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In engineering, optimization applications are commonly used to solve various problems. As widely known, solution of an
engineering problem does not have a unique result; moreover, the solution of a unique problem may totally differ from one
engineer to another. On the other hand, one of the most commonly used engineering optimization methods is genetic algorithm
that leads us to only one global optimum. As to mention, engineering problems can conclude in different results from the point of
different engineers’ views. In this study, a modified genetic algorithm named multi-solution genetic algorithm (MsGA) based on
clustering and section approaches is presented to identify alternative solutions for an engineering problem. MsGA can identify
local optima points along with global optimum and can find numerous solution alternatives.*e reliability of MsGAwas tested by
using a Gaussian and trigonometric function. After testing, MsGA was applied to a truss optimization problem as an example of
an engineering optimization problem.*e result obtained shows that MsGA is successful at finding multiple plausible solutions to
an engineering optima problem.

1. Introduction

It is known that optimization method is very important for
engineering fields to obtain appropriate or economic so-
lutions of an engineering application [1] For an engineering
application example, optimization methods are used in
determining the minimum weight when designing an air-
craft and aerospace structures. Optimal trajectory of a rocket
or aircraft can be determined with the aid of optimization. In
the field of structural engineering, optimization can be a
useful tool in the design of civil engineering structures such
as frame domes, roofs, bridges, electrical transmission lines,
antenna towers, roller coasters, tower cranes etc., to calculate
the minimum cost.

An extended summary, discussion, and comparison on
the optimization of metaheuristic method was made by
Dogan and Olmez [2] studied on vortex search algorithm.
Different metaheuristic algorithms are generally used in
optimization of real-life engineering application. As an

example, in one of the recent studies, a newly developed
metaheuristic approach is used to optimize 25-bar, 72-bar,
and 200-bar structures and a 26-story space tower [3].
Among the metaheuristic algorithms, for example, a swarm-
based metaheuristic algorithm called Emperor Penguin
Optimizer is developed to solve a 25-bar truss problem and
six other engineering design problems [4]. Briefly, meta-
heuristic algorithms search in a certain solution domain in
order to obtain the best optimal result.

Metaheuristic algorithms have generally two different
solution approaches; one of them is single-solution ap-
proach and the other is multiple-solution approach. But
even the multiple-solution approach method does not have
the capability of capturing local optimal solution alterna-
tives. *erefore, a new method is needed to find local op-
timal alternatives in the solution of this kind of problems in
engineering optimization.

Metaheuristic algorithms can be divided into 4 main
groups. Evolutionary algorithms like genetic algorithms
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(GA), physics-based algorithms like simulated annealing
(SA), swarm-based algorithms like particle swarm optimi-
zation (PSO), and nature-inspired algorithms like firefly
algorithm (FA). Moreover, traditional genetic algorithm
(TGA) is thought to be the best approach among these
methods to find a unique optimal solution in complex search
space for different common engineering problems [5].

*e evolutionary algorithms which are inspired from
natural selection of the biological evolution process; genetic
algorithm (GA) is a popular method prevalently used. In
detail, genetic algorithm (GA) is inspired by the mutation,
reproduction, crossover, and selection abilities of the bi-
ological evolution process. Each algorithm uses an objective
function to optimize the problem. TGA is achieved by
encoding the characteristics of the optimization problem in
an individual “chromosome” or “genome” which mimics the
evolutionary process. TGAs can use binary or real genes
depending on the type of problem considered. Individuals in
a binary TGA are described by vectors of ones and zero. In a
real parameter TGA, the individuals are described by a
vector of real numbers. Genetic algorithms for global op-
timization problems have been used in many structural
engineering applications such as discrete optimization of
structures [6], sizing, shape, and topology design optimi-
zation of trusses [7], optimized design of two-dimensional
structures [8], structural topology optimization [9], and
structural damage detection [10]. For example, Rajeev and
Krishnamoorthy [6] used GA for the optimization of the
design of truss systems using discrete variables. *e pro-
posed GA implementation is tested with trusses of 3, 10, 25,
and 160 elements. Rajan [7] uses GA to optimize the size
shape and topology of trusses using continuous and discrete
variables. Camp et al. [8] proposed to combine finite element
analysis and GA for the design of discrete structural systems.
*e implementation of GA has not only been in the area of
structural design. *e method has also been used to update
numerical models based on experimental data. Chou and
Ghaboussi [10] used GAs to minimize the error between the
natural frequencies of a numerical model and those found
experimentally with the goal of identifying damage in the
structure.

