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A three-dimensional fiber-based frame element accounting for multiaxial stress conditions in reinforced concrete structures is
presented. )e element formulation relies on the classical Timoshenko beam theory combined with sectional fiber discretization
and a triaxial constitutive model for reinforced concrete consisting of an orthotropic, smeared crack material model based on the
fixed crack assumption. Torsional effects are included through the Saint-Venant theory of torsion, which accounts for out-of-
plane displacements perpendicular to the cross section due to warping effects. )e formulation was implemented into a force-
based beam-column element and verified against monotonic and cyclic tests of reinforced concrete columns in biaxial bending,
beams in combined flexure-torsion, and flexure-torsion-shear.

1. Introduction

)e increasing interest towards performance-based engi-
neering requires robust and accurate numerical models for
strength and ductility assessment of reinforced concrete
(RC) structures. A great majority of RC structures, such as
bridges and frame buildings, can be idealized with one-
dimensional frame elements for global nonlinear analysis.
However, these elements usually rely on the classical
Euler–Bernoulli beam assumption, that is, plane sections
remain plane and orthogonal to the element axis, and
uniaxial stress conditions, which is only valid in the so-called
B-regions. As an example, Figure 1 shows the results from
such an element applied to the modeling of a floor sub-
assembly subjected to a vertical concentrated load in the
middle of the floor beam [1]. )is creates multidirectional
shear flow in the spandrel beam coupled with normal
stresses arising from bending.)e frame element is unable to
reproduce the cracked torsional stiffness of the spandrel
beam, thus significantly overestimating the overall cracked
stiffness and strength of the test. In the same figure, the
results from 3D nonlinear finite element analysis (FEA) have
been included, demonstrating much better agreement [2].

From the above, it is clear that standard flexural frame
elements, commonly used in commercial software, present
limitations under multiaxial loading conditions, which have
motivated the development of more advanced frame elements
for global nonlinear static and dynamic analysis. Several
formulations have been proposed in 2D addressing the
problem of axial-flexure-shear interaction. Some authors used
an equivalent truss model in shear combined with the
Euler–Bernoulli beam assumption and uniaxial stress re-
sponse in flexure [3]. Further improvements were obtained
when shear deformations were included in the element ki-
nematics (Timoshenko beam theory) [4], which also allowed
using two-dimensional constitutive models at each individual
fiber based on either fixed [5–7] or variable shear strain profile
[8]. Different constitutive models have been used, ranging
from orthotropic smeared crack models (e.g., modified
compression field theory (MCFT) [9] and fixed angle softened
truss models (FA-STM) [10]) to softened plasticity damage
models [11, 12], and microplane models [13], among others.
A detailed review can be found in [14].

Research devoted to RC 3D frame elements has been
more limited mostly due to complexities in the development
of robust and accurate triaxial material models for concrete
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and their implementation into fiber frame elements. Mazars
et al. [15] developed a 3D displacement-based Timoshenko
beam element with a 3D constitutive model for concrete
based on continuum damage mechanics. )e Saint-Venant
torsion was introduced by means of the warping function
derived from linear elastic analysis under pure torsion.
Gregori et al. [16] used a similar element to that used by
Mazars et al. but with a parabolic shear strain profile and
Coulomb theory for torsion. )e constitutive model was
based on the MCFT. )e cross section was subdivided into
three regions based on the dominant stress conditions: 1D,
2D, and 3D, where the corresponding constitutive models
were applied. Mullapudi and Ayoub [17] formulated a 3D
flexibility-based fiber element using the FA-STM. )e beam
kinematics was based on the Timoshenko beam theory in
conjunction with the Coulomb torsion, that is, no warping
was considered.

)e abovementioned work was based on the classical
Timoshenko beam theory with either uniform or parabolic
shear profiles. )is approach does not satisfy interfiber
sectional equilibrium; hence, more advanced (higher-order)
beam theories have been recently investigated which satisfy
interfiber sectional equilibrium in an average sense [18–21].
However, only a limited number have been successfully
applied to 3D analysis of RC frame structures [22].

