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Silica fume (SF) is a valuable nanoscaled industrial by-product used in cementitious materials owing to its filling and
pozzolanic effect. However, the heavy agglomeration of SF is a severe and common problem. In this study, surface modification
with polyacrylic acid (PAA) was applied on SF to achieve a better dispersion and to optimize the hydration process of cement at
early age. +e particle size distribution and surface properties of SF, as well as the cement hydration with modified SF, were
investigated. +e results demonstrated that the agglomeration of SF particles was efficiently mitigated by the surface treatment
with PAA, and the acceleration effect of SF was delayed by the resistance of the surface layer at early age. However, the grafted
PAA layer eventually dropped in alkali solution after 6 hours, and the hydration rate was increased again and continued for
long time. +is work indicated that surface-modified SF was well dispersed and was able to regulate the hydration rate
of cement.

1. Introduction

Nanomaterial is a new generation product. Its outstanding
properties have drawn much attention in improving the
performance of cementitious materials and have developed
rapidly in decades [1–6]. +e nanomaterials in cementitious
composites can efficiently fill small voids to densify the
cement paste matrix with the nanoscaled particles, accelerate
cement hydration by supplying large active specific surface,
and generate additional C-S-H gels to optimize the mi-
crostructure benefiting from the pozzolanic reactivity [7–
17]. Nevertheless, the expensive cost and the low productive
capacity of artificial nanomaterials limited their wide ap-
plication in cementitious materials. It has been shown that
many industrial by-products, such as silica fume (SF),
metakaolin, and ground rice husk ash, are composed of
active nanoscaled particles [18–22] and can be used as
ecological nanomaterials. +e mean particle size of SF can
reach about 200 nm, and the specific surface area is large as

20000m2/kg [23, 24]. Applying SF in cementitious materials
not only brings the benefits as nanomaterials but also de-
creases the production cost and the environmental impact
[22, 25–27]. However, as industrial by-products, heavy
aggregation commonly exists in SF product, impairing its
filling effect and reducing its available active surface area
[28, 29] so that well-dispersed SF will take advantages ef-
ficiently on its reinforcement for cementitious materials. In
addition, nanoparticles-accelerated cement hydration with
a rapid heat release at early age, which may cause the
structural damage and restrict the strength development at
later age [30, 31]. To solve this issue, the nanomaterials with
hydration control effect are preferred.

Surface modification is an efficient method to improve
the particle dispersion and transform the surface properties,
which is frequently used for nanomaterials [32–35]. +e
functional group grafted on the surface feasibly isolates
particles by the charge repulsion and the steric hindrance
effect [36], and the surface properties can be precisely and
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purposively determined by the modification agent with the
specific experimental procedure. However, the surface
modificationmethod is rarely used in cementitious materials
as reported in [37, 38].+is may be because that the complex
reaction products and high alkali circumstance are gener-
ated by cement hydration, which could reduce the stability of
the surface modification agents. In addition, the polymer
surface modification agents may disturb the cement hy-
dration with unclear interaction. +erefore, a suitable sur-
face agent is important for cementitious materials surface
modification. Polyacrylic acid (PAA) with short branch
chain of carboxyl groups is a common surface modification
agent [39–41]. +e hydrophilic groups of PAA can isolate
nanoparticles by its charge repulsion and the steric hin-
drance after grafted on the particle surface and form a hy-
drophilic layer around the particle. In addition, the
molecular structure and functional group of PAA are similar
to polycarboxylate superplasticizer [42, 43] so that it may
have minor interruption to cement hydration. Amino-silane
coupling agent with amino group and silane group on the
end of the molecule is a common bridge agent, which can be
used to combine the inorganic particles and polymers
[44, 45].

In this study, a simple and efficient surface modification
method was developed to disperse the agglomerate SF.
Polyacrylic acid (PAA) and c-aminopropyltriethoxysilane
were selected as the modification agent and the bridge agent,
respectively. In addition, the efficiency of particle dispersion
was tested by changing the dosage of agents. +e effect of
modified SF particles on cement hydration was also in-
vestigated to reveal the influence of the surface modification
agent in cementitious materials.