*ere are several well-established operators in genetic
algorithms such as initialization, evaluation, selection,
crossover, and mutation as shown in Figure 1 [11]. *e
initialization operator generates the individual of the first
population based on a random number generator. *e se-
lection operator selects pairs of individuals (parents) based
on their fitness values to breed a new generation. A variety of
methods to select pairs of individuals such as roulette wheel
selection, tournament selection, and rank selection have
been proposed in the literature [11]. *e crossover operator
mates the pairs (parents) with a crossover probability to
form a new offspring. *ere are also several methods for
crossover of real parameter genes such as arithmetic
crossover [12], BLX-a crossover (Blend crossover) [13],
linear BGA (breeder genetic algorithm) crossover [14], and
Wright’s heuristic crossover [15]. *e mutation operator
helps to keep diversity in the population by randomly
changing genes of some individuals. Mutation is usually an

option of a GA described by the percentage of individuals
that will be selected for mutation on each generation. An
elite population operator is applied to keep the best indi-
vidual from generation to generation [16].

*is work is inspired by modeling to generate alter-
natives (MGA) [17] and hop, skip, and jump (HSJ). Brill
et al. [17] presented the HSJ method as a technique to
identify a small number of multiple solutions in optimi-
zation problems. *e premise is that fitness functions in
engineering applications might not include all the pa-
rameters involved in the problem. *is is particularly true
in complex problems spanning social, economic, and
ethical dimensions. *e analyst or engineer can make a
decision on which solution to accept or reject based on his/
her own experience and other information that might not
be incorporated in the mathematical model. HSJ was
originally used for complex or incompletely defined
problems that have no exact solution. HSJ is applied to
finite element model updating [18], sustainable multi-
objective land-use allocation [19], and reducing episte-
mic uncertainty [20].

*e identification of local optima using GA has been
addressed in the literature (Maulik and Bandyopadhyay [21];
Streichert et al. [22]). Most of these techniques use a distance
between the genes of individuals and the value of the fitness
function as a way to determine if an individual is a local
optimum or not. However, this does not take into consider-
ation the shape of the fitness function, and local optima that are
not “true” local optima can be identified incorrectly. Consider
for example the maximization of the objective function f(x)
shown in Figure 2. A GA focusing in identifying local optima
could identify S1, S2, and S3 as plausible local maxima. S1 is the
global maxima and S2 is a “true” local maxima. However, S3
could also be identified because it is at a similar distance from
the global maxima than S2, although it has a close fitness value
to S2. *e only way to determine that S3 is not a “true” local
maximum is to study the shape of the objective function.
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Figure 1: Traditional genetic algorithm flow chart.
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In this paper, a modified genetic algorithm called multi-
solution genetic algorithm (MsGA) is proposed that iden-
tifies local optima by studying the shape of the fitness
function. In addition, a section (cut) method is proposed
here to identify “true” local optima which are used in the
selection operator of the proposed GA implementation. As a
result, MsGA can easily find multiple solutions which are
ignored by the traditional genetic algorithms; however, those
local solutions can be the expected solution alternatives from
the design engineers’ point of view.

2. Multi-Solution Genetic Algorithm (MsGA)

*e multi-solution genetic algorithm (MsGA) proposes
adding a new clustering operator to the traditional GA. *e
objective of this new operator is to find local minima in
addition to the global solution.*is operator includes a section
method to distinguish between true and fictitious local optimal
points. Figure 3 shows a flow diagram describing MsGA.