In the present work, a nonlinear frame element based on
the Timoshenko beam assumption is developed. )e cross
section is discretized into several fibers, which allows direct
consideration of multiaxial stress interaction at the material
level. A triaxial smeared crack constitutive model is
implemented for concrete, whereas reinforcement is treated
as smeared within the concrete with uniaxial stress-strain
behavior. )e Saint-Venant theory is used for modeling
torsion, which is suitable for noncircular solid cross sections
with warping effects. )e element formulation has been
implemented into a force-based frame element and applied
to monotonic and cyclic analysis of RC columns and beams.
Comparison against experimental results shows similar
levels of accuracy to those obtained from detailed 3D FEA
with solid elements.

2. Frame Element Formulation

In the Timoshenko beam theory (TBT), cross sections are
not constrained to remain orthogonal to the beam axis, as in
the Euler–Bernoulli beam theory, due to shear distortions of
an infinitesimal beam element. )e kinematics of any point
of the beam is completely described by three independent
displacements and rotations of the beam axis as follows
(Figure 2):

d � uovowoθxθyθz􏼐 􏼑. (1)

)e total displacement at any given point of the section is
related to the beam axis displacements as

u(x, y, z) � uo(x)− θz(x)y + θy(x)z + ω(y, z)α(x),

(2)

v(x, y, z) � vo(x)− θx(x)z, (3)

w(x, y, z) � wo(x) + θx(x)y, (4)

where u, v, and w are the axial and transverse displacements
of a generic point of the section with coordinates (x, y, z),
ω is the warping function, and α is the warping parameter
equal to zθx/zx according to the Saint-Venant theory. As-
suming small displacements, axial and shear strains at
a given section fiber are given as

εx �
zu

zx
� εo − χzy + χyz,

cxy �
zv

zx
+

zu

zy
� coy − αz +

zω
zy

α,

cxz �
zw

zx
+

zu

zz
� coz + αy +

zω
zz

α,

(5)

where εo is the average axial strain, χy and χz the bending
curvatures, coy and coz the section shear deformations, and
α is the derivative of the torsional rotation θx. )e above
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Figure 1: Beam test in torsion, shear, and flexure [1, 2].
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relationships can be expressed in matrix as ε�Bεe, where Bε
is the strain-displacement compatibility matrix, ε� (εx, cxy,
cxz), and e� (εo, coy, coz).

)e section forces consistent with the section strains are
obtained from integration of the axial and shear stress
distributions over the cross section as follows:

S � 􏽚
A
BT
σ σdA,

N

Vy

Vz

T

My

Mz

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠dA.

(6)

)e relation between section forces and section strains is
given by the section stiffness matrix. In the nonlinear case,
incremental section forces and strains are related by the
tangent stiffness matrix of the section as follows:

Ks �
zS
zε

�
z

ze
􏽚

A
BT
σ σdA � 􏽚

A
BT
σ

zσ
zε

zε
ze

dA � 􏽚
A
BT
σ

zσ
zε
BεdA

� 􏽚
A
BT
σDBεdA,

(7)

where D is the condensed (3 × 3) tangent material stiffness
matrix. Note that Bσ and Bε are different; hence, Ks will not
be symmetric in the general case, with the exception of the
circular cross section for which the warping function is
zero. )e D matrix is obtained from condensation of the
(6 × 6) material stiffness matrix assuming that the total
stresses σy, σz, and τyz are zero in the beam element as
follows:

σy � σc,y + ρsyσs,y � 0,

σz � σc,z + ρszσs,z � 0,

τyz � τc,yz � 0,

(8)

where σc,i and σs,i are the stresses in concrete and steel,
respectively, and ρsi (i� y, z) is the reinforcement ratio at
each individual section fiber. )is process is performed it-
eratively at each section fiber until convergence, which

requires implementing an additional loop within the fiber
state-determination procedure.

