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Surface protection has been accepted as an effective way to improve the durability of concrete. In this study, nanosilica (NS) was
used to improve the impermeability of cement-fly ash system and this kind of material was expected to be applied as surface
protectionmaterial (SPM) for concrete. Binders composed of 70% cement and 30% fly ash (FA) were designed and nanosilica (NS,
0–4% of the binder) was added. Pore structure of the paste samples was evaluated by MIP and the fractal dimension of the pore
structure was also discussed. Hydrates were investigated by XRD, SEM, and TG; the microstructure of hydrates was analyzed with
SEM-EDS.,e results showed that in the C-FA-NS system, NS accelerated the whole hydration of the cement-FA system. Cement
hydration was accelerated by adding NS, and probably, the pozzolanic reaction of FA was slightly hastened because NS not only
consumed calcium hydroxide by the pozzolanic reaction to induce the cement hydration but also acted as nucleation seed to
induce the formation of C-S-H gel. NS obviously refined the pore structure, increased the complexity of the pore structure, and
improved the microstructure, thereby significantly improving the impermeability of the cement-FA system.,is kind of materials
would be expected to be used as SPM; the interface performance between SPM and matrix, such as shrinkage and bond strength,
and how to cast it onto the surface of matrix should be carefully considered.

1. Introduction

Concrete has been widely employed in civil constructions in
the past decades, and the main reason is due to its excellent
performance, especially long life serving [1, 2]. However,
reinforced-concrete structures inevitably suffer from dam-
ages in harsh environment, such as in the presence of
chloride ions, carbon dioxide, and sulphate, resulting in
shortening its life [3–6]. ,e generally accepted reason for
those is that concrete is a porous material with micro-
structural defect, and the harmful ions could penetrate the
surface into the inside of concrete structure and cause
corrosion, finally leading to crack [7, 8]. For example, sul-
phate was able to penetrate the surface into the inside and
react with hydrates to produce ettringite or gypsum, asso-
ciating with a volume expansion. ,e mechanical perfor-
mance could be deteriorated, and under load, the cracks
occurred; thereafter, sulphate ions were easier to go into the
inside of concrete structure along the cracks and the more
serious corrosion would happen [9–11]. Chloride ions could
easily permeate into the inside of the matrix and migrate to

the surface of steels and then cause steel corrosion probably
[12, 13]; finally, volume expansion happened and the con-
crete structure was destroyed. In the process of various
external erosions, one precondition is that corrosion ions
need to penetrate through the surface and go into the inside
of the concrete. Accordingly, surface protection has been
accepted as one of the most popular way to promote the
concrete durability in actual engineering process [14].

Coating a film on the surface of concrete is one of the
main methods for surface protection [15]. Two kinds of
surface protection materials (SPM) were reported in the
literature. One was the penetrative protective agent based on
organic materials, with intention to block the surface pore
structure; the other was the inorganic materials, such as
mortar or cement paste, to isolate the matrix from erosion
ions in outside environment. Silanes [16], ethyl silicate
[17, 18], and isobutyl-triethoxy-silane [19] were used as
typical penetrative protective agents for the resistance of
carbonation and erosion, and a silica-based hybrid nano-
composite was reported for surface treatment to reduce the
water absorption and gas permeability [20]. One mechanism
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behind the enhanced impermeability was that the chemicals
could go through the capillary and form an inorganic hy-
drophobic film along the capillary as a result of reacting with
hydration products; the other was that these hydrates in the
capillary structure would block the transportation of water
and gas [21]. Furthermore, another kind of SPM was coated
as a layer on the surface of the matrix. Zhang reported that
cement mortar modified with nanosilica (NS) and silica
fume could be used as SPM to enhance the impermeability
[22]. ,e reason was revealed that NS and silica fume not
only consumed CH to form the dense C-S-H but also exerted
the excellent filling effect, thereby declining the porosity,
increasing density, improving the microstructure including
interfacial transition zone (ITZ), and enhancing the me-
chanical performance [23–26]. Additionally, the inorganic
materials generally performed better antiaging property and
also showed excellent ability to augment the impermeability
by coating on the surface [27, 28].

