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In urban environment, it is often unavoidable for shallow tunnels to be constructed adjacent to existing pile foundations. To
obtain the ground displacements and stresses induced by shallow tunneling and existing pile foundation loads, the key
procedure involves superimposing the analytical solution for shallow tunneling in green-field with the analytical solution for
existing structure loads. In green-field, the complex variable method provides exact analytical solutions of ground dis-
placements and stresses caused by shallow tunneling. However, the exact analytical solutions are not directly expressed as
explicit functions of the coordinates (x, y) in the physical plane (called implicit form of exact analytical solutions), whereas the
displacements and stresses induced by existing structure loads are explicit functions of the coordinates (x, y) in the physical
plane, which makes it difficult to superpose the displacements and stresses induced by existing structure loads. In this paper,
explicit form of exact analytical solutions of displacements and stresses induced by shallow tunneling in green-field is obtained
by using the inverse conformal transformation and the Cauchy–Riemann equations. Comparison with implicit form of exact
analytical solutions shows that the explicit form of exact analytical solutions is intuitional and easily used by engineers, and
moreover, the calculation amount is much smaller than that for the implicit form of exact analytical solutions. *en, an
application involving superimposing the explicit form of exact analytical solutions with Mindlin’s solution is implemented to
analyze the secondary stress field and the related potential plastic zone caused by shallow tunneling adjacent to pile foun-
dations. Moreover, the influences of pile foundation parameters on the ranges and shapes of the potential plastic zones induced
by nearby tunneling are analyzed.

1. Introduction

Due to continuous expansion of cities and decreases in
available land, the demand for urban tunnels (roads or
metro) has increased sharply in recent years. At the same
time, the foundations of nearby existing structures
are unavoidably disturbed by this process and affect it,
especially in densely constructed areas located adjacent
to the tunnel construction site. *e prediction and miti-
gation of damage caused by construction-induced ground

movement represents a major factor in the design of
tunnels.*is is an especially important problem for shallow
tunnels excavated in soft soils, where expensive remedial
measures such as compensation grouting or structural
underpinning may need to be considered prior to con-
struction. To obtain the ground displacements and stresses
induced by shallow tunneling and existing structure loads,
the key procedure involves superimposing the analytical
solution for tunneling in green-field with the analytical
solution for existing structure loads.
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To estimate the ground displacements and stresses
caused by shallow tunneling in green-field, a number of
empirical and analytical solutions have been developed. In
engineering practice, these ground surface settlements are
often described by Peck’s empirical formula [1, 2], which
provides a Gaussian distribution curve for ground settle-
ment and is based on field observations and intuitive de-
ductions, thus it is lacking in theory and ambiguous in its
range of applicability. In addition, there are four main
analytical methods, namely, the virtual image technique
[3–5], the complex variable method [6, 7], the general series
form stress function in polar coordinates [8–11], and the
stochastic medium theory [12]. Pinto and Whittle [13] and
Xiang [14] presented detailed reviews and comparisons of
the empirical and analytical solutions of ground displace-
ments and stresses for shallow tunnels in green-field.
However, those solutions mentioned above are in general
all based upon the premise that the ground is free from
existing structure loads, and they cannot directly predict
ground displacements and stresses induced by the combi-
nation of shallow tunneling and existing structure loads.

For the condition of shallow tunneling adjacent to an
existing pile foundation, Xiang and Feng [15] proposed a
superposition method for predicting the potential plastic
zone of shallow tunneling adjacent to a pile foundation in
soils. Although their results achieve good effects, there is
still one approximation. According to Verruijt [6] and
Pinto and Whittle [13], the tunneling-induced stresses
adopted by Xiang and Feng [15] are an approximate so-
lution that implicitly ignores the finite dimensions of the
tunnel itself, and the results from approximate solution
would lead to certain differences, especially for tunnels too
close to the ground surface. *is approximation would
make the superposition method proposed by Xiang and
Feng [15] unsuitable for tunnels too close to the ground
surface. Referring to Xiang [14] and Pinto andWhittle [13],
the complex variable method not only provides exact
analytical solutions of ground displacements and stresses
caused by shallow tunneling in green-field but also makes
the exact analytical solutions suitable for various types of
boundary conditions. *erefore, to obtain more accurate
results for secondary stress field and the related potential
plastic zone, the exact analytical solutions based on the
complex variable method are used for the superposition
method in this paper. However, there is still a problem that
exact analytical solutions are not directly expressed as
explicit functions of the coordinates (x, y) in the physical
plane (called implicit form of exact analytical solutions),
whereas the displacements and stresses induced by existing
structure loads are explicit functions of the coordinates (x,
y) in the physical plane, which makes it difficult to su-
perpose the displacements and stresses induced by existing
structure loads.