2. Materials and Methods

2.1. Materials and Procedure. Commercial silica fume (SF)
from Elkem Company was the main material in this study.
+e chemical and physical properties of SF are shown in
Table 1. Polyacrylic acid (PAA) 50% water solution from
Aladdin with the mean molecular weight of 3000 and KH-
550 of commercial c-aminopropyltriethoxysilane bought
from Nanjing Jingtianwei Chemical Co., LTD were used as
the dressing agents. +e molecule structures of the two
agents are shown in Figure 1, and the physical index is
listed in Table 2. Ultrapure water was used to prepare
aqueous solution in the synthesis process. PI 52.5 Portland
cement was used as binder materials. +e chemical com-
position of cement is listed in Table 3. Polycarboxylate
superplasticizer (MELFLUX 2651F, BASF) with the water-
reducing rate of 40% was used to adjust the workability of
fresh pastes.

In the preparation procedure, SF (s, g) was dispersed in
500mL ultrapure water by ultrasonic treatment for 30min.
+en, KH-550 (k, g) dissolved in 100mL ultrapure water was
added into the SF solution slowly andmechanically stirred at
65°C for 20 h. +en, PAA water solution (p, g) was diluted in
100mL ultrapure water, added into the SF mixture, and
stirred at 65°C for another 1 h.+emodification procedure is
briefly shown in Figure 2. +e precipitate was separated by

vacuum filtration, washed with ultrapure water and ethanol
several times, dried under vacuum at 45°C, and denoted as
MSF. To evaluate the dispersion efficiency, three groups of
samples with different dosage of materials were prepared,
and the dosages are listed in Table 4.

To produce cement paste, PI 52.5 Portland cement was
partly substituted by SF or MSF with 10% by weight. +e
water to binder ratio (W/B) was fixed at 0.2. Polycarboxylate
superplasticizer of 1% by the powder weight was added to
improve the workability of fresh paste. +e mix proportion
detail is listed in Table 5. +e fresh mixture was casted and
then was steam curried at 85°C for 7 days.

2.2. Test Methods. +e particle size distributions of SF and
MSF were measured by the laser particle size analyser (PSD,
Microtrac S3500). +e test solution was ethanol. 5 g of
samples was first ultrasonically dispersed in 100mL ethanol
for 3min, and then the appropriate amount of the mixture
was dropped into the test container. Each sample was
analysed twice and output the average result.

To directly observe the morphology of SF particles and
hydrated pastes, a scanning electron microscope (SEM, FEI
3D) was used with both secondary electron (SE) mode and
backscattered electronic (BSE) mode. Under the SE mode,
the SF particles before and after modification were observed;
the operating voltage was 20 kV, and the work distance was
about 6mm.

+emorphology of hydrated products and the hydration
degree were also investigated by BSE images. +e electron
information collected in the BSE mode is sensitive to the
element number so that different phases in paste are easy to
distinguish by different grey levels.

For the BSE test, the fragments of paste were dried for
48 h at 40°C in vacuum oven, and then the samples were
impregnated with epoxy under vacuum until hardened.
After this, the samples were successively polished on a sand
paper of 20, 10, 5, and 2 μm and diamond paste of 0.1 μm.
+e samples were finally coated with the carbon film to avoid
charging during electron scanning. +e operating voltage of
BSE images was 15 kV. For each sample, BSE images with the
magnification of 2000 were used to morphology analysis,
and more than thirty images were taken for the hydration
degree analysis. Each image was digitized to 1536×1024
pixels. For the hydration analysis, the image processing
software (image J) was used to distinguish the grey levels
from 0 to 255 in each image and calculate the area fraction of
unreacted cement owing to the specific range of grey level.
+en the hydration degree of cement was calculated by
following equation [46]:

α � 1−
Vt

Vini
􏼠 􏼡 × 100%, (1)

where α is the hydration degree of cement and Vt and Vini
imply the volume fraction of cement from BSE images and
initial volume in mix proportion, respectively. Due to the
random and isotropic nature of cement paste, the volume
fraction of 3D real structure is equal to the area fraction of
2D cross section.
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Fourier transform infrared spectroscopy (FTIR, Nicolet
5700) was applied to analyse the surface groups of samples.
0.5 g of SF and MSF were, respectively, immersed in 500mL

Ca(OH)2-saturated solution for 0, 6, 12, 24, and 48 hours.
+en the immersed samples were dried at 40°C in vacuum
for 48 h and tested by FTIR.