)ewarping function in (2) is obtained from the solution
of an elastic prismatic beam under pure torsion based on the
Saint-Venant theory of torsion, which is defined by the
following boundary value problem:

z2ω
zy2 +

z2ω
zz2 � 0 in Ω, (9)

zω
zy

ny +
zω
zz

nz � zny −ynz on zΩ, (10)

where Ω and zΩ represent the cross-sectional domain and
its boundary, respectively, and ny and nz are the components
of the vector normal to the boundary. Equations (9) and (10)
represent a boundary value problem that can be solved using
the finite element technique. In the present case, four-node
plane isoparametric elements were used to discretize the
cross section and calculate the elastic warping function ω.
Figure 3 shows the calculated warping functions for the
rectangular and hollow cross sections used for verification in
Section 5.

3. Constitutive Model

A 3D orthotropic smeared crack material model is for-
mulated for cracked reinforced concrete, which represents
an extension of the 2D model presented in [23] for mem-
brane elements. A similar approach was also adopted in
[17, 24]. )e model is formulated in the material directions
(Figure 4), which are coincident with the crack directions
determined at first cracking as

min ε1 + εcp1, ε2 + εcp2, ε3 + εcp3􏼐 􏼑< εcr, (11)

where εcpi is the plastic compressive strain (positive) and εi is
the principal strain (negative for tension). εi can be obtained
upon solving the eigenvalue problem for the strain tensor in
the xyz reference system, εxyz. After the first cracking, the
material directions are kept constant throughout the anal-
ysis, assuming that secondary cracks are orthogonal to the
initial ones. Total strains in the material directions, ε123, are
obtained from εxyz as

ε123 � Tεxyz, (12)

where T is the standard (6× 6) transformation matrix. )e
corresponding concrete stresses, σ123, are determined from
equivalent uniaxial constitutive laws for axial and shear
stresses (Figure 5(a)). In compression, the monotonic en-
velope is defined by the Popovics curve scaled by the lateral
confining factor and a softening coefficient due to orthog-
onal tensile strains [9] given as

βσ �
1

0.80− 0.34 εav/εo( 􏼁
,

εav �
εj + εk

2
,

(13)

where εj and εk are the total tensile strains in the orthogonal
directions j and k.
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Figure 2: Beam kinematics and section discretization.
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In tension, a physically based approach is used such that
average concrete stresses are determined using equilibrium,
compatibility, and constitutive relations applied on
a cracked concrete element with three di�erent regions as
follows: an elastic, fully bonded region (b), a crack region
(cr), and a bond-slip region (sl) where the slip between
concrete and reinforcement occurs (Figure 5(b)). �us,
average concrete stress in the ith material direction can be
obtained as

σavci �
1− λi( )siσbci + λi − εi( )siσslci + siεiσcrci

si
, (14)

where σbci, σ
sl
ci, and σ

cr
ci are concrete stresses in the (b), (sl), and

(cr) regions, respectively. si, λi, and εi are the average
spacing, unbonded length parameter, and tensile strain in
the ith direction, respectively. �is approach allows full
characterization of the tension sti�ening, crack-closing, and
crack-opening regimes based on principles of mechanics.
Further details can be found elsewhere [23, 25].

Shear stresses, τij, arising from deviation between
principal directions and crack directions are related to the
shear strains, cij, as

τij � Gijcij < vci,max,

Gij �
1
2
σi − σj
εi − εj

,
(15)

where σi, σj and εi, εj are the normal stresses and strains in
the ith and jth crack directions, respectively. Note that, in
this approach, dowel action is not directly accounted for.
Shear failure due to aggregate interlock is included by setting

an upper limit on the maximum shear stress transferred
along cracks [9] as follows:

vci,max �
0.18

���
f′c
√

0.31 + 24wij/16 + ag( )
, (16)

where ag is the maximum aggregate size and wij is the
average crack width (mm). Assuming smeared cracks, the
average crack width is given as

wij � sijεn, (17)

where εn is the maximum (in absolute value) tensile strain
normal to the crack. �e average crack spacing, sij, is taken
as the average between i and j directions as follows:

sij �
si + sj
2

, (18)

where the average crack spacing in the ith direction is de-
termined from those in the x, y, and z directions as follows:

si �
1

n1i/sx( ) + n2i/sy( ) + n3i/sz( )
, (19)

where nji are the direction cosines between xyz and the crack
directions.