In the literature, incorporating mineral admixtures, such
as fly ash and ground granulated blast furnace slag (GGBS),
could not only exhibit economic and environmental benefits
[29–31] but also greatly improve the durability of cemen-
titious materials [32, 33]. In this paper, the cement-fly ash-
NS system was designed and used as a SPM. 30% fly ash (FA)
andNS (0–4%) were added with the intention to improve the
impermeability. ,e chloride diffusion coefficient of SPM
was determined to illustrate the effect of NS addition on the
impermeability of SPM under investigation. Furthermore,
the properties of the pore structure, microstructure, and
hydration products of SPM were investigated to reveal the
mechanism of its high impermeability. ,e pore structure
was discussed by compressive strength, water absorption,
and MIP; microstructure was investigated with SEM-EDS.
Hydrates were evaluated with XRD, TG-DSC, NMR, and
SEM.,e findings would expect to be useful for the design of
surface protection materials.

2. Experimental

2.1. Materials

2.1.1. Cement and Fly Ash. A 42.5 Portland cement (Wuhan
Yadong Cement Co., Ltd.) in accordance with the re-
quirements of GB175-2007 Chinese standard and coal-fired
fly ash (produced by Wuhan Yangluo Power Plant, Wuhan,
Hubei province) in accordance with the requirements of GB/
T 1596–2005 Chinese standard were used in this study. ,e
chemical composition of cement and fly ash (obtained by
XRF) are shown in Table 1. Particle size distribution and
SEM image of FA are shown in Figures 1(a) and 1(b).

2.1.2. Nanosilica. ,e average particle diameter of powdered
nanosilica (NS, supplied by Sinopharm Chemical Reagent
Co., Ltd.) used in this study was about 15–20 nm, which was
indicated from the TEM image, as shown in Figure 2.

2.1.3. Preparation of Samples. ,e mortar samples were
prepared according to the mixture proportion, as shown in

Table 2. Because NS showed negative effect on the workability
of C-FA system [34], the same fluidity level (160–180mm)
was controlled by adding PCE. NO.0 mortar was deemed as
the reference sample. Cement and fly ash was firstly mixed,
and then the NS suspension, dispersed by PCE [35] and water,
was added. After that, sand was added within 30 s, followed by
continuous stirring for 90 s, and then SPM was prepared.
After the samples were cured in the standard condition (>95%
R.H. and 20± 1°C) for 24 h, they were demoulded and further
cured till 28 d.,ese mortars were also cast in the model with
ϕ100mm and 50mm height and cured under the same
condition till 28 d. In accordance with Chinese standard GB/T
50082-2009, rapid chloride migration (RCM) was used for the
measurement of chloride diffusion coefficient. ,e sand used
in experiments was Standard Sands (GSB 08-1337-2017,
supplied by Xiamen aisio standard sand Co., Ltd.).

,ese fresh mortars were also cast in the cubic moulds
(40× 40× 40mm). After being cured for 7d, 28d, and 90d
under standard condition, the measurements of compressive
strength, water absorption, andmicrostructure were conducted.

,e cement pastes were also prepared, as shown in
Table 2, and cured under the standard condition for 28 d.
,e samples were broken into small pieces and immersed
into the anhydrous ethanol for 48 h to stop its hydration.
,ese small pieces were prepared for the measurement of
SEM and pore structure. Furthermore, the broken pieces
were grinded into powder to pass a 45 μm sieve, being ready
for the analysis of XRD, TG, and NMR.

2.2. Testing Methods

2.2.1. Chloride Penetrability. Mortar samples were put into a
vacuum container for 3 hours, followed by being immersed
into saturated Ca(OH)2 solution for 18± 2h. 0.3mol/L NaOH
and 10wt% NaCl were used as cathode solution and
anode solution. External electrical potential (30± 0.2V) was
employed to the upper and lower section of the samples. After
the measurement, the samples were carefully cleaned and then
split into two semicylinders along the axial direction. Finally,
0.1mol/L silver nitrate solution was sprayed on the cross
section, and the chloride penetration depth of the specimen
was measured at 10 different locations. ,ree samples were
used for each test group. ,e DRCM was calculated as follows:

DRCM �
0.0239 ×(273 + T)L

(U − 2)t
Xd − 0.0238

������������

(273 + T)LXd

U − 2



⎛⎝ ⎞⎠,

(1)

whereDRCM denoted the chloride diffusion coefficient, m2/s;
U reflected the applied voltage, V; T represented the average
temperature of anode solution, °C; L denoted the height of
sample, mm; Xd showed the chloride ion penetration depth,
mm; and t indicated the test time, h.