*e present paper extends and partially revises past
research work [16]. *e implicit form of exact analytical
solutions, which are based on the complex variable
method, is derived into explicit form of exact analytical
solutions by using the inverse conformal transformation

and the Cauchy–Riemann equations. *en, an application
is conducted to analyze the secondary stress field and the
related potential plastic zone caused by shallow tunneling
adjacent to pile foundations. Moreover, the influence of
pile foundation parameters (pile length, load magnitude,
and pile offsets) on the ranges and shapes of the potential
plastic zones induced by nearby tunneling is analyzed.

2. Explicit Form of Exact Analytical Solutions of
Ground Displacements and Stresses
Induced by Shallow Tunneling

2.1. Implicit Formof ExactAnalytical Solutions. *e problem
considers an elastic half-plane with a circular tunnel
(Figure 1) [6]. *e radius of the tunnel is expressed by r,
the depth of its center below the free surface by h, and the
cover by d. *e ground surface boundary is free of stress
and the boundary of the tunnel undergoes a given distri-
bution of displacements (for instance, two typical boundary
conditions: uniform radial displacement (the ground loss
problem) u0 and ovalization ud). In the complex variable
method used by Verruijt [6], it is assumed that the original
domain in the z-plane (physical plane) is mapped con-
formally onto an annular region bounded by the circles
|ζ| � 1 and |ζ| � α, where α< 1, on the auxiliary domain in
the ζ-plane (mapped plane) by the following conformal
transformation:

z � ω(ζ) � −ih
1− α2

1 + α2
1 + ζ
1− ζ

� −ia
1 + ζ
1− ζ

, (1)

where α is given by

α �
h

r
−

�������

h

r
 

2

− 1




. (2)

In z-plane, the solutions are expressed in terms of two
analytic functions φ1(z) and ψ1(z). *e stresses and dis-
placements are related to these functions as follows:

σxx + σyy � 2 φ1′(z) + φ1′(z)  � 4Re φ1′(z) , (3a)

σyy − σxx + 2iσxy � 2 zφ1″(z) + ψ1′(z) , (3b)

2μ ux + iuy  � κφ1(z)− zφ1′(z)−ψ1(z), (3c)

where μ is the shear modulus of the elastic material, κ is
related to Poisson’s ratio ] by κ � 3− 4], i is the imaginary
constant, and overbar is a complex conjugate.

By virtue of the conformal transformation function
ω(ζ), the functions φ1(z) and ψ1(z) can be considered as
functions of ζ as follows:

φ1(z) � φ1(ω(ζ)) � φ(ζ), (4a)

ψ1(z) � ψ1(ω(ζ)) � ψ(ζ). (4b)
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As the functions φ(ζ) and ψ(ζ) are analytical, they can
be expanded in Laurent series in the ζ-space as follows:

φ(ζ) � a0 + 
∞

k�1
akζ

k
+ 
∞

k�1
bkζ
−k

, (5a)

ψ(ζ) � c0 + 
∞

k�1
ckζ

k
+ 
∞

k�1
dkζ
−k

, (5b)

where the coefficients a0, ak, bk, c0, ck, and dk are deter-
mined with recursive relations derived from the boundary
conditions. First, the coefficients a0, ak, and bk are found
with the specific displacement boundary condition at the
boundary of the tunnel (for instance, convergence and
ovalization) by using related coefficients Ak in Fourier
series terms.

1− α2 a1 − κ + α2 b1  � A0 − (κ + 1)a0( , (6a)

1 + κα2 a1 − 1− α2 b1  � A1α + (κ + 1)α2a0 , (6b)

1− α2 (k + 1)ak+1 − α2 + κα−2k
 bk+1 

� 1− α2 kak − 1 + κα−2k
 bk  + A−kα

−k
,

k � 1, 2, . . . ,

(6c)

1 + κα2k+2
 ak+1 + 1− α2 (k + 1)bk+1

� α2 1+ κα2k
 ak + 1− α2 kbk +Ak+1α

k+1
,

k � 1, 2, . . . ,

(6d)

where the related coefficients Ak are in Fourier series terms
(Appendix A).