Finally, steel stresses are determined based on the uni-
axial Menegotto–Pinto hysteretic model [26] with modi�ed
isotropic hardening [27]. For the ith reinforcement group,
which orientation is de�ned by the unitary vector nsi, the
total axial strain can be obtained upon transforming εxyz to
the corresponding direction.�en, steel stresses are obtained
using the abovementioned model and transformed back to
the xyz reference system as

σsi,xyz � TTsi ρsiσsi 0 0 0 0 0( )T, (20)

where σsi is the uniaxial steel stress, ρsi is the reinforcement
ratio for the ith reinforcement group, and Tsi is the cor-
responding transformation matrix between reference sys-
tems. σsi,xyz stresses are added to the concrete stresses, σc,xyz,
in order to obtain the total stresses, σxyz, which are used for
the calculation of the vector of internal element forces.
Similarly, the ith reinforcement contribution to the material
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Figure 3: Calculated warping functions for rectangular and hollow-core section.
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stiffness matrix, Dsi,xyz, is added to that provided by con-
crete, Dc,xyz, such that the total material stiffness matrix is
given as

Dxyz � TTDc,123T + TT
siDsiTsi, (21)

where

Dc, 123 �

Ec1 . . . . 0

. Ec2 .

. Ec3 .

. G12 .

. G23 .

0 . . . . G31

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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,

Dsi �

ρsiEsi . . . . 0

. 0 .

. 0 .

. 0 .

. 0 .

0 . . . . 0
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,

(22)

where Eci and Esi are the tangent moduli for concrete and
steel and Gij is the shear stiffness.

4. Frame Element Implementation

)e proposed frame model was implemented using Matlab©
into a three-dimensional, force-based fiber element based on
the state-determination formulation described by Spacone
et al. [28]. In this formulation, once the global displacements
are known, an iterative procedure is invoked at the element
level in order to obtain the corresponding section strains at
each integration point. )is is performed in the basic ele-
ment configuration upon removal of the rigid bodymodes as
follows (Figure 6):

Δq � RΔdE, (23)

where Δq is the increment of element displacements in the
basic configuration, ΔdE is the increment of global dis-
placements, at a given load step, and R is the rigid body
transformation matrix given as

R �

−1 0 0 0 0 0 1 0 0 0 0 0

0 1/L 0 0 0 1 0 −1/L 0 0 0 0

0 1/L 0 0 0 0 0 −1/L 0 0 0 1

0 0 −1/L 0 1 0 0 0 1/L 0 0 0

0 0 −1/L 0 0 0 0 0 1/L 0 1 0

0 0 0 −1 0 0 0 0 0 1 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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.

(24)

)e element forces, ΔQ, can be obtained from the ele-
ment flexibility matrix, Fe, which is known from the pre-
vious converged load step as

ΔQ � Fe( 􏼁
−1Δq. (25)

Equation (25) is only an approximation since Fe is
changing within each load step due to material non-
linearities. Section forces, ΔS, are interpolated exactly from
element forces. At the kth integration point, this is given as

ΔSk � bkΔQ, (26)

where bk is the force interpolation matrix at the kth in-
tegration point with coordinate xk, which is given as

bk �

1 0 0 0 0 0

0 −1/L −1/L 0 0 0

0 0 0 1/L 1/L 0

0 0 0 0 0 1

0 0 0 − 1−xk/L( 􏼁 xk/L 0

0 − 1−xk/L( 􏼁 xk/L 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (27)

