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In this study, an analytical solution of stress, strain, and displacement, in the elastic and plastic zone is proposed. *e solution is
derived on the basis of ideal elastoplastic mechanical model of spherical salt cavern with shear dilatation behavior, by adopting
Hoek-Brown (H-B) criterion. *e solution obtains not only in small and large strain stage but also in creep stage. *e proposed
solution is validated, by comparison of the obtained results with numerical results in FLAC3D.*e results indicate that the result
obtained adopting the H-B criterion is closer to that one obtained adopting the Mohr-Coulomb (M-C). *e H-B criterion is more
applicable for the salt cavern construction as it considers the structural characteristics of the rock salt formation.*e displacement
difference obtained by two different methods decreases with the increase of GSI or running pressure, but it increases with the
enlarged angle of dilation. *e influence of different assumptions of elastic strain of plastic zone on displacements is more
significant under large strain conditions. *e influence of the angle of dilation on displacements is more obvious when the elastic
strain of plastic zone is given to stationary values, and the influence degree increases with the enlarged angle of dilation. Under the
same conditions, the creep displacement decreases with the increase of GSI, and both the creep displacement and the effect degree
enhance with the enlarged dilation angle. *e proposed solutions can be used in the stability analysis of surrounding rock in the
construction and operation of salt cavern storage.

1. Introduction

A study on the analytical solution to stress and de-
formation of surrounding rock of simplified mechanical
model is carried out based on the stress and strain re-
distribution. *e redistribution is caused by the salt
cavern storage formation in underground caverns, which
is formed in the salt cavern building with water solution in
the deep salt formations. And the rock mass strength at
the cavity wall is reduced during salt cavern leaching. In
order to obtain reasonable deformation of surrounding
rock, many scholars have carried out the analysis of stress
and strain of surrounding rock based on the simplified
mathematical model of underground caverns. Park and
Kim [1] proposed a closed-form solution for the dis-
placement of the plastic zone of a circular tunnel, by using
the nonassociated flow rules combined with three

definition methods for elastic strains of plastic zone. Sun
et al. [2] proposed an approximate analytical solution for
the circular tunnel with joints and analyzed the influence
relationship of the rock mass parameters based on the H-B
strength criterion and the assumption of the stress field
under axisymmetrical and asymmetric stress conditions.
Jimenez et al. [3] proposed a new equivalent method for
symmetric circular tunnel based on the H-B criterion by
assuming that the stress field in the plastic zone is linear.
Fraldi and Guarracino [4] predicted the possibility of
collapse accidents in circular tunnel excavation and
proposed a simple and accurate solution based on the H-
B, and they proposed elastoplastic analytical solutions of
ground rock of tunnel based on convergence-confinement
method. Rojat et al. [5] established a new dimensionless
form of the generalized H-B failure criterion, completed
the convergence calculations for tunnel in-depth by
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considering the problem of edge effects, and proposed
new exact formulations for the case of an associated H-B
plastic potential. Wang et al. [6] determined the H-B
criterion parameters of the anhydrite intact rock and rock
mass and performed a numerical simulation in FLAC3D.
In order to analyze the stability of the deep cavern group,
they proposed the element safety factor method based on
the generalized H-B and stress distribution. Lu et al. [7]
studied the plane strain elastic-plastic problem for the
circular tunnel in H-B media subjected to nonhydrostatic
stress, proposed the analytical optimization method for
nonlinear equations. A solution of the elastoplastic in-
terface is presented for the plane strain problem of a
pressurized circular tunnel in H-B media subjected to
nonhydrostatic stress at infinity. Llamas et al. [8] pro-
posed a mini-CAES concept where the cavity is shallower
than current CAES, applying the H-B criterion for the
calculation of the subsidence profile. Other scholars have
conducted a lot of research on the plane problem of
circular tunnel [9–12]. Hou et al. [13] proposed semi-
analytical and seminumerical solutions of the axisym-
metric circular tunnel under ideal elastoplastic conditions
by adopting the Levy–Mises constitutive relation and
generalized H-B failure criterion. Cai et al. [14] analyzed
the elastoplastic solution of the circular chamber under
uniform stress field by the dimensionless H-B criterion
and proposed that displacement can be effectively con-
trolled by improving rock mass quality for soft rock
chamber. Zhang et al. [15], by taking comprehensive
influences of intermediate principal stress, brittle soft-
ening, dilation characteristic, Young’s modulus, and
elastic strains in the plastic zone into account, established
a new solution for the displacement and characteristic
curve of the plastic zone of the surrounding rock.
Moreover, Liu et al. [16] analyzed the salt rock de-
formation under triaxial compressive stress condition,
indicated the large compressive deformation properties of
salt rock under higher confining pressure, and analyzed
the stress-strain characteristics of the salt rock by using
the logarithmic strain. Using large deformation (loga-
rithmic strain), the problem of cavity expansion has been
analyzed [17–20] in consideration of the shear dilation
and the strain softening. *e long-term behavior of salt
causes the convergence of the salt cavity, so it is necessary
to consider the stability and shrinkage of the cavity of
long-term operation. Zhang and Xiong [21] proposed an
analytical solution for the displacement of elasto-visco-
plastic ground around the circular tunnel, which can not
only reflect the effects of dilatancy and plastic softening on
displacements but also take account into the creep
property of the ground. Sun [22] discussed the research on
rock rheology and the engineering applications. Yuan
et al. [23] carried out viscoelastic-plasticity analysis of the
rheological problem of deep soft rock tunnel taking the
Drucker-Prager strength criterion as the plastic yielding
conditions, and expanding effect of plastic zone is con-
sidered. Hou et al. [24] proposed an iterative algorithm
based on the creep solution of constant passive support
force for axisymmetric round well and used the iterative

algorithm to calculate the creep deformation of sur-
rounding rock. Wen et al. [25] and Cao et al. [26] de-
termined an analytical solution for the rheological
deformation of the surrounding rock by the generalized
H-B criterion combined with the Nishihara model and
considered the influence of the volumetric dilatancy on
the solution. *e theoretical solutions for the deep
spherical salt cavern are related to the complicated
mathematical deduction; however, there is only a few
theoretical research studies on the deep spherical cavern,
especially the analytical solution of the rheological and the
large deformation of the surrounding rock in the salt
cavern storage project, and M-C and Drucker-Prager
criterion has been used. Because the H-B criterion in-
troduced the influence on rock mass underground con-
struction, which can reflect the disturbance effect on salt
cavern leaching process, it is more suitable for the
practical engineering. From this point of view, this paper
studied the elastoplastic (including two forms, i.e., log-
arithmic strain and engineering strain) and viscoelastic-
plastic displacement of surrounding rock in the salt
cavern storage by introducing the H-B criterion combined
with the equilibrium equation. *is study is expected to
provide theoretical reference for the design and con-
struction of underground salt cavern.