Second, the coefficients c0, ck, and dk can be obtained
with stress-free boundary condition at the ground surface by
using the following recursive relations:

c0 � −a0 −
1
2

a1 −
1
2

b1, (7a)

ck � −bk +
1
2

(k− 1)ak−1 −
1
2

(k + 1)ak+1, (7b)

dk � −ak +
1
2

(k− 1)bk−1 −
1
2

(k + 1)bk+1. (7c)

*e analytical solutions of ground displacements and
stresses induced by shallow tunneling are obtained with the
analytic functions (equations (3a)–(3c)). Moreover, Pinto
[17] claims that 10–15 terms of analytic functions (equations
(3a)–(3c)) are sufficient to achieve accurate solutions for
both the convergence and ovalizationmodes of deformation.

However, the solutions proposed by Verruijt [6] (equa-
tions (3a)–(3c)) are expressed as two analytical functions
(φ1(z) and ψ1(z)) and are not directly expressed as explicit
functions of the coordinates (x, y) in z-space (referred to as
“implicit form of exact analytical solutions”), which makes
the extensive application of implicit exact analytical solu-
tions inconvenient. On the one hand, implicit form of exact
analytical solutions is somewhat complicated and not in-
tuitive for engineers. Implicit form of exact analytical solu-
tions cannot be directly used by engineers like Peck empirical
formulas if they have no certain professional theoretical
knowledge of complex variable method. On the other hand,
the superposition applicability of implicit form of exact an-
alytical solutions is poor when solving the ground displace-
ments and stresses induced by shallow tunneling adjacent to
existing structures (surface building or pile foundation).

2.2.Explicit FormofExactAnalytical Solution. In this section,
the main work is to derive the explicit form of exact analytical
solution of the stress and the displacement expressed by the
coordinates (x, y) in z-space (physical plane).

2.2.1. Series Form of φ1(z) and ψ1(z) with the Functions of
Coordinate (x, y) in z-Space. *e corresponding inverse
conformal transformation of equation (1) is

ζ � ω−1(z) �
z + ia

z− ia
. (8)

Considering z � x + iy, equation (8) can be transformed
into

ζ �
x2 + y2 − a2 + 2xai

x2 +(y− a)2
� ξ + ηi, (9)

h

y

x

r

d

AB B

A B
Î

Ç

1

A′

z-space ζ-space

Figure 1: Conformal transformation for shallow tunnel, reproduced from [6].
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where

ξ �
x2 + y2 − a2

x2 +(y− a)2
,

η �
2xa

x2 +(y− a)2
.

(10)

To obtain the power of ζ (i.e., ζk and ζ−k), it is better to
transform equation (9) into the triangle form of ζ as follows:

ζ �

������

ξ2 + η2


 ⎡⎣cos arccos
ξ

������

ξ2 + η2
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

+ i sin arccos
ξ

������

ξ2 + η2
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎤⎦.

(11)

According to the related operation rules of the power of
complex numbers,

ζk
�

������

ξ2 + η2


 
k
⎡⎣cos k arccos

ξ
������

ξ2 + η2
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

+ i sin k arccos
ξ

������

ξ2 + η2
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎤⎦,

(12a)

ζ−k �

������

ξ2 + η2


 
−k

⎡⎣cos −k arccos
ξ

������

ξ2 + η2
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

+ i sin −k arccos
ξ

������

ξ2 + η2
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎤⎦.

(12b)

On the basis of a consideration of symmetry, Verruijt [6]
assumed that all the coefficients are purely imaginary:

a0 � a0′i,

ak � ak
′i,

bk � bk
′i,

c0 � c0′i,

ck � ck
′i,

dk � dk
′i,

(13)

where a0′, ak
′, bk
′, c0′, ck
′, and dk

′ are the real parts of purely
imaginary a0, ak, bk, c0, ck, and dk, respectively.