An estimate of the section deformations at the kth in-
tegration point, Δek, can be made based on the section
flexibility matrix, Fs,k, which is obtained from the inverse of
the section stiffness matrix given in (7):

Δek � Fs,kΔSk. (28)

At this point, the total strains at each individual fiber can
be determined, and the corresponding stresses can be ob-
tained using the constitutive models presented in Section 3.
Integration of the total stresses over the cross section yields
the section forces, ΔSint,k, and an updated section flexibility
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Figure 5: Cyclic response of concrete (a) and cracked concrete element for tensile model (b).
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matrix. )e unbalanced section forces, ΔSu,k, given by the
difference between ΔSk and ΔSint,k, are used to update the
section deformations as Δek � Δek + Fs,kΔSu,k, which are
further used to correct the element forces by the following
quantity:

ΔQu � F
−1
e 􏽘

NIP

k�1
wkb

T
kΔek, (29)

where wk are the integration weights at the kth integration
point and Fe is the updated element flexibility matrix given
as

Fe � 􏽘
NIP

k�1
wkb

T
kFs,kbk. (30)

)e procedure is repeated with the new element forces
until satisfying element convergence, that is, when
‖ΔSk −ΔSint,k‖< tol at each kth integration point. Once el-
ement convergence is achieved, the element forces obtained
in the basic configuration are transformed back to the global
configuration and assembled within the vector of internal
forces of the structure. Global equilibrium between the
vector of applied external forces and internal forces is
checked at this point. If this is not satisfied, the residuum
between external and internal forces and the tangent stiff-
ness matrix of the structure are used in a subsequent iter-
ation to compute a new increment of nodal displacements. A
flow chart summarizing the numerical procedure is shown
in Figure 7.

5. Verification Examples

5.1. Biaxial Bending Test. Bousias et al. [29] tested flexure-
dominated RC cantilever columns in biaxial cyclic bending.
Different paths of imposed lateral displacement were in-
vestigated, ranging from uncoupled bidirectional to circular
patterns. All columns were 250mm× 250mm× 1490mm
rectangular specimens fixed to a stiff base foundation. )e
shear span-to-depth ratio was 6. )e columns were well
reinforced in shear with a double hoop pattern of 8mm
diameter stirrups at 70mm spacing. Longitudinal re-
inforcement consisted of 16mm bars uniformly distributed
around the perimeter. Material properties are summarized
in Table 1. A constant axial load was applied at the top of

each column. Two tests are reproduced here, S1 and S7, with
the displacement paths shown in Figure 8.

)e columns were modeled with one single FB element
with 5 IPs. )e cross section was discretized into 10×10
fibers, with the longitudinal and transverse reinforcement
smeared as shown in Figure 9. )e contribution of the
inclined hoops was decomposed in the x and z local di-
rections and added to the hoops aligned with the axes. In any
case, the influence of transverse reinforcement in the re-
sponse of the member is rather small since the behavior is
dominated by flexure. )e main effect of the transverse
reinforcement is confining of concrete, which was accounted
for with an estimated confinement factor of 1.1.

)e hysteretic lateral force-displacement response is
shown in Figure 10.)e numerical results agree well with the
experimental data for both S1 and S7 specimens. Wide
hysteretic loops can be observed for specimen S7 due to the
nature of the imposed displacement. )is aspect is well
captured by the analytical model. For specimen S1, analytical
results slightly underestimate the strength of the member,
which might be related to material modeling of steel, al-
though good agreement is observed in terms of hysteretic
pinching and residual displacements. Figure 11 also reports
the measured horizontal reactions in each direction. It is
noted that the horizontal reactions are not totally decoupled
for the S1 column, as it happens with displacements, pre-
sumably due to biaxial yielding. It shall be mentioned that
testing and measuring the response of biaxially loaded
columns involves several difficulties, such as misalignment
of the cross-sectional principal axes with those of the ac-
tuator, and inclusion of P-delta effects, among others.