2.2.2. Compressive Strength. ,e compressive strength of
mortars was conducted under a loading rate was 2.4 kN/s, in
agreement with Chinese standard (GB/T17671-1999). For each
age, three specimens were tested to obtain the average result.
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2.2.3. Water Absorption. ,e water absorption of cement
mortars cured for 28 d was tested according to GB/T
17671. ,e specimen was dried in an oven with temper-
ature of 80 ± 2°C for 48 h and then removed and cooled to
room temperature. After that the mass of the sample (G0)
was weighted and then immersed into water with the
temperature of 20 ± 2 °C for 48 h; thereafter, the sample
was taken out of the water, and the water on the surface
was cleaned; the mass of the sample (G1) was weighted
again. Water absorption (equation (2)) was calculated as
follows:

WA �
G1 − G0

G0
× 100%, (2)

where WA, water absorption (%); G0, the mass of the
specimen after drying (g); and G1, the mass of the specimen
after adsorbing water (g).

2.2.4. Phase Analysis. ,e measurement of XRD was con-
ducted with X-ray Diffractometer (D/Max-RB, made by
Rigaku, Japan) with Cu (Kα) radiation and a current of 40mA
at 40 kV, at a speed of 2θ 4°/min and a step of 0.02° within the
range from 5 to 70°. ,e data was processed with Jade 5.0.

,e measurement of TG-DSC was carried out with the
instrument of STA449c/3/G (NETZSCH, Germany) under
an atmosphere of flowing air from room temperature to
1000°C at a heating rate of 10°C/min.,e accurate content of
calcium hydroxide (CH) was calculated from the weight loss
ranging from 400–500°C [36, 37].

Morphology characterization of hydrates in the paste
sample was conducted with Field Emission Scanning
Electron Microscope (FE-SEM, QUANTA FEG 450).

2.2.5. NMR. ,e hydration products were characterized
with 29Si MAS NMR. It was reported that six peaks were
found in NMR spectrum of hydrated cement-FA paste
[12, 38, 39]; Q1 and Q2 represented the chain-end Si-O
tetrahedrons and middle-chain Si-O tetrahedrons in hy-
dration products; Q2(1Al) denoted the middle-chain groups
where one of the adjacent tetrahedral sites was occupied by
Al4+; Q0, Q3, and Q4 represented the Si-O tetrahedrons in
unhydrated cement minerals and Si-O tetrahedrons in FA,
respectively. A Bruker Advance III400 spectrometer was
adopted to carry out 29Si-NMR (solid-state nuclear magnetic
resonance), operating at 79.5MHz, with rotation frequency
of 5 kHz and the delay time of 10 s. Tetramethylsilane was
used as 29Si standard. ,e data were processed with com-
mercial solid-state NMR software package. During the
deconvolution of 29Si NMR spectra, the peak was fitted and
Gaussian function was used to constrain the peak shapes.
,emain chain length (MCL, equation (3)) of C-S-H gel and
the ratio of Si in C-S-H substituted by Al (equation (4)) were
obtained as follows [40–42]:

Table 1: Chemical composition of cement and fly ash/wt.%.

LOI SiO2 Al2O3 Fe2O3 SO3 CaO MgO K2O Na2O
Cement 3.56 22.18 5.88 3.57 2.00 59.41 1.80 0.64 0.13
Fly ash 6.53 55.31 28.63 3.65 0.68 3.80 0.43 0.13 0.76
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Figure 1: (a) Particle size distribution and (b) SEM image of FA.

Figure 2: TEM image of nanosilica.
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MCL �
2I Q1(  + 2I Q2(  + 3I Q2(Al) 

I Q1( )
, (3)

Al
Si

�
0.5I Q2(Al) 

I Q1( ) + I Q2( ) + I Q2(Al)[ ]
. (4)

Reaction degree of cement is shown in equation (5).
Reaction degree of FA in the C-FA system is exhibited in
equation (6). Because Q3 and Q4 are also presented in NS, it
is difficult to calculate the hydration degree of FA and NS,
respectively. However, the total reaction degree of FA and
NS could be calculated, as shown in equation (7). It was
reported that most of NS was depleted at the early age [43].
Based on this, A(FA+NS) could reflect the pozzolanic reaction
of FA:

AC(%) � 1 −
I Q0( 

I0 Q0( )
, (5)

AFA(%) � 1 −
I Q3 + Q4( 

I0 Q3 + Q4( )
, (6)

A(FA+NS)(%) � 1 −
I Q3 + Q4( 

I0 Q3 + Q4( )
, (7)

where I(Q0), I(Q1), I(Q2), and I[Q2(Al)] denoted the in-
tensities of signals Q0, Q1, Q2, and Q2(Al) in hydrated paste,
respectively; I0(Q0), I0(Q3), and I0(Q4) represented the in-
tensities of signals Q0, Q3, and Q4 in unhydrated mixture.

2.2.6. Pore Structure. Mercury intrusion porosimetry (Auto
Pore IV 9510, America) was used for pore structure char-
acterization. ,e calculation of pore distribution assumes
that the pores are spherical in shape, with the surface tension
of mercury of 480mN/m and contact angle of 140°.

During the measurement of MIP, external pressure on
mercury was equal to the surface energy increased by pores
and the correlation appeared in

dW � −PdV � −cL cos θ dS, (8)

where W is the surface energy of the pore; P is the mercury
pressure; V is the intruded mercury volume; cL is the surface
tension of mercury; θ is the contact angle of mercury with
the surface of the pore; and S is the surface area of the pore.

In the literature, the relationship between the accumu-
lated intrusion surface energy (Wn) and the accumulated
mercury intrusion surface (Qn) (shown in equation (9)) was
proposed by Zhang and Li [44]. Based on this, the

accumulated mercury volume is Vn and the smallest pore
radius is rn; then, Wn and Qn are expressed as equations (10)
and (11):

logWn � logQn + C, (9)

Wn � 

n

i�1
PiΔVi, (10)

Qn � r
2−D
n V

3/D
n , (11)

where C is a constant; Pi and Vi stand for the mercury
pressure and intruded pore volume at step i; andD stands for
the fractal dimension of the pore surface [45–48].

,erefore, equation (9) is expressed as equation (12).,e
fractal dimension of the pore surface can be obtained by the
slope of the curve log (V1/3

n /rn) versus log (Wn/r2n). Greater
than 0.99 was controlled in the correlation coefficient:

log
Wn

r2n
  � D log

V3/D
n

rn

  + C. (12)

2.2.7. Analysis of Microstructure. ,e mortar samples were
dried under vacuum and coated with a golden film, and then,
a scanning electron microscope (SEM-EDS, JSM-5610LV,
Japan) equipped with an energy dispersive spectrometer
(EDS, made by EDAX Inc., USA) was employed to observe
the microstructure. Based on EDS, different phases were
reflected from different colors, and the element content (C)
in each phase and the ratio of each phase (A) in the whole
image was read directly from the EDS data. Based on these
results, the average Ca/Si ratio (equation (13)) and the Ca/Si
ratio of each phase (equation (14)) were calculated as follows
[49]:

Ca
Si

in nphase �
Cn−Ca

Cn−Si
, (13)

Average
Ca
Si

inwhole image �
 Cn−Ca × An( 

 Cn−Si × An( 
, (14)

where Cn−Ca and Cn−Si mean Ca and Si content in n phase,
and this phase occupied An ratio in this SEM image.

3. Results and Discussion

3.1. Chloride Penetrability. Chloride diffusion coefficient
(DRCM) of the C-FA-NS system was examined, and the
results are shown in Figure 3. From the figure, it was seen

Table 2: Mix proportion of mortars and paste.

NO. NS (%) NS (g) Cement (g) FA (g) Sand (g) Water (g) PCE (g)
0 0 0 350 135 1350 225 0
1 0.5 2.25 347.75 135 1350 225 0.5
2 1.0 4.50 345.5 135 1350 225 1
3 1.5 6.75 343.25 135 1350 225 1.3
4 2.0 9.00 341 135 1350 225 1.5
5 4.0 18.00 332 135 1350 225 1.8
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that DRCM was declined obviously with increasing dosage of
NS. In the absence of NS, the value was about
16.5×10−14m2/s, while 0.5% NS reduced it to 12×10−14m2/
s; increase in dosage to 4.0% further reduced it to
6.2×10−14m2/s. ,ese results illustrated that addition of NS
into the cement-FA system significantly increased the im-
permeability of the system. ,is is consistent with the result
in the literature [8, 22].