With equations (12a), (12b), and (13), equations (5a) and
(5b) can be transformed into

φ(ζ) � a0 + 
∞

k�1
akζ

k
+ 
∞

k�1
bkζ
−k

� a0′i + 
∞

k�1
ak
′i

������

ξ2 + η2


 
k
⎡⎣cos k arccos

ξ
������

ξ2 + η2
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

+ i sin k arccos
ξ

������

ξ2 + η2
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎤⎦ + 

∞

k�1
bk
′ik

������

ξ2 + η2


 
−k

· ⎡⎣cos −k arccos
ξ

������

ξ2 + η2
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

+ i sin −k arccos
ξ

������

ξ2 + η2
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎤⎦,

(14a)

ψ(ζ) � c0 + 
∞

k�1
ckζ

k
+ 
∞

k�1
dkζ
−k

� c0′i + 
∞

k�1
ck
′i

������

ξ2 + η2


 
k
⎡⎣cos k arccos

U
������

ξ2 + η2
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

+ i sin k arccos
U

������

ξ2 + η2
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎤⎦ + 

∞

k�1
dk
′i

������

ξ2 + η2


 
−k

· ⎡⎣cos −k arccos
U

������

ξ2 + η2
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

+ i sin −k arccos
U

������

ξ2 + η2
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎤⎦.

(14b)

Equations (14a) and (14b) can be simplified to the form
of real and imaginary parts of φ1(ζ) and ψ1(ζ) as follows:

φ(ζ) � ⎛⎝ a0′ + 

∞

k�1
ak
′W1 + 

∞

k�1
bk
′W2

⎛⎝ ⎞⎠i⎛⎝ ⎞⎠

− 
∞

k�1
ak
′W3 + 

∞

k�1
bk
′W4

⎛⎝ ⎞⎠⎞⎠,

(15a)

ψ(ζ) � ⎛⎝ c0′ + 
∞

k�1
ck
′W1 + 

∞

k�1
dk
′W2

⎛⎝ ⎞⎠i⎛⎝ ⎞⎠

− 
∞

k�1
ck
′W3 + 

∞

k�1
dk
′W4

⎛⎝ ⎞⎠⎞⎠,

(15b)
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where

W1 �
x2 +(y + a)2

x2 +(y− a)2
 

k/2

cos k arccos
x2 + y2 − a2

������������������������������
x4 + y4 + a4 + 2a2x2 + 2x2y2 − 2a2y2

  ,

W2 �
x2 +(y + a)2

x2 +(y− a)2
 

−(k/2)

cos (−k)arccos
x2 + y2 − a2

������������������������������
x4 + y4 + a4 + 2a2x2 + 2x2y2 − 2a2y2

  ,

W3 �
x2 +(y + a)2

x2 +(y− a)2
 

k/2

sin k arccos
x2 + y2 − a2

������������������������������
x4 + y4 + a4 + 2a2x2 + 2x2y2 − 2a2y2

  ,

W4 �
x2 +(y + a)2

x2 +(y− a)2
 

−(k/2)

sin (−k)arccos
x2 + y2 − a2

������������������������������
x4 + y4 + a4 + 2a2x2 + 2x2y2 − 2a2y2

  .

(16)

With equations (4a) and (4b), equations (15a) and (15b)
can be written into equations (17a) and (17b):

φ1(z) � ⎛⎝ a0′ + 

∞

k�1
ak
′W1 + 

∞

k�1
bk
′W2

⎛⎝ ⎞⎠i⎛⎝ ⎞⎠

− 
∞

k�1
ak
′W3 + 

∞

k�1
bk
′W4

⎛⎝ ⎞⎠⎞⎠,

(17a)

ψ1(z) � ⎛⎝ c0′ + 
∞

k�1
ck
′W1 + 

∞

k�1
dk
′W2

⎛⎝ ⎞⎠i⎛⎝ ⎞⎠

− 

∞

k�1
ck
′W3 + 

∞

k�1
dk
′W4

⎛⎝ ⎞⎠⎞⎠.