2. Simplified Model for Salt Spherical
Cavern Storage

In this study, the salt cavern storage is simplified into a
deep spherical cavern. *e distribution of the far field
stress tends to be a approximate homogeneous hydro-
static pressure field where the stress value is p0. *e rock
mass of the surrounding rock is homogeneous and iso-
tropic. *e radius of the salt cavern is designed as R0, and
the running pressure pi homogeneously acts on the
cavern wall. Gravity and side pressure coefficient are not
considered in this study. *e coordinate origin of the salt
cavern mechanics model is set in the center of the
spherical cavern to meet the spherical symmetry. Initial
in situ stress and running pressure are considered in this
study; the salt rock conforms to the hypothesis of the
ideal elastoplastic model, and the compressive stresses are
considered positive. During the cavern building and
operating process, there exist the elastic and plastic zones
in the surrounding rock of the salt cavity. *e region away
from the salt cavern (Rp⟶∞) is in an elastic state,
while the near-zone of the cavern (R0⟶ Rp) enters into
a plastic state. Rp is designed as plastic radius. Figure 1 is
the elastoplastic analysis model for surrounding rock of
spherical salt cavern adits. And the surrounding rock
satisfies continuity conditions in the elastic-plastic
interface.

3. Strength Criterion

*e generalized H-B criterion which is widely used can be
written as
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σ1 � σ3 + σci mb
σ3
σci

+ s􏼠 􏼡

a

, (1)

where σci is the uniaxial compressive strength of the intact
rock (MPa) and mb, s, and a are the petrographic constants
of the rock mass.

*e disturbance coefficient D of the rock mass is in-
troduced into the H-B criterion and a new method for
parameter (mb, s, and a) value selection is proposed [27].
*e parameters are based on the geological strength index
(GSI). mb, s, and a are given as

mb � mie
(GSI−100/28−14D),

s � eGSI−100/9−3D,

a �
1
2

+
1
6

e
−GSI/15 − e

−20/3
􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where GSI is the geological strength index, which varies from
10 to 100, it will be taken as 10 for a poor rock mass. D is the
disturbance coefficient of the rock mass, which varies from 0
for an undisturbed in situ rock mass to 1 for a very disturbed
rock mass. mi is the petrographic parameter reflecting the
degree of stiffness of rock mass, which varies from 0 to 25 for
the rock mass. s and a are petrographic parameters of the
rock mass, which varies from 0 to 1, and the parameter a� 1/
2 for most intact rock.

4. Elastoplastic Analytical Solutions

4.1. Stress, Strain, and Displacement in Elastic Zone.
Because of the symmetry of the underground cavity, in
spherical coordinate system, the corresponding relation-
ships between principal stress and the spherical coordinate
stress are σ1 � σ2 � σθ � σφ, σ3 � σr, and there are same

corresponding relationships for strains. Hence, the differ-
ential equation of equilibrium can be expressed as

dσr
dr

+
2
r

σr − σθ( 􏼁 � 0. (3)

In the elastic zone, where Rp⟶∞, the boundary
condition can be written as σ|r�Rp

� σRp
. Based on Lame’s

formula, compressive stresses are reckoned to be positive,
and the stress in the elastic zone can be expressed as

σer � 1− Rp
r

􏼒 􏼓
3

􏼠 􏼡p0 +
Rp
r

􏼒 􏼓
3
σRp

,

σeθ � 1 +
1
2

Rp

r
􏼠 􏼡

3
⎛⎝ ⎞⎠p0 −

1
2

Rp

r
􏼠 􏼡

3

σRp
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Based on the elasticity and without considering the effect
of the initial in situ stress p0, strains can be written as

εr �
du

dr
�
1
E

σr −p0( 􏼁− 2μ σθ −p0( 􏼁􏼂 􏼃,

εθ �
u

r
�
1
E

σθ −p0( 􏼁− μ σr + σθ − 2p0( 􏼁􏼂 􏼃.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

In the elastic region, at elastic-plastic interface, r � Rp,
and the elastic strains can be expressed as

εer �
1
2G

σRp
−p0􏼒 􏼓,

εeθ � −
1
4G

σRp
−p0􏼒 􏼓,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

where G � (E/(2(1 + μ))).
*e displacement caused by the salt cavern building with

water solution can be obtained as

Elastic zonePlastic zone

p0

p0p0
Rp

R0
pi

p0

(a)

σ 1
–
σ 3

O

εV

−(2/h)
1

ε1

ε1

(b)

Figure 1: *e ideal elastoplastic model of spherical salt cavern. (a) *e elastic-plastic model for spherical salt cavern. (b) Material behavior
model of salt rock.
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u
e
(r) �

1
4G

σRp
−p0􏼒 􏼓

R3
p

r2
. (7)

4.2. Stress in Plastic Zone andPlastic Radius. *e range of the
plastic zone of salt cavern is R0 ≤ r≤Rp, after combining
equation (4) and considering the boundary condition σr �

σRp
at r � Rp. We can obtain that

σer r�Rp

􏼌􏼌􏼌􏼌􏼌 + 2σeθ r�Rp

􏼌􏼌􏼌􏼌􏼌 � 3p0. (8)

By substituting the radial and tangential stresses in
plastic zone with r � Rp into equation (1), the nonlinear H-B
strength criterion can be expressed as

σpθ � σpr + σci
mb

σci
σpr + s􏼠 􏼡

a

. (9)

After combining equations (3) and (9) and considering
the boundary condition σpr � pi at r � R0, we can obtain the
radial stress in the plastic zone:

σpr �
σci
mb

2(1− a)mb ln
r

R0
􏼠 􏼡 + mb

pi

σci
+ s􏼠 􏼡

(1−a)

⎡⎣ ⎤⎦

(1/(1−a))

− s
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(10)

Combining equation (8) and considering the stress is
continuous at the interface, r � Rp, we can obtain that

σpr + 2σpθ � 3p0. (11)

Combining equations (9) and (11) and considering the
boundary condition σpr

􏼌􏼌􏼌􏼌r�Rp
� σRp

, we can obtain that

2σci
mb

σci
σRp

+ s􏼠 􏼡

a

+ 3σRp
− 3p0 � 0. (12)

Combining nonlinear equation (12) and using iteration
method, the radial stress in the plastic zone can be de-
termined. And, the tangential stress can be obtained based
on equation (9). *en, with equation (10), the plastic radius
Rp is

Rp � R0e
mb/σci( )σRp+s􏼐 􏼑

1−a
− mb pi/σci( )+s( )( )

1−a/2(1−a)mb􏼒 􏼓
.

(13)

As Rp ≥R0, the stress at the elastic-plastic interface
should satisfy σRp

≥pi. And we inferred that the plastic
radius is related to the in situ stress p0, the running pressure
pi, and the H-B criterion parameters σci, mi, s, and a.

4.3. Deformation Analysis in Plastic Zone. When the sur-
rounding rock of salt cavern enters into plastic state, in order
to determine the displacement in the plastic zone, it is
necessary to establish displacement differential equations for
surrounding rock using the geometric equation.*erefore, it
is necessary to determine the relationship between the strain
components of the plastic zone where the total strain
consists of elastic and plastic strain.

εr � εer + εpr ,

εθ � εeθ + εpθ .

⎧⎨

⎩ (14)

Many scholars have put forward different definitions for
the elastic strain in the plastic zone. Some consider the elastic
strain is very small, and it does not change. Hence, the elastic
strain in the plastic zone is equal to the elastic strain at the
elastic-plastic interface in the elastic zone. Others consider the
stress-strain relationship conforms to the thick-walled cylin-
der theory and the generalized Hooke’s law. *e elastic strain
in the plastic zone is a variable which changes with the position
of the surrounding rock [15]. In this study, the elastic strain in
the plastic zone is discussed under the above two cases.

At the same time, the relationship between the plastic
strain components is established using the flow rule. Based
on the nonassociated flow law, plastic strain increments can
be written as

dεpr
dεpθ

� −
2
h

, (15)

where h � (1− sinψ)/1 + sinψ and ψ is the angle of dilation,
which is obtained by triaxial compressive test.

After combining equations (14) and (15), we can obtain
that

hdεr + 2dεθ � hdεer + 2dεeθ. (16)

Assuming the elastic strain in the plastic zone is a
constant value, which is equal to the elastic strain at r � Rp in
the elastic zone and after combining equations (6) and (16),
we can obtain that

hεr + 2εθ � hεer + 2εeθ � f1(r), (17)

where f1(r) � (h− 1)δ, δ � (1/2G)(σRp
−p0).

Assuming the elastic strain in the plastic zone is a
variable and abiding by Hooke’s law, after combining
equations (5) and (16), we can obtain that

hεr + 2εθ � hεer + 2εeθ � f2(r), (18)

where f2(r) � (1/2G(1 + μ)) (h− 2μ)σr + 2(1− μ− hμ)􏼈

σθ − (h + 2)(1− 2μ)p0}.
To simplify the problem, we make the H-B parameter

a � 0.5. Equation (10) can be written as

σpr � pi + 2A1 ln
r

R0
􏼠 􏼡 + A2 ln

2 r

R0
􏼠 􏼡, (19)

where A1 �
������������
mbσcipi + sσ2ci

􏽱
, A2 � mbσci. After combining

equations (9) and (19), the tangential stress can be written as

σpθ � σpr + A1 + A2 ln
r

R0
􏼠 􏼡. (20)

By substituting equations (19) and (20) into the function
f2(r), we can obtain that

f2(r) �
1

2G(1 + μ)
B1 + B2 ln

r

R0
􏼠 􏼡 + B3 ln

2 r

R0
􏼠 􏼡􏼨 􏼩,

(21)
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where B1 � (h + 2)(1− 2μ)(pi −p0) + 2(1− μ− hμ)A1, B2 �

2(h + 2)(1− 2μ)A1 + 2(1− μ− hμ)A2, B3 � (h + 2)(1− 2μ)

A2.
In the infinitesimal deformation case, relationships of

strains and displacement are as follows:

εr �
du

dr
,

εθ � εφ �
u

r
.

(22)

By substituting equation (22) into equation (17), dif-
ferential equation for the radial displacement u(r) can be
written as h(du/dr) + 2(u/r) � f1(r). *e total displace-
ment in the plastic zone can be obtained as

u
p
c(r) � e

−(2/h) 􏽒(1/r)dr
C1 + 􏽚

f1(r)

h
e

(2/h) 􏽒(1/r)dr
dr􏼢 􏼣

� C1r
−(2/h)

+
(h− 1)δ
2 + h

r.

(23)

*en, considering continuous condition at the elastic-
plastic interface, we can obtain that C1 � (1/2)

(4− h/2 + h)δR(2/h)+1
p .

*e displacement u
p
c(r) in equation (23) is caused by

building, and it is obtained without considering the variation
of the elastic strain in plastic zone.

In the same way, by substituting equation (22) into
equation (18), differential equation for the radial displace-
ment u(r) can be written as h(du/dr) + 2(u/r) � f2(r). *e
total displacement in the plastic zone is

u
p
v(r) � e

−(2/h) 􏽒(1/r)dr
C2 + 􏽚

f2(r)

h
e

(2/h) 􏽒(1/r)dr
dr􏼢 􏼣

� C2r
−(2/h)

+
1

2G(1 + μ)

r−(2/h)

h
􏽚 ⎡⎣B1 + B2 ln

r

R0
􏼠 􏼡

+ B3 ln
2 r

R0
􏼠 􏼡⎤⎦r

(2/h)
dr ,

u
p
v(r) � C2r

−(2/h)
+

r

2G(1 + μ)(2 + h)

· ⎡⎣B1 + B2 ln
r

R0
􏼠 􏼡−

1
(2/h) + 1

􏼠 􏼡

+ B3 ln2
r

R0
􏼠 􏼡−

2
(2/h) + 1

ln
r

R0
􏼠 􏼡 +

2
((2/h) + 1)2

􏼠 􏼡⎤⎦.