Table 2: Physical index of PAA and KH-550.

Materials Molecular weight Specific gravity Concentration (%) Appearance Water solubility
PAA ∼3000 1.23 51.4 Colourless viscous liquid Soluble
KH-550 221.37 0.95 98.2 Colourless liquid Soluble

Table 3: Chemical composition of PI 52.5 Portland cement.

SiO2 (%) Al2O3 (%) Fe2O3 (%) CaO (%) MgO (%) SO3 (%) K2O (%) N2O (%) L.O.I (%)
Cement 20.40 4.70 3.38 64.70 0.87 1.89 0.49 0.33 3.24

KH-550 PAA

Silica particles

Hydroxy

KH-550 layer

PAA layer

65°C for 20 h 65°C for 1 h

Figure 2: +e brief schematic diagram of surface modification procedure.

Table 1: Chemical and physical indexes of SF.

SiO2 content (%) L.O.I (%) Activity index (%) Specific surface area (m2/g) Specific gravity
Silica fume 95.1 0.7 85 29.9 2.3
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Figure 1: Abbreviated molecular structure of PAA (a) and KH-550 (b).
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+e hydration heat of cementitious paste was analysed
by isothermal conduction calorimetry with an 8-channel
isothermal calorimeter (+ermometric TAM Air). About
20 g of sample with the W/B ratio of 0.5 was mixed and
tested at 20°C for 72 h.+e mix proportions of paste samples
are listed in Table 6. +e output results were normalized to
the initial mass of cement.

3. Results and Discussion

3.1. Particle Dispersion Properties. +e particle size distri-
butions of initial SF and modified SF with different dosage of
agent are shown in Figure 3. +e particle size of SF ranged
from 0.2 μm to about 110 μm, and the results significantly
changed for the modified SF. From the results, MSF particles
exhibited the best dispersion. +e maximum particle size of
MSF was less than 100 μm, and the volume fraction of
particles less than 5 μm was higher than SF, which implied
that more fine particles exist in MSF. However, if the dosage
of KH-550 is increased, as the sample MSF-2, the particles
with the size lager than 100 μm was significantly increased,
which means that the agglomeration becames more serious.
As for the sample MSF-3, which was modified with more
PAA, the minimum size was larger and the volume fraction
of particles smaller than 5 μm was lower than SF and MSF.

+e particle size distribution results indicated that PAA
surface modification efficiently changed the dispersion of SF.
With the optimal ratio of raw SF to modification agents at 5 :
1 : 5, the agglomeration of modified MSF was improved, the
maximum particle size was decreased, and the volume
fraction of fine particles was larger than initial SF.

Based on the particle size distribution analysis results,
MSF was optimally dispersed, and the following test was
focused on MSF and compared with SF.

To directly evaluate the dispersion effect of surface
modification, both SF and MSF particles were observed by
SEM, and the images are presented in Figure 4. In Figure 4(a),
it can be seen that although single SF particle was less than
1 μm, a large amount of particles agglomerated together to
form a bulk cluster, and the size can reach several micro-
metres. After surface modification, the size of the agglom-
erated bulk cluster was much smaller, indicating that the
dispersion was improved, as seen in Figure 4(b).

3.2. Surface Properties. +e surface properties and the sta-
bility of the surface agent in alkali condition were investigated
by FTIR, and the curves for SF and MSF with different
immersed time are shown in Figure 5. In Figure 5(a), the
broadband at 3419 cm−1 can be assigned to the O-H stretching
vibration of Si-OH and absorbed water, and the band at
1622 cm−1 is the bending of the hydroxyl group. +e bands
around 1120 cm−1 and 800 cm−1 are due to the asymmetric
and symmetric stretching vibrations of Si-O-Si, while the
band around 474 cm−1 corresponds to the symmetric bending
vibration of O-Si-O [47]. For MSF, shown in Figure 5(b), all
typical absorbed bands from SiO2 were detected. In addition,
the band at 1716 cm−1 was attributed to the stretching vi-
bration of the carbonyl group from PAA, and band at
1552 cm−1 was assigned to the N-H bending [48]. For the
sample immersed in saturated calcium hydroxide solution for
more than 6 hours, the absorbed band from carbonyl group
cannot be detected anymore, but the band of N-H bond at
1552 cm−1 still existed, and the intense of the peak was higher
with the increased immersing time.