2.1. Clustering Operator. *e goal of this operator is to
identify solutions that have a similar performance of the
objective function but are located in different parts of the
solution space giving the analyst solutions that are physically
different to choose. First, the individuals are sorted based on
the fitness value.*e best performer of the whole population
is considered as the lead individual of cluster 1 (corre-
sponding to the global optimum for the current generation).
New clusters are assigned if the i-th individual complies with
two criteria: the Euclidean distance between the location of
the i-th individual and all previously found minima is
greater than a user defined (Δ); and the value of the objective
function is close to the best value of the objective function
found so far. A user defined parameter α is used to perform
the comparison. *e minimum Euclidean distance (Δ) is
also called minimum solution distance, and it allows the
analyst to specify how far the multiple solutions prevent
infinite solution around any possible solution. Each cluster
can be visualized as a hypersphere centered at the local
minima and with radius equal to the Euclidean distance (Δ).

If two or more clusters overlap, that area belongs to the
cluster that has local minima with the best performing in-
dividual (either higher fitness function for maximization or
lower fitness function for minimization problems). *e
fitness function threshold is used to limit the fitness value of
new local optima. Consider the minimization of one pa-
rameter function f(θ) shown in Figure 4 as an illustrative
example. *e value of the fitness function threshold is de-
fined fα is a constant defined by the user. In cases where the
fitness function has a physical meaning, the analyst can
specify a set value for fα depending on the requirements of
the optimization. *e circles in Figure 4 represent in-
dividuals and the number inside each circle indicates their
rank after sorting them using the fitness function.*e fourth
individual (Λ4) is not considered the lead of a new group
because the Euclidean distance toΛ1 is less than Δ. However,
Λ2 becomes the lead of a new cluster because f (θ2)≤ fα and
‖θ2 − θ1‖≥Δ, where ‖ : ‖indicates Euclidean distance. In-
dividual is in a local minimum, but it is not accepted because
f (θ6)> fα.

2.2. Section Method. *e algorithm can incorrectly identify
points that do not correspond to a local optimum in the
objective function if the values of α andΔ are not set correctly.
For example, consider that the Euclidean distance (Δ) in the
previous example is set to half of what is shown in Figure 4.
*e fourth individual would become a lead of a new local
optima because ‖θ1 − θ4‖>Δ and f (θ4)< fα. However, these
two individuals represent the same minima because the slope
between them does not change. An iterative process can be
performed to eliminate this problem.*is is done by “cutting”
or creating a section of the objective function between two
possible solutions and searching for changes of slope along
the cut. In other words, a change in the slope in a section of
the objective function passing through these individuals
should be identified to consider these two points as two local
minima. *e cut is defined by the following equation:

uS1−S2 �
θS2 − θS1
θS2 − θS1

����
����
, (1)

where uS1−S2 is the unit vector between solution S1 and S2,
XSi is the vector of parameters of the i-th possible solution,
and ‖ : ‖ indicates norm. Points between the two possible
solutions can be obtained using the following equation:

Xn � XS1 + n × uS1−S2 × θS2 − θS1
����

����, (2)

where n is a number between zero and one. Higher numbers
of cut points not also increase the accuracy but also the
computational time. *e cut method is not used for every
single generation to reduce the computational time. *e
method is applied at p intervals as defined by the user.