5.2. Torsion and Bending. )e series of RC beams tested by
Onsongo [30] in combined torsion and flexure are analyzed
herein. )e test campaign consisted of two series of five
beams each, being the series TBO over-reinforced and
designed to fail in concrete crushing without yielding of
neither longitudinal nor transverse reinforcement, whereas
the series TBU was under-reinforced, with either longitu-
dinal or transverse reinforcement yielding prior to failure.
Within each series, the ratio of applied torque to applied
moment was varied from 0 to 5.059, being the rest of the test
variables essentially constant. )e test setup consisted of
adjustable steel level arms at the ends of the specimen, where

θz2

uy2

ux2
θx2

θy2

uz2

θz1

uy1

θy1

uz1

ux1
θx1

xy

z

X
Y

Z

(a)

θx
xy

z

θyj

θyi

θzi

θzj

u
X

Y
Z

(b)

Figure 6: Frame element degrees of freedom in the global (a) and basic (b) configurations.
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an eccentric jack load was applied, resulting in constant
bending moment and torque along the specimen. Beams
TBO3 and TBU3 were selected for analysis, both having the
same cross section. Material and loading properties are
summarized in Table 2.

Half of the beam was modeled using one single element
with 5 IPs (Figure 12). Rigid elements were connected to the

end of the beam in order to reproduce the support condi-
tions and the eccentric load application. )e torsional and
bending rotations around z-axis were restrained at node 1.
At node 4, the beam was free to rotate, and only the vertical
displacement was restrained. Additionally, out-of-plane
degrees of freedom were restrained in order to create an
isostatic system and avoid stiffness matrix singularities. )e

Obtain the element forces ΔQ = Fe
–1 Δq

Interpolate section forces ΔSk = bk ΔQ

Estimate section deformations Δek = Fs,k ΔSk
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Figure 7: Flow chart summarizing the force-based element iteration procedure.

Table 1: Material properties of the columns [29].

Test unit f′c (MPa) εo fy (MPa) fu (MPa) εu (‰) P/f′c · Ac

S1 29 0.002 460 710 11 0.12
S7 28.1 0.002 460 710 11 0.12
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Figure 8: Imposed top displacement on the columns.
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cross section was discretized into 64 fibers, with both lon-
gitudinal and transverse reinforcements smeared within the
web and flange regions as shown in Figure 12. )e warping
function of the hollow section is already presented in Fig-
ure 3. It was calculated as the difference between the warping
functions of two solid rectangular sections, one with the
outer dimensions and the other one with the dimensions of
the inner core.

Figures 13 and 14 compare analytical and experimental
results in terms of applied bending moment-curvature and
applied torque-twist for the two beams. In general, good
agreement can be found with the experiment. )e moment-

curvature response is better captured for the over-reinforced
beam (TBO3) since it essentially behaves elastically in
bending, whereas some differences can be observed for the
under-reinforced beam (TBU3).

Results for the hoop strains at middepth are shown in
Figure 15 for both beams.)ese are somewhat overestimated
in the postcracking range, especially for beam TBO3, due to
overestimation of the twist. In both beams, yielding of hoops
occurred in both y and z reinforcements at several cross-
sectional fibers.

From inspection of local strains in the longitudinal re-
inforcement, it was found that this did not yield for beam
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Figure 9: Numerical model of the Bousias column and section discretization.
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Figure 10: Lateral force-displacement response of the columns [29].
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TBO3 but did yield for beam TBU3, with the values of 1.7‰
for TBO3 and 2.5‰ for TBU3 at the bottom �ange. Concrete
crushing occurred for the beam TBO3, reaching principal
compressive strains of about 2.5‰ and corresponding
stresses of 18MPa, slightly less than f′c due to concrete
softening at orthogonal tensile strains. For TBU3, principal
compressive strains remained below 2‰.