It is generally believed that the impermeability of ce-
ment-based material is related to the pore structure and
microstructure [50]. Improvement in the microstructure
and refining of the pore structure would significantly aug-
ment the impermeability. ,ese would be further discussed
in the following text.

3.2. Pore Structure. ,e pore structure was investigated in
terms of water absorption, MIP, and compressive strength
and shown as follows.

3.2.1. Water Absorption of C-FA-NS System. Water ab-
sorption of the C-FA system with various dosages of NS
cured for 28 d are shown in Figure 4. It can be seen that the
water absorption was reduced with the increasing dosage of
NS. Addition of 0.5% NS reduced the water absorption by
5.45% and increase in dosage to 4.0% further reduced it by
21.82%, in comparison with the reference (without NS). As
reported in the literature [51, 52], water absorption reflected
the surface pore structure of the mortar. Generally, greater
water absorption represented more amount of open pore
which was related to the impermeability. Based on this, it
was inferred that NS in the C-FA system significantly im-
proved the surface pore structure, which was responsible for
the enhanced impermeability.

3.2.2. MIP. ,e pore structure was characterized with MIP,
and the results are shown in Figure 5 and Table 3. From the
figure, it was seen that addition of NS could obviously refine
the pore structure of the C-FA system, and the most
probable aperture (MPA) was notably reduced by adding
NS, in agreement with the results in the literature [53, 54]. In
Table 3, it was found that NS reduced the porosity of C-FA

from 0.1808mL/g in reference (C-FA) to 0.1448mL/g and
0.1304mL/g in sample with 2.0% NS and 4.0% NS, re-
spectively. Additionally, NS notably increased the pore
volume with size smaller than 20 nm, while significantly
reducing the pore volume with size bigger than 200 nm.
,ese results implied that NS, with nanoscale particles, was
able to significantly refine the pore structure [55–57]. Similar
results concerning nanoparticles were also reported in the
literature [58–62].

,e microporous structure was related to transport
properties of cement paste, which could be reflected by
fractal dimension. In this study, fractal characteristics of the
pore structure was calculated fromMIP data [45, 48, 63], and
the results are posted in Figure 6. It was observed that two
fractal areas were separated by a transition area. It was
reported that Ds-a of the macrofractal region represented
the packing patterns of the hydrated binder particles, while
the Ds-i of the differential region mainly showed the mi-
crostructure of the C-S-H gel [45, 46]. 2% and 4% NS in-
creased the Ds-a of the samples from 2.006 in reference to
2.066 and 2.329 and increased Ds-i from 2.685 in reference
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Figure 4: Effect of NS on water absorption of the C-FA system.
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to 2.806 and 2.892. ,ese phenomena indicated that the
addition of NS disordered the transport tunnel and made the
pore structure more tortuous at the age of 28 d, which could
reduce the transport properties of the hardened paste.

3.2.3. Compressive Strength. Compressive strength was used
to offer the supplementary evidence to illustrate the pore
structure [64, 65]. ,e compressive strength of the C-FA-NS
system cured for 7 d, 28 d, and 90 d was examined, and the
results are shown in Figure 7. With the increasing dosage of
NS, 7 d strength and 28 d strength were increased. Especially at
the age of 7 d, 2.0% NS increased the strength from 21.0MPa
in reference to 30MPa, with an increase by 43%; the increase

rate is by 11% for 28 d, while in the case of 90 d, the NS
containing sample showed lower strength than the reference
sample. As reported in the literature, the increased strength at
the early age was related to the refined pore structure and the
accelerated hydration process, while the reduced strength at
the later age was due to the coating effect resulting from
pozzolanic reaction of NS on the surface of FA [66].

Based on discussion about the water absorption, MIP,
and compressive strength, it can be concluded that NS added
in the C-FA system could significantly refine the pore
structure of the system. With increase in curing age, the
hardened structure was densified, showing compacter
structure, which was inferred conducive to impermeability
of the system [67].

Table 3: Pore structure of C-FA with NS.