(24)

*en, considering continuous condition at the elastic-
plastic interface, we can obtain that

C2 �
⎧⎨

⎩
1
2
δ −

1
2G(1 + μ)(2 + h)

· ⎡⎣B1 + B2 ln
Rp

R0
􏼠 􏼡−

1
(2/h) + 1

􏼠 􏼡

+ B3 ln2
Rp

R0
􏼠 􏼡−

2
(2/h)

ln
Rp

R0
􏼠 􏼡 +

2
((2/h) + 1)2

􏼠 􏼡⎤⎦
⎫⎬

⎭R
(2/h)+1
p .

(25)

*edisplacement up
v(r) in equation (24), which is caused

by building, is obtained with assuming the elastic strain in
the plastic zone abiding by Hooke’s law.

Table 1 shows displacements, which are obtained based
on perfect elastoplastic constructive model, using H-B cri-
terion and considering different definitions for elastic strain
in the plastic zone.

In the case of ψ � 0° (no plastic volume change), the
displacements in the plastic zone are discussed.

(a) Assuming that the elastic strain in the plastic zone is
a constant value, then f1(r) � 0, C1 � (1/2)δR3

p; the
displacement in the plastic zone is

u
p
c(r) �

1
2
δ

R3
p

r2
, (26)

which is the same with that in the elastic zone, i.e.,
equation (7).

(b) Assuming the elastic strain in the plastic zone is a
variable, which abides by Hooke’s law, we can obtain
that

f2(r) �
1− 2μ

2G(1 + μ)

⎧⎨

⎩3 pi −p0( 􏼁 + 2A1

+ 2 3A1 + A2( 􏼁ln
r

R0
􏼠 􏼡 + 3A1 ln

2 r

R0
􏼠 􏼡

⎫⎬

⎭,

C2 �
⎧⎨

⎩
1
2
δ +

1
6G(1 + μ)

⎡⎣B1 + B2 ln
Rp

R0
􏼠 􏼡−

1
3

􏼠 􏼡

+ B3 ln2
Rp

R0
􏼠 􏼡−

2
3
ln

Rp

R0
􏼠 􏼡 +

2
9

􏼠 􏼡⎤⎦
⎫⎬

⎭R
(2/h)+1
p .

(27)

*e displacement in the plastic zone is
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u
p
v(r) �

1
2
δ

R3
p

r2
+

1
6G(1 + μ)

·
⎧⎨

⎩􏼢B1 + B2 ln
r

R0
􏼠 􏼡−

1
3

􏼠 􏼡

+ B3 ln2
r

R0
􏼠 􏼡−

2
3
ln

r

R0
􏼠 􏼡 +

2
9

􏼠 􏼡􏼣r

−􏼢B1 + B2 ln
Rp

R0
􏼠 􏼡−

1
3

􏼠 􏼡

+ B3 ln2
Rp

R0
􏼠 􏼡−

2
3
ln

Rp

R0
􏼠 􏼡 +

2
9

􏼠 􏼡􏼣
R3
p

r2

⎫⎬

⎭.

(28)

5. Large Strain Solutions

According to the finite deformation theory, it is considered
that the strain in the plastic zone is distributed in a loga-
rithmic form. *e logarithmic strain (true strain) can reflect
the sum of the relative strain increments at various stages of
total deformation, and it is closer to the actual accumulation
process of deformation and the degree of large deformation.
*is study introduced the logarithmic strain ε � 􏽒

r

r0
dl/l �

ln(r/r0) to represent large deformation of salt cavern

[16, 17]. *e logarithmic strain indicates that the initial
position r0 gradually changes to r which will undergo several
intermediate states during the deformation process of the
plastic zone; the variables r and r0 cannot be treated as
constants during the calculation. *en, the displacement of
the salt cavern in plastic zone is derived adopting the large
strain.

For large strain problem, the geometric equation can be
written as

εr � ln
dr

dr0
,

εθ � εφ � ln
r

r0
.

(29)

Combing equations (17) and (29), we can obtain that

h ln
dr

dr0
+ 2 ln

r

r0
� f1(r),

ln
r

r0
􏼠 􏼡

(2/h)
dr

dr0
�

f1(r)

h
,

(30)

where r0 ∈ [ro, Rp − uRp
], r ∈ [r, Rp], and uRp

denotes the
displacement in the elastic zone at elastic-plastic interface.
*e integration of equation (30) leads to the following ex-
pression for the displacement.

u
p
ls,c(r) � r− r0

� r− Rp − uRp
􏼒 􏼓

((h+2)/h)

− e
−((h−1)δ/h)

R
((h+2)/h)
p − r

((h+2)/h)
􏼐 􏼑􏼨 􏼩

h/(h+2)

.
(31)

For the case of large deformation in plastic zone, which
is caused by cavern building, equation (31) can fully ex-
press the displacement, which is obtained without con-
sideration of the variation of elastic strain in the plastic
zone.

In the same way, combing equations (18) and (39), we
can obtain that

h ln
dr

dr0
+ 2 ln

r

r0
� f2(r). (32)

Table 1: Summary of the displacements in the plastic zone.