5.3. Bending, Shear, and Torsion. �e test of the �oor
subassembly by Collins and Lampert [1] presented in
Figure 1 is considered here for veri�cation. �is test setup
produces torsion, bending, and shear in the spandrel
beam, and bending and shear in the �oor beam. �e de-
�ection of the �oor beam depends on the postcracked
torsional and bending sti�ness of the spandrel beam. Both
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Figure 11: Horizontal reactions in the columns [29].

Table 2: Material properties of the beam in bending and torsion [30].

Beam f′c (MPa) εo T/M
TBO3 19.1 0.0024 0.701
TBU3 34.8 0.0031 0.701
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Figure 12: Numerical model of the Onsongo beam and section discretization.
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beams were reinforced with longitudinal and transverse
reinforcements, with the material properties summarized
in Table 3.

)e Tspecimen was modeled with 4 elements, with 5 IPs
each (Figure 16). A mesh of 10×10 fibers was used to
discretize both cross sections. Longitudinal reinforcement
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Figure 13: Moment-curvature and torque-twist response for beam TBO3 [30].
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was smeared in the top three layers and in the four bottom
layers for the floor beam. For the spandrel beam, it was
smeared in the top and bottom three layers. Transverse
reinforcement was smeared over the entire section domain
for both beams. )e torsional rotation was fixed at nodes 1
and 3, being the rest of rotations free. At node 5, the beam
was simply supported. A vertical concentrated load was
applied at node 4 under displacement control with 2mm
displacement increments.

Figure 17 shows the results for the applied load-
deflection at node 4 and for the load-twist response of
the spandrel beam. Furthermore, the results from 3D FEA

presented by Valipour and Foster [2] are shown.)e authors
used brick elements with a 3D nonlinear cementitious
material model, which is a fracture-plastic constitutive law
for cracked concrete, and 1D elements for the reinforcement
with a linear-hardening stress-strain relationship. Good
correlation can be observed with the experiments in both
cases. At 80mm vertical deflection, the twist predicted by the
model is 0.010 rad/m, whereas in the experiment, FEA is
about 0.014 rad/m. In the frame element analysis, yielding of
longitudinal top and bottom reinforcement occurred in the
floor beam and only of the transverse reinforcement in the
spandrel beam. In the experiment, yielding of the bottom

Table 3: Material properties of the beam in bending, shear, and torsion [1].

Concrete Longitudinal steel ϕ16 Transverse steel
f ′c (MPa) εo Ec (MPa) fy (MPa) Es (MPa) ϕ (mm) fy (MPa) Es (MPa)

24.1 0.0022 24,000 434 200,000 9.5 294 200,000
6.5 310 200,000
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Figure 16: Numerical model and section discretization of the floor subassembly.
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Figure 17: Load-deflection and load-twist response of the floor subassembly [1, 2].
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longitudinal reinforcement also occurred in the spandrel
beam.

6. Conclusions

Results from a 3D fiber-based frame element with multiaxial
stress interaction have been presented. )e proposed ele-
ment is intended for nonlinear analysis of 3D frame
structures such as those in the field of earthquake engi-
neering, when consideration of multiaxial effects due to the
presence of disturbed regions is important. Established
frame analysis theories only consider the interaction be-
tween bending and normal forces with some “adjustments”
for flexure-shear interaction. )e proposed frame element
formulation considers full coupling between bending, shear,
and torsion in a consistent manner based on the fiber-
section discretization approach and 3D constitutive
models. Despite the conceptual simplicity of the imple-
mented constitutive models and beam kinematics, the ele-
ment accuracy was comparable to that from refined finite
element analysis, at least for the investigated case study
involving shear, bending, and torsion coupling. Further
verification studies, for instance, regarding cyclic shear and
torsion, are expected in the future depending on the
availability of experimental data. Potential enhancement of
the constitutive models will be the object of future research
as well. )e possibility of replacing traditional flexural frame
elements, based on the Euler–Bernoulli beam assumption,
for global nonlinear analysis of framed structures should be
further addressed. An important aspect, not considered in
the present work, is the computational time, which obvi-
ously lies in between flexural frame elements and solid finite
elements.
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