Sample Porosity (mL/g)
Pore volume distribution (mL/g)

<20 nm 20∼50 nm 50∼200 nm >200 nm
C-FA 0.1808 0.0563 0.0795 0.0332 0.0118
C-FA+ 2% 0.1448 0.0961 0.0357 0.0029 0.0101
C-FA+ 4% 0.1304 0.0994 0.0225 0.0026 0.0059
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Figure 6: Logarithm plots of Wn/r2n versus V1/3
n /rn of the C-FA system with NS. (a) C-FA. (b) C + FA+ 2%. (c) C+ FA+ 4%.
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3.3. Microstructure of Hydrates. Microstructure in ITZ is
accepted as one of the main factors influencing the im-
permeability of the mortar [68]. Generally, the width of ITZ
was 20–50 μm. In this section, area 100–150 μm away from
aggregate was investigated by SEM-EDS, as shown in Fig-
ure 8. From the figure, ITZ was not obviously observed.
Furthermore, analysis about the microstructure of these
areas was carried out, and Ca, Si, and phase distribution in
different phases was displayed in Table 4. It can be found that
the Ca/Si ratio of the red color was as low as 0.02, indicating
that the red color represented the sand. Furthermore, as
shown in Table 4, the average Ca/Si ratio in image was
calculated. In the C-FA (reference) system, the average Ca/Si
ratio was 1.86; 2.0% NS reduced it to 1.52, and increase in
dosage to 4.0% further reduced it to 1.43. In fact, the Ca/Si
ratio in hydrates reflected the CH content in C-S-H, and
generally, higher Ca/Si ratio meant greater amount of CH.
Based on this, the reduced Ca/Si ratio by adding NS could be
explained from the fact that NS with nanosize entered these
areas near the aggregates and reacted with CH to reduce the
Ca/Si ratio. ,e whole microstructure including the mi-
crostructure of ITZ was improved significantly, with obvious
contribution to the strength.

3.4. Phase Analysis. In order to discuss the effect of NS on
hydration properties of the C-FA system, the samples were
investigated with XRD, TG, and NMR.

3.4.1. XRD. ,e peak intensity of CH in the XRD pattern
could reflect the relative content of CH in hydrates, which
illustrated the hydration process of the cementitious system
[69]. In the C-FA-NS system, cement hydration produced
CH, and the pozzolanic reaction of FA and NS consumed
CH to reduce the amount of CH in hydrates [70]. ,e paste
cured for 28 d was characterized with XRD, and the results
are shown in Figure 9. From the figure, CH, ettringite (AFt),
C3S, portlandite, and mullite were seen clearly. It was found
that NS significantly reduced the peak intensity of CH and

slightly enhanced the peak intensity of AFt, while obvious
change of the peak intensity of C3S and mullite was not
observed. It was confirmed that the reaction between NS and
CH happened. It was deduced that the consumption of CH
by this reaction could induce cement hydration. Obviously,
the consumption of CH by NS was dominated, and there-
fore, the reduced CH peak intensity by adding NS was
observed.

3.4.2. TG-DTG. To further confirm the content of CH in
hydrates, TG-DTG was employed. As shown in Figure 10,
the peaks ranging from 50–200°C and 400–500°C were seen
clearly. ,e former represented the dehydration of C-S-H
and AFt, and the later denoted the decomposition of CH.
Table 5 illustrates the weight loss calculated by TG.

From the table, it was found that NS addition increased
the weight loss occurring at 50–200°C. In the C-FA system,
the weight loss within the temperature range of 50–200°C
was 7.46%; 2.0% NS increased it to 8.29%; increase in dosage
to 4.0% further increased it to 9.05%. ,is result indicated
that NS accelerated the formation of hydration products
such as AFt or C-S-H gel. Furthermore, the weight loss at
400–500°C was also reduced from 3.21% in C-FA to 2.67% in
C-FA-2.0% NS system and 2.04% in C-FA-4.0% NS system.
Based on this, the CH content was calculated; in the C-FA
system, the CH content was 7.85%, and 2.0% and 4.0% NS
reduced it to 6.53% and 4.99%. It was clear that NS reduced
the content of CH in hydrates. ,e results agreed with the
results in XRD analysis.,emechanism behind was revealed
as follows: NS would react with CH to produce the C-S-H
gel, and the consumption of CH would induce the cement
hydration to generate more CH. NS with nanoparticles
could also act as nucleation seed to induce the hydration of
cement to produce hydrates [37, 71, 72]. In this case, cement
hydration was hastened in the following age.