Geometric equations εr � (du/dr) εθ � (u/r)

Displacement in the plastic zone in a compact form r−(2/h) Ci + (1/h) 􏽒 fi(r)r(2/h)dr􏽮 􏽯, i � 1, 2

i � 1
*e elastic strain in the plastic zone is a constant
value, which equals to the elastic strain at the elastic-

plastic interface r � R0 in the elastic zone

i � 2 *e elastic strain in the plastic zone is a variable,
which abides by Hooke’s law

f1(r) (h− 1)δ
f2(r) (1/2G(1 + μ)) B1 + B2 ln(r/R0) + B3 ln

2(r/R0)􏽮 􏽯

C1 (1/2)((4− h)/(2 + h))δR(2/h)+1
p

C2

􏼈(1/2)δ− (1/2G(1 + μ)(2 + h))[B1 + B2(ln(Rp/R0)

− 1/(2/h) + 1) + B3(ln
2(Rp/R0)

− 2/(2/h) + 1)ln(Rp/R0) + 2/((2/h) + 1)2]􏼉R(2/h)+1
p
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*e integration of equation (32) leads to the following
form for displacement

u
p
ls,v(r) � r− r0

� r− Rp − uRp
􏼒 􏼓

((h+2)/h)

−
h + 2

h
􏽚

Rp

r
e
− f2(r)/h( )r

(2/h)
dr􏼨 􏼩

h/(h+2)

.

(33)

For the case of large deformation in plastic zone, which is
caused by cavern building, equation (33) can fully express
the displacement, which is obtained assuming the elastic

strain and the total stress in the plastic zone abiding by
Hooke’s law. By the method of element changing in integral,
equation (33) can be written as

u
p
ls,v(r) � r− r0

� r−􏼨 Rp − uRp
􏼒 􏼓

((h+2)/h)

−
h + 2

h
􏽚
1

0
e
−(1/2G(1+μ)) B1+B2ln Rp−r( )x+r( )/R0( )+B3ln

2 Rp−r( )x+r( )/R0( ){ }/h( ) Rp − r􏼐 􏼑x + r􏼐 􏼑
2/h

Rp − r􏼐 􏼑dx􏼩

h/(h+2)

.

(34)

*en, the numerical solution of equation (34) can be
obtained by Romberg integration.

When ψ � 0° (no plastic volume change), assuming the
elastic strain in the plastic zone is a constant value, the
displacement in the plastic zone can be obtained:

u
p
ls,c(r) � r− r0 � r− Rp − uRp

􏼒 􏼓
3
− R

3
p − r

3
􏼐 􏼑􏼨 􏼩

1/3

. (35)

Assuming the elastic strain in the plastic zone is a
variable, the displacement in the plastic zone can be written
as

u
p
ls,v(r) � r− r0

� r− Rp − uRp
􏼒 􏼓

3
− 3􏽚

Rp

r
e
−(1/2G(1+μ)) B1+B2ln r/R0( )+B3ln

2 r/R0( ){ }r
2

dr􏼨 􏼩

1/3

.
(36)

6. Viscoelastic-Plastic Deformation Analysis

*e period of salt cavern building is long, and the working
state is periodically injecting or producing circulated
process. Creep displacement will take place in the sur-
rounding rock in elastic and plastic zones, when the salt
cavern kept operation at a reasonable inner pressure. It is
necessary to investigate creep displacements, without
considering the creep failure. As shown in Figure 2, the
classical Nishihara model, which can fully reflect elasticity,
viscoelasticity, and viscoplasticity in the transient creep
and steady creep process [20, 21, 28], can be used to analyze
the creep deformation of the surrounding rock of salt
cavern.

*e 1D creep constitutive equations for the classical
Nishihara model are

ε �
σ
E0

+
σ
E1

1− e
− E1/η1( )t

􏼒 􏼓, σ < σs,

ε �
σ
E0

+
σ
E1

1− e
− E1/η1( )t

􏼒 􏼓 +
σ − σs
η2

t, σ ≥ σs,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(37)

where E0 stands for the elastic modulus, E1 denotes the
viscoelastic modulus, and η1 and η2 are the viscosity
coefficients. *e 1D creep constitutive equations show
that the creep strain is related to time and the differential
stress.

6.1. Viscoelastic Deformation Analysis. *e Nishihara model
degenerates to a three-parameter model when the stress of the
surrounding rock of salt cavern is lower than the yield stress
σs; operators of the Nishihara model are listed in Table 2.

σs Hoek-Brown criterion

E0

E1

η1 η2

σσ

Figure 2: Nishihara model.
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Taking Laplace inverse transform on equation (37), the
creep strain in viscoelastic zone can be written as

εcr � −
σθ − σr
2G1

1− e
− G1/η1( )t

􏼒 􏼓,

εcθ �
σθ − σr
2G1

1− e
− G1/η1( )t

􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(38)

*e analytic equation of displacement, i.e., equation (7)
can be directly converted to Laplace space form as

u
e
(r) �

P′(s)

4Q′(s)
σRp
−p0􏼒 􏼓

R3
p

r2
. (39)

Substituting the Nishihara model’s operators, which are
presented in Table 2, into equation (39) and then taking
Laplace inverse transform on equation (39), we can obtain
the viscoelastic displacement in the viscoelastic zone
Rp⟶∞, which is caused by caverns building, as the
following expression:

u
e
c(t, r) �

1
4

1
G0

+
1

G1
1− e
− G1/η1( )t

􏼒 􏼓􏼢 􏼣 σRp
−p0􏼒 􏼓

R3
p

r2
,

(40)

where G0 � E/2(1 + μ), G1 is viscoelastic shear modulus
which can be determined experimentally, and η1 is visco-
elastic shear coefficient which can be determined
experimentally.

6.2. Viscoplastic Deformation Analysis. It is complicated to
solve the displacement of surrounding rock of salt cavern in
plastic zone R0 ≤ r≤Rp. *e total strain of the surrounding
rock is ε � εe + εp + εc, which includes elastic strain εe, plastic
strain εp, and creep strain εc.

In order to determine the total strain of plastic zone,
assuming neither the elastic strain nor the creep strain causes
the volume change, we can obtain that

εer + 2εeθ � 0,

εcr + 2εcθ � 0.
􏼨 (41)

Based on equation (15), the strain increments re-
lationship can be written as

hεr + 2εθ � hεer + 2εeθ + hεcr + 2εcθ
� 2(1− h)I0,

(42)

where I0 � εeθ + εcθ.
In order to simplify the problem, assuming the elastic

strain in the viscoplastic zone is continuous at the

viscoelastic-viscoplastic interface, based on equation (6), the
tangential elastic strain in the viscoplastic zone εeθ can be
obtained. Hence, the elastic strain εeθ in the viscoplastic zone
is a constant independent of both the time t and the distance
away from the center.