(17b)

2.2.2. Derivations of Analytic Functions Based on the
Cauchy–Riemann Equations. if the function [f(z) �

u(x, y) + iv(x, y)] is analytical, the derivation of analytical
function can be calculated with

f′(z) �
zu

zx
+ i

zv

zx
  �

zv

zy
− i

zu

zy
 . (18)

Because φ1(z) and ψ1(z) are analytical, the derivations
of φ1(z) and ψ1(z) can be obtained:

φ1′(z) � ⎛⎝ 

∞

k�1
ak
′ z
zx

W1 + 
∞

k�1
bk
′ z
zx

W2
⎛⎝ ⎞⎠i⎛⎝ ⎞⎠

− 
∞

k�1
ak
′ z
zx

W3 + 
∞

k�1
bk
′ z
zx

W4
⎛⎝ ⎞⎠⎞⎠,

(19a)

ψ1′(z) � ⎛⎝ 

∞

k�1
ck
′ z
zx

W1 + 
∞

k�1
dk
′ z
zx

W2
⎛⎝ ⎞⎠i⎛⎝ ⎞⎠

− 
∞

k�1
ck
′ z
zx

W3 + 
∞

k�1
dk
′ z
zx

W4
⎛⎝ ⎞⎠⎞⎠,

(19b)

φ1″(z) � ⎛⎝ 

∞

k�1
ak
′ z

2

zx2W1 + 
∞

k�1
bk
′ z

2

zx2W2
⎛⎝ ⎞⎠i⎛⎝ ⎞⎠

− 
∞

k�1
ak
′ z

2

zx2W3 + 
∞

k�1
bk
′ z

2

zx2W4
⎛⎝ ⎞⎠⎞⎠.

(19c)

2.2.3. Explicit Analytical Solutions of Ground Displacements
and Stresses. By taking equations (19a)–(19c) into equations
(3a)–(3c), the explicit exact analytical solutions of ground
displacements and stresses can be obtained:

σSTxx � 
∞

k�1

⎡⎣ −2ak
′ + ck
′( 

z

zx
W3  + −2bk

′ + dk
′( 

z

zx
W4 

− y ak
′ z

2

zx2W1 + bk
′ z

2

zx2W2  

+ x ak
′ z

2

zx2W3 + bk
′ z

2

zx2W4 ⎤⎦,

(20a)

σSTyy � 
∞

k�1

⎡⎣ − 2ak
′ + ck
′( 

z

zx
W3 − 2bk

′ + dk
′( 

z

zx
W4 

+ y ak
′ z

2

zx2W1 + bk
′ z

2

zx2W2 

− x ak
′ z

2

zx2W3 + bk
′ z

2

zx2W4 ⎤⎦,

(20b)

σSTxy � 
∞

k�1

⎡⎣ ck
′ z
zx

W1  + dk
′ z
zx

W2 

+ x ak
′ z

2

zx2W1 + bk
′ z

2

zx2W2 

+ y ak
′ z

2

zx2W3 + bk
′ z

2

zx2W4 ⎤⎦,

(20c)
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u
ST
x � (2μ)

−1⎧⎨

⎩ 

∞

k�1

⎡⎣ −κak
′ + ck
′( W3(  + −κbk

′ + d′( kW4( 

+ x ak
′ z
zx

W3 + bk
′ z
zx

W4 

−y ak
′ z
zx

W1 + bk
′ z
zx

W2 ⎤⎦
⎫⎬

⎭.

(20d)

u
ST
y � (2μ)

−1⎧⎨

⎩ κa0′ + c′( 0 + 
∞

k�1

⎡⎣ κak
′ + ck
′( W1

+ κbk
′ + dk
′( W2 + x ak

′ z
zx

W1 + bk
′ z
zx

W2 

+ y ak
′ z
zx

W3 + bk
′ z
zx

W4 ⎤⎦
⎫⎬

⎭.

(20e)

*e explicit form of exact analytical solutions (equations
(20a)–(20e)) relates to only the original domain in the z-
plane and is directly expressed as functions of coordinates (x,
y) in z-space. *e superscript ST indicates that the reason of
induced ground displacements and stresses is shallow
tunneling.

3. Application of Explicit Form of Exact
Analytical Solutions: Secondary Stress Field
and Potential Plastic Zone of Shallow
Tunneling Adjacent to a Pile Foundation

3.1. ConceptualModel andCalculation Procedure. To predict
the degree and extent of tunneling effects on a pile foun-
dation, Xiang and Feng [15] proposed a theoretical super-
position method for predicting the potential plastic zone of
shallow tunneling adjacent to a pile foundation in soils. *e
practical problem of a shallow tunneling project adjacent to
a pile foundation is simplified into the mechanics model
shown in Figure 2.