3. Numerical Validation

Two problems defined by two variable functions are used in
this section to validate the proposed algorithm. Two variable
functions are used to be able to plot the values of the ob-
jective function and verify that the method is working
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Figure 2: Plausible optima in a 1D objective function.
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correctly. *e first problem is used to look at the effects of
the algorithm parameters and the section method. *e
second problem is used to explore the behavior of the al-
gorithm when the objective function has a large number of
plausible solutions. *e function for the first validation
problem is obtained by combining several Gaussian-like
functions defined by the following equation:

f θ1, θ2( 􏼁 � 􏽘
n

i�1
hi × e

(1/2) θ1−µ1,i/σ1,i( )
2−(1/2) θ2−µ2,i/σ2,i( )

2􏼂 􏼃
, (3)

where μ is a 2 by n matrix defining the location of the n

maxima and σ is a 2 by n matrix that defines the shape of
each maxima. In this equation, h represents a vector of size n

which is used to modify the value of the objective function
for each maximum point. In this example, four peaks are
defined by the following matrices:

µ �
1.5 0 −1.5 −2

0 −1 1.5 −2
􏼢 􏼣,

σ �
0.4 0.4 1 0.4

1.5 0.4 1 0.4
􏼢 􏼣,

h � 2 1.6 1.8 0.6􏼂 􏼃.

(4)

A surface plot of the objective function is shown in
Figure 5. Notice that the local maxima are not exactly located
at µ because of the interaction between different terms when
summation is made. However, they are close enough for
validation purposes. Even though MGA can handle non-
smooth functions with many variables, this example helps us
investigate the capabilities of the technique. Selection of
these two parameters is critical to the performance of the
algorithm and usually requires some experience from the
analyst. For example, a value of Δ can result in the iden-
tification of local maxima in the solution space that might
not be of interest in engineering applications because they
are physically similar and have a small difference in the
fitness value. To illustrate this point, consider that the
maximum fitness threshold is chosen as 70% and the
minimum Euclidean distance as 5%. In addition, consider
that the cut method is not used. A total of 12 maxima are
found as shown in Figure 6. Solution 1 is the global max-
imum; solutions 4 and 8 are the local maxima. *e rest of
points shown in Figure 6 refer to these maxima (e.g., points
2, 3, 7, and 10 belong to solution 1 (global maximum); points
5, 6, 9, 11 and 12 to point 4 (local maximum)).

Figure 7 shows the cut between solutions 1 and 4 and
between solutions 1 and 7. *e proposed technique was able
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Figure 3: Multi-solution genetic algorithm flow chart.
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to find all maxima (Figure 8) when the minimum Euclidean
distance (Δ) was set to 5% and the cut method is used. *e
numerical values for each maximum are shown in Table 1.
*e local maximum located at point (−2, 2) is not detected
by the algorithm because the change of the objective
function between the global maximum and this local
maximum is bigger than the one which is specified at the
beginning (α� 70%). In other words, it can be mentioned
that this maximum is not of interest for the user.

Function for the second numerical validation is defined
by a trigonometric equation previously used by Caicedo and
Yun [23].

f θ1, θ2( 􏼁 � sin 19 × π × θ1( 􏼁 +
θ1
1.7

+ sin 19 × π × θ2( 􏼁 +
θ2
1.7

.

(5)

*e function has a total of 100 maxima in the range of
θ1 � [0, 1] and θ2 � [0, 1]. Although it is unlikely to obtain an

engineering problem with this number of local optima, this
problem has been used to test similar other algorithms that
identify local maxima. MsGA was run for 100 generations
with 5000 individuals. Five percent of the population was
considered elite between generations and it was not subjected
to mutation. Fifteen percent of the population was mutated.
*ese parameters are chosen because a large number of local
maxima are expected in the fitness function. Particularly, the
population size is higher than the results obtained from the
first test. If the population size is not large enough, then some
local solutions could be missed. *e program was able to
identify all local maxima as shown in Figure 9.