3.4.3. NMR. NMR was used to analyze the hydration
products. ,e NMR pattern obtained from paste hydrated
for 28 d are shown in Figure 11. In the process of hydration,
Q0 was due to the unhydrated cement; Q3 and Q4 were
attributed to unhydrated FA and NS. As shown in Figure 11,
the intensity of Q0, Q3, and Q4 in raw materials reduced,
while that for Q1, Q2, and Q2(1Al) in hydrates increased
obviously, indicating the hydration of cement and FA as well
as the formation of C-S-H gel. As shown in Table 6, in the
C-FA system, the reaction ratio of cement was 58.68%; 2.0%
NS increased the reaction ratio of cement to 64.91%. Fur-
thermore, it was noted that the total reaction degree of FA
and NS could be calculated as 14.77%; the reaction degree of
FA could not be directly obtained. As the value of A(FA+NS)
was 4.74% higher than that of AFA, it is most likely that
hydration of FA was slightly promoted in the C-FA-NS
system in comparison with C-FA. NS also increased the
MCL value from 3.94 in the C-FA system to 4.40 in 2% NS
system and 4.48 in 4.0% NS system, indicating that NS
accelerated the polycondensation of C-S-H gel in the system.
,e Al/Si ratio was also increased by addition of NS, in-
dicating that NS accelerated the dissolution of aluminate
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Figure 7: Effect of NS on compressive strength of the C-FA system.
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from FA into the liquid phase to take part in formation of
C-S-H gel [73–75]. Based on this, it was confirmed that the
cement hydration was promoted; and probably, pozzolanic
hydration of FA was slightly accelerated by adding NS.

3.4.4. SEM. Microstructure of hydrates at the age of 28 d was
characterized by SEM, and the SEM images are shown in
Figure 12. From Figure 12(a), C-S-H gel and FA were seen
clearly, and a small amount of hydrates on the surface of FA
was found. In Figure 12(b), a large amount of hydration
products on the surface of FA was found clearly; fly ash was
encased by these hydration products, and the same phe-
nomenon was also found in the literature [76]; these hy-
drates were attributed to the pozzolanic reaction of FA and
NS. As reported in the literature [66], in the C-FA-NS
system, a coating on the surface of FA could be formed by
pozzolanic reaction of NS and FA, and it would possibly slow
down the pozzolanic reaction of FA if the coating was better
formed. Probably, this was one reason why NS reduced the
strength of C-FA at the age of 90 d. In comparison with
Figure 12(b), fly ash was encased by more amount of hy-
drates in Figure 12(c), and this indicated that more amount

of hydrates on the surface of FA particles was produced in
the C-FA system with 4.0% NS. It was deduced that NS
would significantly improve the interface between FA par-
ticles and cement particles, and this could contribute to
compressive strength and impermeability.

Based on the discussion above, it was concluded that NS
accelerated cement hydration, and most likely, it slightly
hastened the pozzolanic reaction of FA. ,e amount of CH
in hydrates was reduced due to the consumption of poz-
zolanic reaction of FA and NS; the amount of C-S-H gel was
increased because of the accelerated hydration of cement
and pozzolanic reaction of NS.

3.5. Mechanism. In the C-FA system, NS was able to sig-
nificantly increase the impermeability, and the reason was
revealed as follows: firstly, NS with nanosize could exert the
filling effect to block capillary pore. Because of high reaction
activity, it could efficiently take part in pozzolanic reaction
and also act as nucleation seed to induce the cement hy-
dration; accordingly, the formation of C-S-H gel with
nanosize was facilitated, which could also fill or block the
capillary pores greatly to improve the impermeability

50µm

(a) C-FA (b) C-FA with 2.0% NS (c) C-FA with 4.0% NS

50µm 50µm

Figure 8: SEM-EDS images of the mortar.

Table 4: Phase distribution in samples.