In this paper, to obtain more accurate results for the
secondary stress field and the related potential plastic zone, a
similar calculation procedure is adopted. *e differences
between the calculation procedure for the superposition
method proposed by Xiang and Feng [15] and that for the
newmethod used in this paper are detailed below. It is worth
noting that Mindlin’s solution, which is used to calculate the
ground stresses due to pile foundation loads, is an exact
solution and is preserved in the new superposition method.
*e cause of the inaccuracy of the superposition method
proposed by Xiang and Feng [15] is mainly due to the
approximate solution [5] that is used to calculate the ground
displacements induced by shallow tunneling in green-field.
*erefore, the improvement of this paper is to adopt an exact
solution (explicit form of exact analytical solutions) for
calculating tunneling-induced stress instead of the ap-
proximate solution used by Xiang and Feng [15].

*rough the above explicit derivation, the explicit form
of exact analytical solutions are expressed as functions of the

coordinates (x, y), which can be directly superimposed with
the stress induced by pile foundation loads. By super-
imposing these several equations, the envelope of the po-
tential plastic zone induced by tunneling adjacent to the pile
is easily obtained, which highlights the convenience of ex-
plicit form of exact analytical solutions. *en, by using the
software MATLAB, the theoretical procedure described
above is conducted successfully.

Referring to Xiang and Feng [15], the assumed pa-
rameters in all the presented calculations are as follows: silt
clayey soil (E� 10MPa, v � 0.25, c� 30 kPa, and φ� 30); a
circular tunnel R� 3m, h� 8m, 10m, uniform convergence
u0 � 30mm, oval deformation ud � 10mm, s� 78 kN/m, and
P � 235 kN.

3.2. Comparisonwith theResults ofXiang andFeng. To detect
any differences in the plastic zone in green-field or plastic
zone with pile load calculated by the different methods, a
comparison between the results of this paper and those of
Xiang and Feng [15] is performed for two relative tunnel
depths (the ratio of cover depth to tunnel diameter) (Fig-
ures 3 and 4).

In Figure 3, comparisons of the potential plastic zones in
green-field from the two superposition methods are pre-
sented for two relative tunnel depths. It is shown that the
horizontal range between the two plastic zones in green-field
with a relative depth of 0.83 differs by 38.7 cm in Figure 3(a),
whereas the horizontal range with a relative depth of 1.17
differs by 27.8 cm in Figure 3(b).

In Figure 4, comparisons of the potential plastic zones
with pile load from the two superposition methods are
presented for two relative tunnel depths. *ere exists a more
marked difference between the ranges and shapes of the two
plastic zones with pile load with a relative depth of 0.83 in
Figure 4(a). *e difference between the range and shape of
two plastic zones with pile load is greater with a relative
depth of 0.83 than with a relative depth of 1.17 in Figure 4(b).

As a conclusion, the plastic zones around relatively deep
tunnels adjacent to a pile foundation obtained from the two
superposition methods are similar to each other, whereas the
plastic zones around relatively shallow tunnels adjacent to a
pile foundation from the two superposition methods are
obviously different from each other. In other words, the
superposition method proposed by Xiang and Feng [15] can
obtain satisfactory results for deep tunnels, whereas the
superposition method used in this paper is suitable for both
deep tunnels and shallow tunnels because it is an exact
analytical solution.

3.3. Influences of Different Pile Foundation Parameters.
*e influences of different pile foundation parameters (pile
length, load magnitude, and pile offsets) on the ranges and
shapes of the potential plastic zones induced by nearby
tunneling are analyzed for a relative depth of 1.17 in Figure 5.
*e results indicate that the whole potential plastic zones
induced by tunneling and pile foundation loads would
coalesce when the pile is located close enough to the tunnel,
whereas the two plastic zones are separated from each other.
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3.4. Influences of Different Tunnel Boundary Conditions.
It should be noted that the tunnel boundary conditions
determine the calculation results of the ranges and shapes of
the potential plastic zones caused by shallow tunneling
adjacent to a pile foundation in soils. To compare the cal-
culation results with those by Xiang and Feng [15] under the
same conditions, the same boundary conditions of a shallow
tunnel are adopted, which are a combination of uniform
convergence and ovalization proposed by Verruijt and
Booker [5] and shown in Figure 6. Pinto and Whittle [13]
summarized three types of shallow tunnel boundary con-
ditions. *ey claimed that the vertical translation of a
shallow tunnel should be incorporated with uniform con-
vergence and ovalization when considering the buoyancy
effect, usually induced because the weight of the tunnel is
usually less than the weight of the excavated soil. And by