*e creep strain in the viscoplastic zone is obtained using
viscoelasticity analysis method. When σ ≥ σs, the 3D creep
strain in the plastic zone can be written as

εcr � −
σθ − σr
2G1

1− e
− G1/η1( )t

􏼒 􏼓−
σθ − σr − σs

2η2
t,

εcθ �
σθ − σr
2G1

1− e
− G1/η1( )t

􏼒 􏼓 +
σθ − σr − σs

2η2
t.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(43)

*e yield stress is defined as the difference between the
tangential stress and the radial stress at elastic-plastic
interface. Combining equations (19) and (20), we can
obtain that σs � A1 + A2 ln(Rp/R0). Combining equations
(4) and (38) and combining equations (19), (20), and (43),
creep strains εcθp

􏼌􏼌􏼌􏼌r�Rp
and εcθp

􏼌􏼌􏼌􏼌r�R0
can be obtained,

respectively.

εcθp r�Rp

􏼌􏼌􏼌􏼌􏼌 � −
3

4G1
1− e
− G1/η1( )t

􏼒 􏼓 σRp
−p0􏼒 􏼓,

εcθp r�R0

􏼌􏼌􏼌􏼌􏼌 �
A1

2G1
1− e
− G1/η1( )t

􏼒 􏼓 +
A2 ln Rp/R0􏼐 􏼑

2η2
⎛⎝ ⎞⎠t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(44)

Assuming that the creep strain in the viscoplastic zone,
which can be approximated by the average of the creep strain
in the viscoplastic zone at the elastoplastic interface and the
creep strain at the cavern wall calculated based on the
differential stress, is an r-independent value [23, 26] and
substituting εeθ and equations (36) into (34), we can obtain
that I0 � εeθ + (1/2)(εcθp

􏼌􏼌􏼌􏼌r�Rp
+ εcθp

􏼌􏼌􏼌􏼌r�R0
).

*e parameter I0 depends only on the time t and
does not depend on the position of the surrounding rock r.
Referring to the solving approach in the above chapter and
combing equations (22) and (42), the first-order non-
homogeneous constant coefficient differential equation for
u(r) can be written as h(du/dr) + 2(u/r) � 2(1− h)I0. *e
viscoplastic displacement in the plastic zone can be obtained
as

u
p
c(t, r) � J0r

−(2/h)
+
2(1− h)

2 + h
I0r, (45)

where J0 � 􏼈1/4[(1/G0) + (1/G1)(1− e−(G1/η1)t)](σRp
−p0)−

(2(1− h)/2 + h)I0􏼉R(2/h)+1
p .

When t � 0, equation (45) is the same as equation (23),
which can describe the displacement in the plastic zone
without consideration of the creep strain.

When ψ � 0° (no plastic volume change), the equation
(45) is the same as equation (40), which can describe the
displacement in the viscoelastic zone, and we can obtain
that

Table 2: *e Nishihara model’s operators.

Viscoelastic model’s
operators Laplace space forms

P′(s) 1 + (η1/(G0 + G1)s)

Q′(s) (G0G1/G0 + G1) + (η1G0/G0 + G1)s

(σRp
−p0) (σRp

−p0)/s
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u
p
c(t, r) �

1
4

1
G0

+
1

G1
1− e
− G1/η1( )t

􏼒 􏼓􏼢 􏼣 σRp
−p0􏼒 􏼓

R3
p

r2
.

(46)

7. Case Study and Discussion

Taking the salt cavern gas storage being excavated in China
as an example, the structural parameters and mechanical
parameters are given in Table 3.

Table 4 Shows the mechanical parameters of salt rock
which are involved in the model.

*e literature investigation results show that GSI and mi
of the H-B criterion have a similar significant influence on
the stress and displacement of the surrounding rock. By
taking the different values 60 and 80 of GSI into account, a
study has been conducted to evaluate their influences on the
displacement. Table 5 shows the other parameters for cal-
culation. In order to validate the result in this paper, as
shown in Figure 3, the displacements, which are obtained
adopting two different definitions of elastic strain of the
plastic zone, and stresses are contrasted; it is not surprising
that the results agree with previous outcomes [29].

In order to validate the analytical solutions, numerical
computations are carried out for the salt cavity storage.
Under the same conditions, the displacement of the sur-
rounding rock can be derived based on the H-B and M-C
criterions with the aid of the FLAC3D. In order to establish
the model of the salt cavern under uniform stress field, set
stress boundary conditions in FLAC3D 5.0. As shown in
Figure 4, principal stress and displacement, which are ob-
tained under the same conditions, are extracted from
FLAC3D by setting GSI� 60 and using the H-B criterion in
FLAC3D. Figure 5 shows the comparison between nu-
merical solutions and analytical solutions. In Figure 5, the
results show that the distribution of the principal stress and
the displacement is fundamentally identical with the ana-
lytical solution.*e results indicate that displacements in the
plastic zone gradually decrease with the distance away from
the salt cavity; the difference of the displacements that
obtained under different conditions gradually declined. But
the difference between displacements on the plastic zone still
remains under different conditions. Compared with nu-
merical solutions at the cavity wall, the analytical one is
smaller. No matter the analytical solutions or the numerical
solutions, the displacement for M-C rock mass lies in the
range of results when GSI� 80 to GSI� 60. *e results close
to that based on the M-C criterion can be obtained by
appropriate readjustment of the H-B criterion parameter
GSI, but the H-B criterion, which introduced the structural
characteristics of the rock mass, has better applicability than
the M-C criterion.

