of an image yielded from the STF response. (a) Pavement image. (b) FLLF. (c) STF. (d) Projective integrals.
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Figure 5: PIs of an image yielded from the SBF response. (a) Pavement image. (b) FBF. (c) STF. (d) Projective integrals.
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ensemble of CTrees can be defined as a combination of
multiple CTrees in which the final prediction result is
obtained by combining the outputs of individual trees.
Based on previous works [52–56], ensemble models have
demonstrated better performance than individual models
in a wide range of applications. -e AdaBoost algorithm is
demonstrated in Figure 6.

3. The Dataset of Asphalt Pavement Images

Since Adaboost CTree is a supervised learning approach,
a dataset of pavement images with the prespecified ground
truth categories must be prepared for the model construction
and testing phases. To achieve this goal, the current study has
collected pavement images in Da Nang city (Vietnam). -e
images are acquiredwith the employment of the digital camera
held at the distance of about 1.2m above the road surface. To
speed up the phases of data processing and data classification,
the images are resized to be 100×100 pixels. -ere are five
classes of pavement conditions; they are alligator crack (AC),
diagonal crack (DC), longitudinal crack (LC), noncrack (NC),
and transverse crack (TC). Each group of images has 400
samples; hence, the total number of data samples in the
collected dataset set is 2000. -e image dataset are demon-
strated in Figure 7. It is noted that each pixel represents an area
of approximately 3.6× 3.6mm; therefore, the pavement area
contained in each image sample is about 360× 360mm.

4. Automatic Pavement Crack Recognition
Using Fast Local Laplacian-Based Steerable
and Sobel Filters Integrated with Adaptive
Boosting Classification Tree

-is section describes the structure of the proposed auto-
matic model for pavement crack categorization. -e pro-
posed model combines the advanced image processing
techniques and the machine learning method of Adaboost
CTree. Advanced image processing techniques consist of
FLLF, STF, SBF, and PIs. It is noted that the original
pavement images have been preprocessed by the commonly
used median filter to remove dot noise of the image back-
ground. FLLF is then used to concurrently smooth the image
and highlight the edges. After being processed by FLLF, the
enhanced image is either manipulated by STF or SBF to

create a salient map of cracks. Based on such salient map, PIs
of the image are computed to serve as input features used by
Adaboost CTree to classify the image into AC, DC, NC, LC,
and TC categories.-e overall picture of the proposedmodel
is presented in Figure 8.

-e model basically includes two modules: feature ex-
traction based on the image processing technique and data
classification based on Adaboost CTree. It is noted that the
proposed model including the two modules has been con-
structed in theMATLAB environment with the employment
of the Image Processing Toolbox [38] and the Statistics and
Machine Learning Toolbox [57].

It is noted that in the feature extraction step, the maps
created by the STF and SBF responses are used to compute
four PIs, namely, HPI, VPI, and two DPIs (DPI1 and DPI2).
-e PIs of the pavement images yielded from STF and SBF
are illustrated in Figures 9 and 10, respectively. Based on
these figures, it can be shown that an image with a longi-
tudinal crack generally produces a distinctive peak in its
VPI. On the contrary, an image with a transverse crack
yields a distinctive peak in its HPI. Moreover, the average
values of PIs of images containing alligator cracks are
higher than those of images containing no cracks. Notably,
the two DPIs are especially useful in recognizing diagonal
cracks. To compute these two DPIs, the maps of the STF
and SBF responses are rotated with the angles of +45 and
−45 to generate two rotated crack maps. -e two DPIs are
attained by calculating the HPIs of the two rotated crack
maps.

As mentioned earlier, with the image size of 100 ×100
pixels, the number of features generated by the four PIs is
400. With this size of features, the predictive capability of
the Adaboost CTree model may be hindered due to the
problem of the curse of dimensionality [58]. -us, it can be
of great usefulness if the feature size can be reduced. To do
so, this study employs a simple moving average approach
within which the average value of W consecutive values
along a PI is calculated to create PIs with sampled data
points. -is process of feature reduction is illustrated in
Figure 11. With W � 10, the total number of features in the
reduced PIs is reduced from 400 to 40. Compared with the
original PIs, the smoothed PIs have fewer data points and
most importantly still present essential features of the
original PIs.