incorporating the vertical translation with the uniform
convergence and ovalization of the tunnel, Park [10] in-
troduced four types of complex boundary conditions, and
those complex boundary conditions are more in accordance
with engineering practice, as shown in Figures 7 and 8. In
fact, the boundary condition B.C.-1 is the same as the
boundary condition discussed by Verruijt and Booker [5],
whereas the boundary conditions B.C.-2, B.C.-3, and B.C.-4
are different and contain vertical translation of a shallow
tunnel.

As mentioned above, the part of the superposition
method proposed by Xiang and Feng [15] that is used to
calculate the ground displacement induced by tunneling in
green-field adopts the approximate solution proposed by
Verruijt and Booker [5]; thus, the superposition method
proposed by Xiang and Feng [15] can adopt only the
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Figure 2: Conceptual model of the theoretical procedure, reproduced from [15].
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Figure 3: Comparisons of potential plastic zones in green-field. (a) Relative depth� 0.83. (b) Relative depth� 1.17.
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Figure 4: Comparisons of potential plastic zones with pile load. (a) Relative depth� 0.83. (b) Relative depth� 1.17.
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Figure 5: Continued.
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Figure 6: Envelopes of potential plastic zones for different tunnel boundary conditions. (a) B.C.-3 [10]; (b) B.C.-4 [10].
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combination of uniform convergence and ovalization as the
boundary conditions of a tunnel. However, the superposi-
tion method used in this paper is based on the explicit form
of exact analytical solutions, which allows the solution to be
suitable for various types of boundary conditions. In other
words, the superposition method used in this paper can use
not only the boundary conditions proposed by Verruijt and

Booker [5] as the boundary conditions of a shallow tunnel
but also the complex boundary conditions proposed by Park
[10] as the boundary conditions of a shallow tunnel. *e
related coefficients Ak in Fourier series terms [18] in
equations (6a)–(6d) are shown in Appendix A.

*e influences of different tunnel boundary conditions
(for instance, B.C.-3 and B.C.-4) on the ranges and shapes of

Uniform
convergence Ovalization Final shape

u0

Park [11]

ud –uy

ud

Vertical
translation

Verruijt and Booker [6]

Figure 7: Boundary conditions of shallow tunnels summarized by Pinto and Whittle [13].
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Figure 8: Boundary conditions of shallow tunnels [10]. (a) B.C.-1; (b) B.C.-2; (c) B.C.-3; (d) B.C.-4.
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the potential plastic zones are indicated in Figure 6. It can be
concluded from comparison with Figures 3–5 that the plastic
zones with boundary conditions (B.C.-3 and B.C.-4) are
different from the plastic zones with the boundary condi-
tions proposed by Verruijt and Booker [5], especially in the
lower part of the plastic zone. In other words, it would
overestimate the plastic zones if the buoyancy effect of a
shallow tunnel is not considered. *e main reason for this
difference is that vertical translation is not considered in the
boundary conditions proposed by Verruijt and Booker [5].

4. Conclusion

In green-field, the complex variable method provides exact
analytical solutions of ground displacements and stresses
caused by shallow tunneling. However, the exact analytical
solutions [6] are not directly expressed as explicit functions
of the coordinates (x, y) in the physical plane (called implicit
form of exact analytical solutions), whereas the displace-
ments and stresses induced by existing structure loads are
explicit functions of the coordinates (x, y) in the physical
plane, which makes it difficult to superpose the displace-
ments and stresses induced by existing structure loads. *is
paper transforms implicit form of exact analytical solutions
into explicit form of exact analytical solutions, which im-
proves the superposition applicability of exact analytical
solution with the analytical solution for the existing struc-
ture load. With the explicit form of exact analytical solution,
the secondary stress field and the related potential plastic
zone caused by tunneling adjacent to pile foundations are
obtained. *e main conclusions are presented as follows:

(1) With the inverse conformal transformation, the
series forms of complex potential functions in z-
plane are obtained. By taking the derivative of
the analytic functions proposed by Verruijt [5] with
the Cauchy–Riemann equations, the explicit form
of exact analytical solutions of displacement and
stresses induced by shallow tunneling is obtained.
*e explicit form of exact analytical solutions is
intuitional and easily used by engineers, and the
calculation amount is smaller than that for the im-
plicit analytical solutions through comparison with
the implicit form of exact analytical solutions.