4. Implementation

MsGA is used to solve the classic 10-bar truss problem, as
shown in Figure 10. *is problem has been solved by other
techniques such as genetic search methods [24] and a
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heuristic particle swarm method [25]. *e problem consists
in finding the cross-sectional area of the structural members
that produce the minimum weight of the structure subject to
a maximum stress on any truss element and minimum
displacement at the node P. A force load F� 100 kips was
applied at two different nodes as shown in Figure 10. *e
objective function is defined by

minf(x) � 􏽘
10

i�1
ρilixi, (6)

where ρi is the density of element i, li is the length of el-
ement i, and xi is the area of element i. *e density of the
elements is considered as 0.1 lb/in3. *e objective function
is subject to
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gi(x) �
σi

σfea
− 1≤ 0, i � 1 . . . 10,

g11 �
δP

δPfea
− 1≤ 0,

(7)

where σi is the normal stress in element i and σfea is the
maximum allowable stress defined as 25,000 psi in this
paper.*e variable δP is the vertical deflection of node P, and
δPfea is the associated maximum allowable deflection defined
here as 2 in. Young’s modulus of the structure is E� 10,000
ksi, and dimension a in Figure 10 is 360 in. *e cross-
sectional area of each element is considered between
0.1 in2 and 40 in2. *is is 0.1 in2 ≤ xi≤ 40 in2, i� 1. . .10.

MsGA was run for maximum 500 generations with
50,000 individuals. Five percent of the population was
considered elite between generations, and it was not sub-
jected to mutation. Fifteen percent of the population was
mutated. *ese parameters are chosen because of the
number of variables and limits of variables. *e minimum
Euclidean distance Δ was set to 5% and fitness function
threshold was set to 8500. *e MsGA results are shown in
Table 2.

In this example, a total of 3 solutions were obtained
which can be considered physically plausible. Although
global solution has less weight than local solutions, second
solution could be more efficient for construction. Building

up 7th element may be easier than building up 9th element,
because 7th element is closer to the support point. While
increasing the cross section area of 7th element, the cross
section area of 9th element is decreasing in second solution.
*erefore, an expert may choose second solution due to
labor efficiency and ease of manufacturing.

5. Discussion and Comparison

*e difference between TGA and MsGA is that while TGA
searches global optimum, MsGA searches global and local
optima. When the aim of algorithm is just to find the global
optimum, MsGA has some advantages and disadvantages
against TGA. Since MsGA goes through more computa-
tional steps to find local optima by using clustering operator,
the computational time increases as a result. Even though
MsGA has some disadvantages for finding global optima, it
has also some advantages. For instance, most of stochastic
algorithms and evolutionary algorithms can easily get stuck
in a local optimum while looking for a global optimum.
Since MsGA searches both global and local solutions to-
gether, there is no problem for this method to get stuck or
trapped in local optimum solution.

In addition, it should be clarified here that since sto-
chastic methods work in a random nature, it would not be
fair to compare such algorithms with MsGA or each other.
Because for a stochastic algorithm, results always differ from
one program run to another. Naturally, there are too many
parameters that directly affect the results, such as initial
population size, generation size, computational time, search
space, domain, etc. However, among the researchers, the
most popular evolutionary algorithm is thought to be TGA.
In this paper, a new approach to TGA is proposed with
additional operators so that MsGA can be able to find local
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Figure 8: Multi-solutions after the cut method.

Table 1: Multi-solutions after the cut method.

No f (θ1, θ2) θ1 θ2
1 2.0066 1.4984 0.0107
2 1.8000 −1.5000 1.5000
3 1.6273 −0.0026 −0.9934
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and global optimum solutions for alternative results for
engineering problems.

6. Result and Conclusion

*is paper presents a modified genetic algorithm (MsGA)
which differs from traditional genetic algorithm (TGA).
MsGA makes it possible to find real multiple solutions after

each generation unlike TGA. Generally, optimization
problems are represented by a mathematical model which is
also used as an objective function during the optimization
process. *e proposed MsGA has been applied on a known
engineering benchmark problem. For the truss optimization
problem, different optimal solutions are captured by the
algorithm which can be further analyzed by an expert to be
decided for site implementation regarding the labor effi-
ciency, ease of manufacturing cost issues etc. It is concluded
that MsGA is successful at finding different optimal solu-
tions to a unique problem.
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