7.1. Effect of Large Strain and Small Strain: 6eory to Results.
*e displacement in the plastic zone is plotted in Figure 6 for
cases of H-B parameter GSI� 60 and GSI� 80. It can be seen
from Figure 6 that the range of the plastic zone reduced (the
plastic radius decreased from 44.79m to 35.91m) and the

displacement has decreased, with the H-B parameter GSI
increasing from 60 to 80.*e difference of the displacement,
which caused nomatter by two different strain theories or by
two different elastic strain definitions, is greater, when
GSI� 60. When the elastic strain of plastic zone takes on
stationary values, the displacement obtained with small
strain theory is larger than large strain theory. But when the
elastic strain abides by Hooke’s law, the displacement ob-
tained with small strain theory is smaller than large strain
theory. In large strain stage, for cases of GSI� 60 and
GSI� 80, the difference of displacement at the cavity wall
that is caused by two definitions for elastic strains, is 0.030m
and 0.008m, respectively. However, in small strain stage, for
cases of GSI� 60 and GSI� 80, the difference of displace-
ment is 0.008m and 0.003m, respectively. It indicates that
the difference of displacements has a little difference for
good rock mass; while it has great difference for poor rock
mass, such as broken rock mass, fractured rock mass, or rock
formation with natural fractures. In large strain stage, for
two cases of different assumptions about the elastic strains,
the difference of displacement at the cavity wall, which is
caused by two different values of GSI, is 0.035m and
0.057m, respectively. In small strain stage, the difference of
displacements for different assumptions about the elastic
strains is 0.044m and 0.039m, respectively. It indicates that
the influence of different hypothesis of the elastic strains on
the displacement is more obvious, as considering large
strain.

Figure 7 shows the displacements, which are obtained
by taking two different elastic strain definitions in the
plastic zone and two different strain theories into account,
in the plastic zone for cases of ψ � 0, ψ � 0.25φ, and
ψ � 0.5φ. It can be seen from Figure 7 that the displace-
ment at the same point increases with the enlarged dilation
angle. *e displacements intersect with each other at one
point (displacement at elastoplastic interface) with the
distance away from the salt cavity, which indicate that the
influence of dilation angle on the displacements gradually
reduces. When ψ � 0 (no plastic volume change), for cases
of different elastic strain definitions, the displacements
with reference to small strain are almost the same. It is
important to note that when the displacement is obtained

Table 3: Parameters for salt cavern storage.

Radius of the salt cavern storage R0 30m
Far field pressure p0 40MPa
Running pressure of the salt cavern pi 10MPa
Elastic modulus of salt rock E 10GPa
Poison ratio of salt rock μ 0.3
Dilation angel of salt rock ψ 0.25φ

Table 4: Parameters of salt rock.

Geological
strength index
GSI

σci
(MPa) mi D mb a s

φ
(°)

c

(MPa)

60 24.4 4.1 0.2 0.84 0.5 0.0085 34.8 6.38
80 24.4 4.1 0.2 1.85 0.5 0.0925 34.8 6.38

Advances in Civil Engineering 9



based on large strain theory, the various definitions of
elastic strain in the plastic zone affect the displacements
differently. Note that when the elastic strain takes a
constant value, the displacements with reference to large
deformation theory agree with the displacements with
reference to small deformation theory; however, when the
elastic strain conforms to Hooke's law, the displacement
which is obtained based on large deformation theory is
greater than the displacement obtained based on small
deformation theory. When ψ ≠ 0 (plastic volume increase),
whether ψ � 0.25φ or ψ � 0.5φ, the displacements obtained
based on large strain are smaller than that one obtained
based on small strain when the elastic strain of plastic zone
is constant. However, the displacements obtained based on
large strain are greater than those obtained based on small
strain when the elastic strain abides by Hooke’s law.
*e above results relate to the solutions obtained by using
the semianalytical method of Romberg numerical in-
tegration. Figure 8 shows relationships between the di-
lation angles and the relative increment of the
displacements at the cavity wall. It can be seen from
Figure 8 that the relative increment increases linearly
with the dilation angle. *e dilation angle has the most

significant influence on the displacement with reference to
small strain, while it has the least influence on the dis-
placement with reference to large strain when the elastic
strain of plastic zone is constant.

Figure 9 illustrates relationships between the operation
pressure and the displacement at the cavity wall. It can be
seen from Figure 9, the displacement decreases with the
increase of the operating pressure, and the maximum
difference of the displacement is at operation pressure
2MPa. *e displacements at the cavity wall for different
cases are 0.36m, 0.39m, 0.42m, 0.55m, and 0.74m, re-
spectively. *ere is difference between displacements ob-
tained based on different strain theories. When the elastic
strain in the plastic zone is constant, the displacement with
reference to large strain theory is smaller than the one with
reference to small strain theory. However, there is a
contrary relationship between the displacements, which is
closer to the numerical results, when the elastic strain
conforms to Hooke’s law. *erefore, appropriate control of
inner pressure can reduce the displacements at the cavity
wall effectively, and it can also reduce the impact of the two
different elastic strain definitions and the two different
strain theories.

z

x
Salt cavern

Operating pressure 10MPa
radius 30m
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Strain (constant)
Strain (Hooke’s law)

Figure 3: Displacements, stresses, and the plastic radius of the salt cavern (GSI� 60).

Table 5: Dataset.

GSI 60 80
Rp 44.787 35.906
σRp

24.889 19.558
δ −0.002 −0.003
A1 14.479 22.526
A2 20.456 45.237
ψ 0 0.25ϕ 0.5ϕ 0 0.25ϕ 0.5ϕ
B1 −24.417 −21.700 −19.656 −17.979 −14.629 −12.108
B2 51.116 51.205 51.274 90.252 91.450 92.351
B3 24.547 23.473 22.664 54.285 51.909 50.121
C1 −89.836 −309.470 −1016.600 −62.492 −201.360 −619.664
C2 −89.836 −283.517 −871.787 −62.492 −184.473 −531.379
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7.2. Results considering Rheological Properties. *e creep
curves of surrounding rock of the salt cavern have been
obtained at r � 30m and r � 35m, by taking differ-
ent values of GSI and taking the creep model parame-
ters of surrounding rock of the salt cavern as shown in
Table 6.

Take the point r� 30m and r� 35m as the observation
points; it can be seen from Figure 10 that the rheological
displacement equation derived in this result is correct. *e
displacements of the surrounding rock decrease with the in-
crease of GSI; the higher the parameter GSI, the lower the
displacement.*e rheological displacement of the surrounding
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Gradient calculation

–4.8377e + 007 to –4.8000e + 007
–4.6000e + 007 to –4.4000e + 007
–4.2000e + 007 to –4.0000e + 007
–3.8000e + 007 to –3.6000e + 007
–3.4000e + 007 to –3.2000e + 007
–3.0000e + 007 to –2.8000e + 007
–2.6000e + 007 to –2.4000e + 007
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Figure 4: Principal stress and displacement (tensile stresses are considered positive, GSI� 60).
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rock can be well controlled and can enter the second creep
stage (steady-state creep stage) faster. *e displacements at the
cavern wall still increase linearly in the second creep stage, and
the increasing rate is related to the viscosity coefficient μ2.