(2) An application involving superimposing the explicit
form of exact analytical solutions with Mindlin’s
solution [1] is implemented to analyze the secondary
stress field and the related potential plastic zone
caused by tunneling adjacent to pile foundations. A
comparison between the results of this paper and one
of the existing approaches proposed by Xiang and
Feng [15], which is an approximate solution, is
performed.*e plastic zones around a relatively deep
tunnel adjacent to a pile foundation obtained from
the two superposition methods are similar to each
other, whereas the plastic zones around a relatively
shallow tunnel adjacent to a pile foundation from the
two superposition methods are obviously different

from each other. In other words, the superposition
method proposed by Xiang and Feng [15] can obtain
satisfactory results for deep tunnels, whereas the
superposition method used in this paper is suitable
for both deep tunnels and shallow tunnels because it
is an exact analytical solution.

(3) *e influences of different pile foundation param-
eters (pile length, load magnitude, and pile offset) on
the ranges and shapes of the potential plastic zones
induced by nearby tunneling are also analyzed. *e
results indicate that the whole tunneling-induced
potential plastic zones induced by tunneling and
pile foundation loads around the tunnel and around
the pile would coalesce when the pile is located close
enough to the tunnel, whereas if the pile is far enough
away from the tunnel, the two plastic zones due to
tunneling-induced stress changes are separated from
each other.

(4) *e superposition method used in this paper can
use not only the simple boundary conditions
proposed by Verruijt and Booker [5] but also the
complex boundary conditions proposed by Park
[10]. *erefore, the explicit form of exact analytical
solution for calculating ground displacement and
stress induced by shallow tunneling proposed in
this paper has more extensive adaptability, so it can
solve the more complex problems of shallow
tunnels. For example, these solutions can be used to
analyze differences in the plastic zone under the
influence of the buoyancy effect. *e results show
that it would overestimate the plastic zones if the
buoyancy effect of a shallow tunnel is not con-
sidered, especially in the lower part of the plastic
zone.

Appendix

A. Fourier Coefficients for Boundary
Deformations of a Tunnel

(1) Uniform convergence [6]

Ak � 0, ∀k< 0,

A0 � −2iμu0α,

A1 � 2iμu0,

Ak � 0, ∀k> 1.

(A.1)

(2) Ovalization [13]

Ak � iμudα
−k−1 1− α2 

2
, ∀k< 0,

A0 � −2iμudα,

A1 � 2iμudα
2 2− α2 ,

Ak � iμudα
k−3 1− α2 

2
−3 +(k + 1) 1− α2  , ∀k> 1.

(A.2)
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(3) B.C.-2 [10, 18]

Ak � 0, ∀k< 0,

A0 � −(1 + α)
2
iμu0,

A1 � 2 + 3α− α3 iμu0,

Ak � − 1− α2 
2
αk−2

iμu0, ∀k> 1.

(A.3)

(4) B.C.-3 [10, 18]

Ak �
α2 − 1( 

2

4
αk−1

iμu0, ∀k< 0,

A0 � −(1 + α)
2
iμu0,

A1 �
3
2

+ 3α + α2 − α3 −
1
2
α4 iμu0,

Ak � −
α2 − 1( 

2
(4α + 3) + α2 − 1( 

3
(k + 1)

4
αk−3

iμu0, ∀k> 1.

(A.4)

(5) B.C.-4 [10, 18]

Ak �
3 α2 − 1( 

2

8
αk−1

iμu0, ∀k< 0,

A0 � −
3
4

+
5
2
α +

3
4
α2 iμu0,

A1 �
7
4

+
9
4
α +

3
2
α2 −

3
4
α3 −

3
4
α4 iμu0,

Ak � −
3 α2 − 1( 

2
kα2 + α2 + 2α + 2− k( 

8
αk−3

iμu0, ∀k> 1.

(A.5)

Data Availability

An executable file to create the potential plastic zone
caused by shallow tunneling adjacent to pile foundations
and the executable file used to support the findings of this
study are available from the corresponding author upon
request.
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