Input data

CTree 1 CTree k CTree m

Result
aggregation

α1 αk αm

Predicted
class label 

AdaBoost classification tree
prediction phase

Training
data Initialize w Train

CTree k 

k = 1
Compute

model error e

Compute αUpdate w

Sample
training set 

k = k + 1

k < m

AdaBoost classification tree
training phase

Figure 6: Adaboost CTree training and prediction phases.
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(a) (b) (c) (d) (e)

Figure 7: -e collected dataset of pavement images. (a) AC, (b) DC, (c) LC, (d) NC, and (e) TC.
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Figure 8: -e proposed pavement crack classification model.
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Figure 9: Continued.
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Accordingly, the reduced PIs are employed to general
numerical features as input patterns which are used by
Adaboost CTree to recognize the types of cracks (AC, DC,
LC, and TC) as well as the condition of intact pavement
(NC). It is noted that, in this study, the Adaboost CTree
model has been used with the one-versus-one (OvO)
strategy [59] to cope with the multilabel data classifica-
tion. -e reason of selecting OvO is that this strategy
can deliver good prediction performance and can help us
to avoid the imbalanced data classification problem
[58, 60].

5. Experimental Results

To construct and verify Adaboost CTree, the collected image
dataset has been separated into two sets: the training set
(70%) and the testing set (30%). -e first set is used to

establish the learning model, and the second set is employed
to inspect the predictive performance of the Adaboost
CTree-based crack categorization model. Moreover, because
one time of training and testing may not express the true
predictive capability of the newly developed approach due to
the problem of randomness in the selecting data, a repetitive
data subsampling has been carried 20 times. -e Adaboost
CTree performance is assessed by averaging the prediction
results attained from the 20 times of training and testing
phases.

Moreover, the image processing techniques used in
the feature extraction phase require the specification of
several tuning parameters. In this study, these parame-
ters are selected via several trial and error experiments
with the collected pavement images. -e setting of
the parameter of the image processing techniques is as
follows:
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Figure 9: Projection integrals of asphalt pavement images using STF response: (a) alligator crack; (b) diagonal crack; (c) longitudinal crack;
(d) noncrack; (e) transverse crack.
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Figure 10: Continued.
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(i) -e window size of the median filter is 5× 5 pixels
(ii) -e amplitude magnification factor mf � 3 and the

intensity threshold Sr � 0.15
(iii) -e variance of the Gaussian function used in STF is

1.5
(iv) -e threshold value Ts of SBF is 0.02
(v) -e window size (W) used to smooth the PIs is 10

In addition, to express the predictive capability of the
Adaboost CTree-based crack recognition model, the
classification accuracy rate (CAR) for a class label i is
computed by the following equation:

CARi �
Ri
C

Ri
A

× 100(%), (16)

where Ri
C and Ri

A denote the number of data samples in the
class ith being correctly recognized and the total number of
data samples in the class ith, respectively.

-e overall classification accuracy rate (CAROverall) for
all the five class labels is calculated by the following equation:

CAROverall � 􏽘
5

i�1

CARi

5
. (17)

-e prediction accuracy of the Adaboost CTree models
with the two employed SBF and STF for creating the salient
crack maps is reported in Table 1. -ese two models are
denoted as Adaboost CTree-SBF and Adaboost CTree-STF.
As can be seen from this table, Adaboost CTree-STF has the
CARs of the AC class (93.17%), DC class (89.54%), LC class
(89.58%), NC (84.92%), and TC class (91.38%). -ese
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Figure 10: Projection integrals of asphalt pavement images using SBF response: (a) alligator crack; (b) diagonal crack; (c) longitudinal crack;
(d) noncrack; (e) transverse crack.
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outcomes are better than those yielded by the Adaboost
CTree-SBF with the CARs of the AC class (90.50%), DC
class (80.83%), LC class (83.71%), NC (79.38%), and TC
class (88.08%). -e overall CAR of Adaboost CTree-STF
(89.72%) is also higher than that of Adaboost CTree-SBF
(84.50%).