Based on the FTIR results, a possible reaction process of
SF surface modification and the status of the surface layer
in the alkali condition were proposed. Initial SF particles
have many hydroxyl groups on its surface. When KH-550
mixed with SF solution at 65°C for 20 h, its silane end was
hydrolysed and reacted with hydroxyl groups. After PAA
was added, the polymer was hydrolysed again and immo-
bilized by the amidogen group of KH-550 and formed a PAA
layer coated with the surface of SF particles. +e schematic
reaction process is presented in Figure 6.+emolecular layer
surrounded the SF particles would enlarge the distance
between particles and prevent them to contact again. In
addition, the carboxyl group outside often exhibits negative
charge in solution, and the charge repulsion effect can push
the closed particles away.

Once the MSF was in the alkali condition, the bond
between PAA and KH-550 was broken after 6 h, the outer
layer falls off, and the amino groups were exposed on the
surface. And the concentration of active amino groups was
increased with time, which means that more PAA was fallen.

3.3. Hydration Calorimetry. +e hydration heat results of
cement pastes with two kinds of SF particles are presented in
Figure 7. Figure 7(a) is the heat flow of cement hydration for
the samples, and the curves were normalized to the mass of
initial cement. After the initial decrease, the heat flow of the
cement sample (P) started to increase at 2.1 hour and
reached the maximum of 4.0mw/g at 11.3 hour. While
mixed with SF, the acceleration of heat flow started at 1.7

Table 6:+emix proportion of pastes in the isothermal conduction
calorimetry test.

Number W/B
Mix proportion (by mass) (%)

Cement SF MSF
P 0.5 100 — —
PS 0.5 90 10 —
PS2 0.5 90 — 10

Table 4: +e dosage of modification agent used in different
samples (g).

Sample s k p
MSF 15 3 15
MSF-2 15 6 15
MSF-3 15 3 25

Table 5: +e mix proportion of cementitious paste.

Sample W/B
Mix proportion (by mass) (%)

Cement SF MSF
SF10 0.2 90 10 0
MSF10 0.2 90 0 10
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hour, a little early than P, and reached the peak of 5.6mw/g
at 10.4 hour and then sharply dropped. However, mixed with
MSF, the cement hydration was deferred to 13.8 hour and
then increased to the peak of 3.8mw/g at 26.9 hour.

According to the literature [47, 49], the hydration
process of cement can be divided into five stages: the initial
reaction period, the induction period, the acceleration pe-
riod, the deceleration period, and the stable reaction period.
+e results in Figure 7(a) demonstrated that compared with
pure cement sample, SF particles shorten the acceleration
period a little and significantly increased the hydration rate
at the acceleration period. However, when mixed with MSF,
the induction period of PS2 was about 12 hours longer than
the sample P, and the acceleration period was impacted
insignificantly. However, the hydration rate of the sample
PS2 was decreased slower than pure cement in the de-
celeration period.

+e cumulative heat curves shown in Figure 7(b) cor-
responded with heat flow curves. +e total amount and
increasing rate of heat for the sample PS were the highest due
to the high hydration rate in the acceleration period. On the

contrary, samples with MSF released lowest heat due to the
retardation at early time, but the increasing rate after 40 h
was higher than cement because of the long acceleration
period and relative high hydration speed in the deceleration
period.

+e fine SF particles have large specific surface area,
which increased the surface available for reaction, resulting
in acceleration in cement hydration. At the same time,
a large amount of hydration products generated around the
unreacted cement particles in short time, obstructing its
further reaction, so that the reaction in the accelerating
period was violent and terminated quickly. When SF was
modified with the surface agent, although the fineness of
particles increased, the hydrophilic PAA molecule blocked
the available surface for cement hydration, leading to a re-
strained hydration rate at early age. In addition, the hy-
drophilic PAA layer absorbed mixing water, causing a
retardation of cement hydration. However, with the in-
creasing alkalinity generated from cement reaction, the PAA
layer was supposed to peel off the particles, the shorter
c-aminopropyltriethoxysilane molecule cannot fully cover

(a) (b)

Figure 4: SEM images of SF (a) and MSF (b) particles.
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Figure 3: Particle size distribution (a) and cumulative curve (b) for samples with different dosages of the modified agents.
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the particle surface, and part of the active surface exposed for
cement hydration again so that the hydration rate in the
deceleration period was relatively higher.

