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In order to study the effect of particle size distribution on the critical state of rockfill, a series of large-scale triaxial tests on rockfill
with different maximum particle sizes were performed. It was observed that the intercept and gradient of the critical state line in
the e − p′ plane decreased as the grading broadened with the increase in particle size while the gradient of the critical state line in
the p′ − q plane increased as the particle size increased. A power law function is found to appropriately describe the relationship
between the critical state parameters and maximum particle size of rockfill.

1. Introduction

,e construction of earthfill and rockfill dams has given new
impetus to investigation of the physical and mechanical
properties of rockfill material [1]. In most cases, triaxial
testing on the prototype rockfill using conventional labo-
ratory equipment is unattainable as the sizes of aggregates
used in the field are usually too large. ,is in turn em-
phasizes the need to develop appropriate scaling laws.
However, the strength of rockfill is greatly influenced by the
size distribution of the crushed stone aggregates. Results of
triaxial tests on rockfill reported by Marachi et al. [2]
revealed that the friction angle increased with the decrease in
maximum particle size (dM). On the contrary, different
trends were observed from the results of direct shear tests on
glass beads [3] and triaxial tests on ballast [4]. Another
important governing factor for the design of the hydraulic
dam is the critical state behaviour of constituting rockfill
aggregates [5, 6]. In these studies, the critical state line
proposed by Li and Wang [7] was used to evaluate the effect
of particle size distribution on the critical state of granular
aggregates. ,rough discrete element modelling of granular

aggregates, the critical state stress ratio (Mcs) was found to be
insensitive to any change in the coefficient of uniformity
(Cu), but the critical state parameters (ecs0, λs) in the e −

(p′/pa)
ξ plane decreased with the increase in Cu [8, 9].

However, the effect of dM on the critical state of granular soil
is still largely unknown. ,e parallel gradation and com-
bination methods [10] are widely acknowledged in testing
and designing of rockfill, inevitably instigating the use of
reduced dM.

,e purpose of this study is to investigate the influence of
particle size distribution (PSD) adopting the combination
method on the critical state of rockfill. ,erefore, a series of
monotonic drained tests using a large-scale triaxial appa-
ratus were performed on graded rockfill materials with
varying dM. Based on laboratory findings, a general re-
lationship between the critical state parameters and dM is
proposed.

2. Laboratory Testing

2.1. Test Material. ,e rockfill material used in this study
was collected from the Xiaolangdi Dam in Jiyuan, Henan
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Province of China. Aggregates were derived from the parent
sandstone rock. Visual inspection revealed that aggregates
larger than 5mm in size had a rounded/subrounded shape.
,e finer fraction (size less than 5mm) contained sand-
gravel particles. Based on the values of coefficient of uni-
formity and coefficient of curvature (Cu � 90, Cc � 1.7),
rockfill was classified as well graded [11]. ,e prototype
grading (dM � 250mm) and the corresponding four scaled
down PSDs of Xiaolangdi rockfill via the method of com-
bination are shown in Figure 1. ,e dM of each grading are
40mm (T4), 60mm (T3), 80mm (T2), and 120mm (T1),
respectively. In tests, the different grading specimens are
compacted with the same relative density 0.90. ,e sample
diameter (Φ) and density (ρ) are also listed in Figure 1.

2.2. Test Procedure. A large-scale triaxial apparatus
designed and built in Nanjing Hydraulic Research Institute
was used. ,e maximum cell pressure is 4.0MPa, maxi-
mum axial loading force is 5000 kN, and maximum axial
displacement is 250mm. ,e apparatus can accommodate
samples of different diameters (Φ), such as Φ� 500, 300,
and 200mm. Particles selected from each size range were
carefully washed and dried under natural sunlight. Sub-
sequently, aggregates were weighed separately and mixed
together before splitting into either sixteen equal portions
(to prepare the test specimen with 500mm in diameter and
1100mm in height) or ten equal portions (to form the test
specimen with a diameter of 300mm and a height of
700mm). Each portion was then compacted inside a split
cylindrical mould using a vibrator (as shown in Figure 2).
,e motor power is 1.2 kW (Φ� 300mm) and 1.8 kW
(Φ� 500mm), respectively. Each portion was compacted
for 60 s (Φ� 300mm) and 90 s (Φ� 500mm), respectively.
According to the study’s results [12], the influence of
different sample diameter sizes can be ignored. During
vibratory compaction, a static pressure of 14 kPa and a
frequency of 20Hz were applied to achieve desired initial
density simulating in-field conditions. ,e test specimen
was then placed inside a test chamber. Before com-
mencement of the monotonic shear test, the sample was
saturated by allowing water to pass through the base of the
triaxial cell under a back pressure of 10 kPa until
Skempton’s B-value exceeded 0.95. ,e samples were then
isotropically consolidated at effective confining pressures
(σ3′) of 0.2–2.2MPa before monotonic loading. Triaxial
tests were then conducted under the monotonic drained
condition with a constant axial displacement rate of
2.7mm/min until the axial strain was accumulated up
to 15%.