Figure 11 shows the relationship between time and creep
displacements at the cavern wall for cases of ψ � 0,
ψ � 0.25φ, and ψ � 0.5φ. As can be seen from Figure 11, the
initial value of the creep displacement gradually decreases
with the reduced angle of dilation at the cavern wall. *e
total creep displacement increased with the enlarged dilation
angle within 200h. *e dilation angle increases from 0 to
0.5φ, the creep displacements are 0.1m, 0.13m, and 0.16m,
respectively, and the relative values of displacement (u(t �

200)− u(t � 0)/u(t � 0)) × 100% are 1.3%, 9.9%, and 16.2%,
respectively. Both the variation gradient of the creep dis-
placement rate and the creep rate in the steady-state creep
stage increase with the enlarged dilation angle. Also, the
region of the primary creep stage becomes larger with the
enlarged dilation angle. Hence, the angle of dilation has great
influence on the creep displacement.

8. Conclusions

(1) *e results based on the spherical model and the
simplified plane model for the salt cavern are dif-
ferent because of the difference of the balance
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Figure 5: Comparison of displacements between analytical solution and numerical simulation results.
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Figure 6: Relationships between plastic zone displacements and GSI (different elastic strain definitions and different strain theories).
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equations, although the constitutive relation and
the plastic flow rule are consistent in solving pro-
cess. *e results of the spherical model are more
applicable to the natural conditions of the salt
cavern storage.

(2) *e displacements of plastic zone are analyzed by
taking two different elastic strain definitions of
plastic zone, large strain, and small strain into ac-
count. *e influence of H-B parameter GSI, oper-
ating pressure, and dilation angle on the four
analytical solutions is studied. *e maximum dif-
ference of the displacements in the plastic zone is at
the cavern wall. *e difference decreased gradually
with the distance away from the cavern wall. *e

displacements of the surrounding rock can be
controlled effectively with the increase of the H-B
parameter GSI or the operating pressure, while it
increases with the enlarged dilation angle. When
the elastic strain of plastic zone is constant, the
displacements obtained based on large strain are
smaller than that obtained based on small strain
under the same conditions, while there is a contrary
relationship when the elastic strain conforms to
Hooke’s law. *e influence of different elastic strain
definitions on the displacements that obtained based
on large strain is more significant. When the elastic
strain of plastic zone is constant, the influence of
dilation angle on the displacements is most obvious,
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Figure 7: Relationships between plastic zone displacements and dilation angle (different elastic strain definitions and different strain theories).
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Table 6: Creep model parameters of salt rock.

Viscous shear modulus G0 3.8462GPa
Viscous shear modulus G1 12GPa
Viscosity coefficient μ1 200GPa·h
Viscosity coefficient μ2 800GPa·h
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Figure 10: Displacement-time curves of surrounding rock at different positions.
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and the effect increases with the enlarged dilation
angle. *e difference of displacements should be
taken into account especially for poorly consolidated
rock mass, such as permeable rock, rock formation
with natural fractures, and water-soluble rock.

(3) *e viscoelastic displacement analytical expression
for the elastic and plastic zone has been obtained by
adopting the same methodologies. *e viscoelastic-
plastic displacement variation of the surrounding
rock is obtained by the viscoelastic-plastic analysis of
the surrounding rock of the salt cavern with con-
sidering the creep strain. Analytical solutions are
established based on the Nishihara creep model. *e
displacements decrease with the increasing H-B
criterion parameter GSI in the viscoelastic or vis-
coplastic state, and the creep curve can enter the
second creep stage faster. Both the visco-elastoplastic
displacements and the creep displacement rate in-
crease with the enlarged angle of dilation.

Data Availability

*e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

Acknowledgments

*is study was supported by the National Key R&D Program
of China (grant no. 2017YFC1503102) and National Natural
Science Foundation of China (grant no. 51504124).

References

[1] K.-H. Park and Y.-J. Kim, “Analytical solution for a circular
opening in an elastic-brittle-plastic rock,” International

Journal of Rock Mechanics and Mining Sciences, vol. 43, no. 4,
pp. 616–622, 2006.

[2] J.-S. Sun, W.-B. Lu, and Q.-H. Zhu, “Elasto-plastic analysis of
circular tunnels in jointed rock masses satisfy the Hoek-
Brown failure criterion,” Journal of China University of
Mining and Technology, vol. 17, no. 3, pp. 393–398, 2007.

[3] R. Jimenez, A. Serrano, and C. Olalla, “Linearization of the
Hoek and Brown rock failure criterion for tunnelling in elasto-
plastic rock masses,” International Journal of Rock Mechanics
and Mining Sciences, vol. 45, no. 7, pp. 1153–1163, 2008.

[4] M. Fraldi and F. Guarracino, “Limit analysis of collapse
mechanisms in cavities and tunnels according to the Hoek-
Brown failure criterion,” International Journal of Rock Me-
chanics and Mining Sciences, vol. 46, no. 4, pp. 665–673, 2009.

[5] F. Rojat, V. Labiouse, and P. Mestat, “Improved analytical
solutions for the response of underground excavations in rock
masses satisfying the generalized Hoek-Brown failure crite-
rion,” International Journal of Rock Mechanics and Mining
Sciences, vol. 79, pp. 193–204, 2015.

[6] H.-X. Wang, B. Zhang, and D. Fu, “Stability and airtightness
of a deep anhydrite cavern group used as an underground
storage space: a case study,” Computers and Geotechnics,
vol. 96, pp. 12–24, 2018.

[7] A. Lu, S. Wang, and X. Zhang, “Solution of the elasto-plastic
interface of circular tunnels in Hoek-Brown media subjected
to non-hydrostatic stress,” International Journal of Rock
Mechanics and Mining Sciences, vol. 106, pp. 124–132, 2018.
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