Furthermore, Figure 12 demonstrates the box plots of
prediction results of the Adaboost CTree-SBF and Ada-
boost CTree-STF classification approaches. To further
validate the statistical difference of the Adaboost CTree-
SBF and Adaboost CTree-STF, the Wilcoxon signed-rank
test (WSRT) is employed in this section. WSRT is a popular
nonparametric statistical hypothesis test which is often
employed for result comparison [61]. In this study, the
significance level of WSRT is chosen to be 0.05. If the p

value computed from the test is smaller than 0.05, it is able
to confirm that the pavement crack classification results of
the Adaboost CTree-SBF and Adaboost CTree-STF are
statistically different. With p value � 0.00008, it is confident
to state that Adaboost CTree-STF is significantly better
than Adaboost CTree-SBF.

6. Conclusion

-is study proposes an integration of image processing and
machine learning approaches for automatic pavement crack

recognition. Advanced image processing techniques in-
cluding FLLF, SBF, STF, and PI are employed to extract
numerical features from digital images. -e Adaboost CTree
utilizes the extracted features to perform crack recognition
tasks. A dataset of 2000 image samples with five classes of
asphalt pavement conditions (AC, DC, LC, NC, and TC) has
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Figure 11: Projection integrals (PIs) of a pavement image: (a) the original PIs; (b) the reduced PIs.

Table 1: Classification results of Adaboost CTree.

Image filtering approach Statistic
CAR of each class label

Overall CAR
AC DC LC NC TC

SBF Average 90.50 80.83 83.71 79.38 88.08 84.50
Std. 2.64 4.26 3.56 3.63 2.84 1.47

STF Average 93.17 89.54 89.58 84.92 91.38 89.72
Std. 3.03 2.64 4.14 4.02 3.28 1.32
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Figure 12: Box plots of prediction results of Adaboost CTree-SBF
and Adaboost CTree-STF.
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been collected to train and validate the proposed integrated
approach. An experiment using a random subsampling
process and WSRT points out that Adaboost CTree-STF is
significantly better than Adaboost CTree-SBF.

Since the current practice of pavement survey in Viet-
nam still heavily relies on the survey of human inspectors
and manual data analysis processes, the new approach based
on the Adaboost CTree classification model integrated with
STF can provide a helpful tool to accelerate the periodic
surveys of roads by boosting the productivity of the data
acquisition and analysis processes. -us, the newly con-
structed model can be highly useful for the local trans-
portation agencies and authorities to manage their road
sections effectively.

Based on the collected image samples, the smallest crack
opening that the Adaboost CTree-STF model can detect is
about 8mm. Since the ability to detect small cracks can be
essential for early warning of pavement deterioration, image
samples with thinner crack opening should be collected in
a future work to enhance the applicability of the current
model. Moreover, since the current stage of the study is
performing preliminary survey on pavement conditions.-e
details of crack length and opening have not yet been
available for analysis. -erefore, the current model can be
extended by employing image thresholding and image
segmentation techniques to separate the crack objects from
the pavement background. Accordingly, information re-
garding the length and the opening of cracks can be mea-
sured. In addition, other developments of the current study
may include the investigation of other novel machine
learning approaches in the task of asphalt pavement crack
recognition and the extension of the current dataset to
include other type of cracks (e.g., reflective cracks or block
cracks) as well as other forms of pavement defects (such as
potholes, ruts, depression, upheaval, and raveling) to en-
hance the applicability of the current prediction model.

Data Availability

-e dataset used in the study is provided in the supple-
mentary file.
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