3.4. Morphology and Hydration Degree of Pastes. +e mor-
phology of cement hydration products was observed by BSE
images, as shown in Figure 8.+ere were two primary phases
in both samples. Due to the low W/B and pozzolanic re-
action of SF, calcium hydroxide was almost consumed.
According to [46], the grey level of unreacted cement (UC) is
brighter than C-S-H gel in BSE images.+eC-S-H gel, which
is dense and surrounds the UC particles, was supposed to be
the inner C-S-H products, while the loose form of C-S-Hwas
the outer product.

Compared with Figures 8(a) and 8(b), more C-S-H gel
was generated in MSF10. To quantitate the evaluated the
hydration degree of two paste samples, BSE images were
analysed by software Image J, and the area fraction of UC in
each sample was statistically calculated.

Based on the Image J software, the UC and C-S-H gel
were distinguished by grey level; Figure 9 presents the BSE
images for SF10 and MSF10 and the grey level range for
different phases. +en, the area fraction of UC was analysed
by software, and the average was carried out from thirty
images for each sample. After calculation with (1), the av-
erage hydration degrees of SF10 and MSF10 were 54.4% and
63.2%, respectively.

SF particles accelerated cement hydration at the accel-
eration period with their large active surface area, while the
intense reaction of cement was finished quickly since much
inner C-S-H gel was generated around the cement particle
and stopped the continuous hydration. However, when
mixed with MSF, the hydration process was gentle at early
time because no active surface was available for cement
hydration; the primary effect of MSF was physical filling
effect. With the cement hydration proceeded, the outer PAA
layer on MSF was dropped and the active surface was ex-
posed to accelerate the hydration so that the hydration rates
at the deceleration period and the stable reaction period were
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Figure 6: Schematic representation for surface modification reaction.
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higher, leading to a relative higher hydration degree at
long age.

4. Conclusions

Based on the results, the following conclusions can be
drawn:

(1) A two-step surface modification was successfully
applied to SF particles. +e particle dispersion of the
modified SF particles was improved significantly by
the molecular position resistance and the space
charge repulsion effect.

(2) +e dosage of the dressing agent affected the dis-
persion efficiency. With the optimal ratio of SF to
dressing agents of 5 :1 : 5 by weight, the particles
exhibited the best dispersion. +e maximum particle

size was smaller, and the volume fraction of fine
particles was larger than initial SF.

(3) +e reaction process of surface modification was
revealed using surface analysis. +e carboxyl worked
as the functional group of the PAA layer at the
outside of MSF particles, and the layer cannot be
stable in the alkali condition. +e covered PAA layer
peeled off in the alkali condition after 6 hours, ex-
posing the amidogen group of KH-550.

(4) +e SF particles with large reactive surface
accelerated the hydration rate in the acceleration
period, causing a rapid heat release and short ac-
celeration and deceleration periods. +e hydrophilic
group of the PAA layer of MSF retarded the cement
hydration for about 12 hours and restrained the
hydration rate in the acceleration period.
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Figure 8: +e BSE images of cement hydrated with (a) SF and (b) MSF.
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Figure 7: Isothermal calorimetry results of heat flow (a) and total hydration heat (b).
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(5) +e PAA layer of MSF was peeled off due to the
raising alkalinity with hydration time. +e hydra-
tion rate was decreased slowly in the deceleration
period.

(6) +e amount of inner C-S-H products of cement with
SF was large due to the intensive hydration process.
+e hydration degree of cement with MSF was
higher than that with SF. +e moderated hydration
of cement brought a continuous hydration reaction
for longer time.

Data Availability

(1) +e particle size distribution data, (2) the SEM image
data, (3) the FTIR data, (4) the isothermal calorimetry data,
(5) the BSE image data, and (6) the grey level histogram data
used to support the findings of this study are included within
the article.
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