3. Result Analysis

3.1. Stress-Strain Behaviour. ,e stress-strain behaviour of
Xiaolangdi rockfill tested at varying maximum particle sizes
(dM) of 40, 60, 80, and 120mm are shown in Figures 3–6,
respectively. Different values of initial confining
pressure (σ3′) such as 0.2, 0.4, 0.8, 1.6, and 2.2MPa were
chosen. Specimen tested at low pressure (σ3′� 0.2MPa,

dM � 120mm) exhibited mild strain-softening behaviour
and dilatancy. On the contrary, prominent strain-hardening
behaviour and contraction [13, 14] were also observed in the
specimen tested under higher σ3′ (>0.2MPa).,e volumetric
strain decreased with the increase in dMwhile the axial strain
increased with decrease in dM at the same stress level.
Moreover, with the increase of dM, the peak shear strength of
rockfill (σf ) was improved (for example, σf � 3.10, 3.14, 3.27,
and 3.44MPa corresponding to σ3′� 0.8MPa).,is finding is
contrary to that reported by Marachi et al. [2] where an
improved strength was associated with the reduced dM of the
(angular) rockfill aggregates. ,is was probably due to the
different aggregate shapes used in this study (rounded/
subrounded and flaky) which had influenced the frictional
interlock and breakage of aggregates. More discussion on
these aspects is given by Varadarajan et al. [15] and Dai
et al. [3].
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Figure 1: Prototype and initial gradings of Xiaolangdi rockfill.

Figure 2: Vibration equipment.

2 Advances in Civil Engineering



3.2. Critical State Strength. Critical state of rock�ll is the
core concept in elastoplastic constitutive modelling [16].
As evident from the laboratory data, the deviator stress
and volumetric strain became almost stabilized at the end

of each test; therefore, the critical state of each rock�ll
specimen could be obtained by measuring the �nal state of
shearing (Figures 3–6).  e critical state line is plotted in
the p′ − q plane as shown in Figure 7. It could be
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Figure 4: Stress-strain behaviors of rock�ll with dM� 60mm.
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Figure 5: Stress-strain-volume behaviors of rock�ll with dM� 80mm.
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Figure 3: Stress-strain behaviors of rock�ll with dM� 40mm.
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concluded that the critical state stress ratio (Mcs � q/p′) is
constant for a given PSD. However, unlike past published
studies which reported independency of Mcs with Cu
[8, 9], Mcs was found to increase as dM increased in this
study (Figure 8).  is dependency ofMcs with dM could be
described by adopting the power law relationship given
below:

Mcs � a1
dM
dn

( )
b1

, (1)

where dn is equal to 60mm (nominal particle diameter
chosen arbitrarily for the purpose of normalization) and a1
and b1 are material constants, equal to 1.61 and 0.0332,
respectively.
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Figure 6: Stress-strain-volume behaviors of rock�ll with dM� 120mm.
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Figure 7: (a) Critical state line in thep′ − q plane for rock�ll with dM� 40mm. (b) Critical state line in thep′ − q plane for rock�ll with dM� 60mm.
(c) Critical state line in the p′ − q plane for rock�ll with dM� 80mm. (d) Critical state line in the p′ − q plane for rock�ll with dM� 120mm.
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 is is similar to the test results of Honkanadavar and
Sharma [14]. Mcs is calculated according to internal friction
angle φ (related to the critical state value Mcs � 6
sinφ/(3 − sinφ)).

 e critical state line of granular aggregates in
the e − lnp′ planemay shift or rotate with increasing loading
stress due to particle degradation [17, 18].  erefore, the
nonlinear critical state line proposed by [7] is used:

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1
1.4

1.5

1.6

1.7

1.8

Honkanadavar, [14]
RD = 75%

Honkanadavar, [14]
RD = 87%

Ф500 mm
Cr

iti
ca

l s
ta

te
 st

re
ss

 ra
tio

 M
cs

Normalised maximum particle size dM/dn

Ф300 mm

Mcs = 1.61(dM/dn)0.0332

R2 = 0.97

Figure 8: Variation of critical state stress ratio with particle size.