Sample Phase Average Ca/Si

C-FA

Phase proportion (%) 26.00 28.00 29.00 16.00

1.86

Ca (%) 0.66 14.72 23.89 6.24
Si (%) 36.70 8.98 6.43 13.19
Ca/Si 0.02 1.64 3.72 0.47

Total Ca (%) 0.17 4.12 6.93 1.00
Total Si (%) 9.54 2.51 1.86 2.11

C-FA with 2% NS

Proportion (%) 39.00 11.00 10.00 12.00 10.00 8.00 6.00 3.00 1.00

1.52

Ca (%) 0.48 4.11 21.30 15.08 7.06 7.97 11.45 10.06 2.21
Si (%) 29.19 9.93 3.74 8.07 11.81 4.43 4.20 5.55 3.76
Ca/Si 0.02 0.41 5.70 1.87 0.60 1.80 2.73 1.81 0.59

Total Ca (%) 0.19 0.45 2.13 1.81 0.71 0.64 0.69 0.30 0.02
Total Si (%) 11.38 1.09 0.37 0.97 1.18 0.35 0.25 0.17 0.04

C-FA with 4% NS

Proportion (%) 22.00 19.00 14.00 13.00 13.00 4.00 5.00 2.00 8.00

1.43

Ca (%) 0.54 15.28 28.21 2.24 10.20 5.58 7.32 16.25 4.21
Si (%) 35.02 4.66 3.12 21.90 8.72 9.26 3.04 6.84 10.66
Ca/Si 0.02 3.28 9.04 0.10 1.17 0.60 2.41 2.38 0.39

Total Ca (%) 0.12 2.90 3.95 0.29 1.33 0.22 0.37 0.33 0.34
Total Si (%) 7.70 0.89 0.44 2.85 1.13 0.37 0.15 0.14 0.85
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[77, 78]. Furthermore, NS induced the hydration of cement
by consuming CH and acting as nucleation seed, and the
hydration degree of the system was promoted. ,is signif-
icantly improved the microstructure, such as microstructure
of C-S-H gel as well as the interface between FA and C-S-H
gel, thereby enhancing impermeability. ,e pore structure
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Figure 9: XRD patterns of hydrates.
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Figure 10: DTG analysis of paste hydrated for 28 d.

Table 5: Weight loss of paste hydrated for 28 d.

Sample
Weight loss (%)

CH content (%)
50–200°C 400–500°C

C-FA 7.46 3.21 7.85
C-FA with 2.0% NS 8.29 2.67 6.53
C-FA with 4.0% NS 9.05 2.04 4.99

Q0

Q1
Q1(Al)

Q2

Q3Q4

–110 –100 –90 –80 –70 –60–120
ppm

NS 0%
NS 2%

Unhydrated C-FA
Unhydrated C-FA-2%NS

Figure 11: 29Si-NMR pattern of paste hydrated for 28 d.
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Table 6: Deconvolution results of the paste samples hydrated at 28d.

Unhydrated C+ FA Unhydrated C+ FA+ 2% NS C-FA C-FA+NS 2%
Q0 (%) 68.01 66.97 28.10 23.50
Q1 (%) — — 25.90 26.50
Q2 (%) — — 13.10 17.25
Q2(1Al) (%) — — 8.02 9.70
Q3 +Q4 (%) 31.99 33.03 28.78 28.15
AC (%) — — 58.68 64.91
AFA (%) — — 10.03 —
AFA+NS (%) — 14.77
MCL — — 3.94 4.40
Al/Si (%) — — 0.085 0.091

Reference

(a)

2.0% NS

(b)

4.0% NS

(c)

Figure 12: SEM images of C-FA hydrated for 28 d.

Cement particle
Hydration products

Fly ash
NS

(a)

(b)

Figure 13: Mechanism behind the improvement in impermeability with NS. (a) C-FA. (b) C-FA with NS.
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was refined and the microstructure was improved, with great
contribution to the impermeability, as shown in Figure 13.

4. Conclusion

(1) In the C-FA-NS system, NS obviously refined the
pore structure, increased the complexity of the pore
structure, and improved the microstructure, and the
reason was not only due to the filling effect of NS but
also because of a large amount of hydrates formed to
improve the microstructure.

(2) NS accelerated the whole hydration of the cement-
FA system. NS not only consumed calcium hy-
droxide by the pozzolanic reaction to induce the
cement hydration but also acted as nucleation seed to
induce the formation of C-S-H gel, thereby accel-
erating the cement hydration. Probably, it also
slightly accelerated the pozzolanic reaction of FA.

(3) NS significantly improved the impermeability of the
cement-FA system, and this kind of materials would
be expected to be used as surface protection material.
However, the interface performance between SPM
and matrix, such as shrinkage and bond strength,
and how to cast SPM onto the surface of the matrix
should be carefully considered.
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