0 2 4 6 8 10 12 14 16 18
0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

0.31

σ′3 = 0.4 MPa
σ′3 = 0.2 MPa

σ′3 = 0.8 MPa

σ′3 = 1.6 MPa

σ′3 = 2.2 MPa

V
oi

d 
ra

tio
 e

Normalised mean effective stress (p/pa)
0.7

T-4

Simulation equation
ecs = ecs0 – λs (p/pa)

0.7

ecs0 = 0.293; λs = 0.37 × 10–2

Critical state point

(a)

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

V
oi

d 
ra

tio
 e

0 2 4 6 8 10 12 14 16 18
Normalised mean effective stress (p/pa)

0.7

T-3

Critical state point

σ′3=0.2 MPa

σ′3 = 0.4 MPa

σ′3 = 0.8 MPa

σ′3 = 1.6 MPa

σ′3 = 2.2 MPa

Simulation equation
ecs = ecs0 – λs (p/pa)

0.7

ecs0 = 0.275; λs = 0.33 × 10–2

(b)

V
oi

d 
ra

tio
 e

0 2 4 6 8 10 12 14 16 18
Normalised mean effective stress (p/pa)

0.7

0.21

0.22

0.23

0.24

0.25

0.26

Critical state point

T-2

Simulation equation
ecs = ecs0 – λs(p/pa)

0.7

ecs0 = 0.261; λs = 0.27 × 10–2

σ′3 = 0.4 MPa
σ′3 = 0.2 MPa

σ′3 = 0.8 MPa

σ′3 = 1.6 MPa

σ′3 = 2.2 MPa

(c)

0.20

0.21

0.22

0.23

0.24

0.25
T-1

V
oi

d 
ra

tio
 e

0 2 4 6 8 10 12 14 16 18
Normalised mean effective stress (p/pa)

0.7

Simulation equation
ecs = ecs0 – λs(p/pa)

0.7

ecs0 = 0.241; λs = 0.22 × 10–2σ′3 = 0.4 MPa
σ′3 = 0.8 MPa

σ′3 = 1.6 MPa

σ′3 = 2.2 MPa

Critical state point

(d)

Figure 9: (a) Critical state line in the e − (p′/pa)
0.7 plane for rock�ll with dM� 40mm. (b) Critical state line in the e − (p′/pa)

0.7 plane for
rock�ll with dM� 60mm. (c) Critical state line in the e − (p′/pa)

0.7 plane for rock�ll with dM� 80mm. (d) Critical state line in the e −
(p′/pa)

0.7 plane for rock�ll with dM� 120mm.

Advances in Civil Engineering 5



ecs � ecs0 − λs
p′
pa
( )

ξ

, (2)

where ecs denotes the critical state void ratio; ecs0 and λs are
dimensionless material constants; and pa� 101 kPa is the
atmospheric pressure used for the purpose of normalization.
 e parameter ξ � 0.7 is used in this study which shows good
resemblance with laboratory data. Figure 9 shows the critical
state lines along with the critical state stress points of
Xiaolangdi rock�ll with di�ering dM. A linear correlation
between ecs and (p′/pa)

ξ could be observed. With the in-
crease of dM, ecs was found to decrease.  e in�uence of dM
on the critical state line (equation (2)) is indicated by the
variation of the gradients and intercepts of samples with
di�erent gradings. As evident from Figure 10, both ecs0 and
λs showed decrease with the increase in dM, which can be
described by the following power law relationships:

ecs0 � a2
dM
dn

( )
b2

,

λs � a3
dM
dn

( )
b3

,

(3)

where a2, a3, b2, and b3 are material constants, equal to 0.274,
− 0.18, 0.313, and − 0.47, respectively.  is simple empirical
relationship could be introduced into an elastoplastic model
[19, 20] developed within the framework of critical-state soil
mechanics to simulate the stress-strain behaviour of rock�ll
more appropriately.

4. Conclusions

Critical state strength of granular aggregates, including
rock�ll, is an important aspect for constitutive modelling.
However, due to the limitation of conventional laboratory
equipment, the critical state behaviour of �eld rock�ll is
usually obtained by scaling down aggregate sizes.  is in
turn can lead to inaccuracies in prediction of material

performance in “in situ” conditions. In this study, the in-
�uence of particle size distribution on the critical state
strength of rock�ll was investigated by adopting the com-
bination method. A series of drained large-scale triaxial tests
were performed on rock�ll materials procured from the
Xiaolangdi dam. Stress-strain analysis was performed on the
test specimen with four di�erent maximum particle sizes
(i.e., dM� 40, 60, 80, and 120mm) and �ve di�erent initial
con�ning pressures (i.e., σ3′� 0.2, 0.4, 0.8, 1.6, 2.2MPa).  e
major �ndings of this study are summarized below:

(a)  e volumetric strain decreased with the increase
in dM while the axial strain increased with a de-
crease in dM, at the same stress level. With the
increase of dM, the peak shear strength of rock�ll
was observed to improve.

(b)  e critical state lines in both p′ − q and e − p′
planes were in�uenced by the particle sizes.  e
critical state stress ratio (Mcs) increased with an
increase in dM while the gradient (λs) and intercept
(ecs) decreased as dM increased.

(c) Based on the laboratory data presented in this study, a
power law relationship was proposed for describing
the evolution of the critical state parameters with dM.
 is simple yet accurate empirical relationship could
be introduced into a critical-state constitutive model
to simulate the stress-strain behaviour of rock�ll
under a range of particle sizes.  is empirical re-
lationship is based on the limited test data and it needs
further validation for a wider range of particle sizes.
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