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*e critical state of rock is an important index for measuring the changes in rock characteristics. However, this state is not unique
because of the different researcher assumptions. Based on the theory of the partial differential equation proposed by Vutukuri,
according to Mohr’s envelope, a piecewise yield failure criterion (referred to as the Mohr–Wedge criterion), including the critical
state for brittle rock, is obtained by introducing the wedge model to solve this equation. *e Mohr–Wedge (M–W) criterion
consisting of nonlinear and linear components includes the critical state for brittle rock. When the minimum principal stress σ3 is
lower than the confining pressure σk, the maximum principal stress σ1 varies nonlinearly with σ3; otherwise, σ1 varies linearly with
σ3.*is variation conforms to rock deformation features under triaxial compression. In this study, we investigate the rationality of
this critical state by an analogy method and illustrate that the critical state mentioned in this criterion is related to the microcracks
in the potential failure zone of the rock. Alternatively, the primary object of this study is to reveal the applicability of predicting the
yield state for this criterion. *e method used in our study is compared to the Mohr–Coulomb (M-C) criterion, the Hoek–Brown
(H-B) criterion, and the Exponential (Exp.) criterion by the yield surfaces on the deviatoric plane. Notably, there is a vertex
consistent region for the four criteria, but except for this region, the yield state of rock predicted by the four criteria is quite
different, depending on the extent of the parameters for the criteria and the magnitude of the slopes of the yield surfaces. *e
results show that the M-W criterion has certain applicability for predicting the rock yield state by using the multiple data of rock
triaxial compression tests in the published literature.

1. Introduction

*e failure criterion, one of the basic theoretical problems in
geotechnical mechanics, has been a research hotspot and has
important guiding significance for actual geotechnical en-
gineering. *e Coulomb criterion proposed that rock failure
is mainly a shear failure, and the shear stress τ follows a
positive proportion to the normal stress failure σ on the
failure shear plane [1]. *rough many experimental studies,
Mohr [2] proposed that τ and σ should be expressed by a
functional relationshipτ � f(σ), namely, the Mohr enve-
lope. *e formulation of the Mohr envelope provided
substantial assistance for numerous scholars to study the
failure criterion. Subsequently, Balmer [3] proposed that the
nonlinear envelope can be represented by the maximum

principal stress σ1 and the minimum principal stress σ3.
Using that conclusion, Ucar [4] and Kumar [5] successively
obtained the expressions of the shear envelope of the narrow
H-B criterion [6] and generalized Hoek–Brown (H-B) cri-
terion [7]. In addition, most scholars [8–14] proposed many
available triaxial failure criteria for brittle rock based on
experimental observation or theoretical analysis. *e ap-
plicability of these criteria was mainly discussed in the
principal stress plane.

Based on the research of Balmer [3], Vutukuri [15]
deduced the partial differential equation of stresses by in-
troducing the rock failure angle and envelope slope angle,
which proved that the envelope slope angle zτΦ/zσΦ is
related to the axial-radial stress curve slope angle zσ1/zσ3.
Ouyang and Elsworth [16] utilized a partial differential
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equation of stresses to propose a phenomenological rock
failure criterion, which was a theoretical formula based on
the brittle failure of rock in the microshear test, and the
wedge model was a rock failure model based on the de-
velopmental vertical and horizontal microcracks on the
shear potential failure zone [17, 18].

*e Mohr–Wedge (M-W) yield failure criterion, a
theoretical derivation based on microscopic experiments, is
a piecewise function including the critical state for brittle
rock. *e characteristics of rock under different confining
pressures are determined by many factors, such as the rock
type, earth pressure, and joint. Clearly, the deformation and
failure modes of a deep rock mass are different from those of
a shallow rock mass [19]. Matthew et al. [20] presented four
failure modes for rock slopes, namely, sliding, toppling,
slumping, and confined slumping. For the rock critical state,
Sankhaneel and Gabriel [21] proposed that the failure of
rock is extensile cracking under low confinement conditions
and semibrittle shear under higher confinement conditions.
In addition, some scholars suggested that the variation in the
principal stress is linear under low confining pressure and
nonlinear under high confining pressure [22, 23]. However,
the M-W criterion reveals a nonlinear relationship under
low confining pressure due to the influence of internal
microcracks of rock. When the microcracks in the shear
potential failure zone are compacted, the variation in the

stress is linear under a very high confining pressure due to
instantaneous linear elastomer outside the shear potential
failure zone.

In the following sections, we compare the M-W yield
criterion with the Mohr–Coulomb (M-C) criterion [2], the
H-B criterion [7], and the Exponential (Exp.) criterion [12]
to discuss the rationality of the failure model and the ap-
plicability of the criterion. Except for comparing the vari-
ation in the principal stress and arranging the parameters of
the criterion, we discuss the yield surfaces on the deviatoric
plane detailedly. Taking into account the principle of the
coordinate invariance of plasticity theory, the description of
the yield behavior is not affected by the choice of the co-
ordinate system [24–26]. Consequently, we can obtain the
yield surfaces on the deviatoric plane through the coordinate
transformation of the deviatoric plane and principal stress
space, which transform the three-dimensional yield problem
of the principal stress space into the deviatoric plane. Finally,
we compared the accuracy of the predicting rock yield state
among the three criteria with the triaxial compression test
data.

2. Criterion Features

*e M-W criterion proposed by Ouyang and Elsworth can
be summarized as follows [16]:
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whereτm � (σ1 − σ3)/2, σm � (σ1 + σ3)/2, A � − 2K2B/K1,
K1 � 4/(π + 2), and K2 � 4/(π − 2). *e variables σ1, σ3,
and σt represent the maximum principal stress, minimum
principal stress, and uniaxial tensile strength, respec-
tively. C � τ0m + cos 2Φ0[(1 − W1)/2B], in which τ0mand
Φ0are the value of equation (1) and the rock failure angle
at σm � (1-W1)/2B, respectively. *e constant W1 is the
number of cracks per unit volume, and B is the parameter
associated with an elliptical crack. *e physical signifi-
cance of the specific parameters is detailed in [16].

Obviously, the M-W criterion is a piecewise function
consisting of nonlinear and linear components. *e critical
state between the two components is that the microcracks
outside the potential failure zone of the rock sample are
compacted. Taking σk as the critical confining pressure,
Figure 1 shows the variation in the relationship between σ1
and σ3. When σ3 ≤ σk, σ1 varies nonlinearly with σ3 because
of the microcracks, and when σ3 > σk, the microcracks are
compacted, σ1 varies linearly with σ3, and the rock sample
presents as a linear elastic material. *is variation conforms
to rock deformation features under triaxial compression.

In addition, the H-B criterion [7] also can illustrate the
change relationships between σ1 and σ3. *e expression of
the H-B criterion is as follows:

σ1 � σ3 + σc
�������
mσ3
σc

+ 1
􏽲

, (2)

where σc is the uniaxial compression strength and m is the
experience parameter.

*e value of dσ1/dσ3can be derived from equation (2) as
follows:

dσ1
dσ3

� 1 +
m

2
���������
mσ3/σc + 1

􏽰 . (3)

*e variation in the relationship between σ1 and σ3 is
nonlinear under low confining pressure. However, when
confining pressure σ3 is infinite, the value of dσ1/dσ3is
approximately equal to 1, which indicates that the rela-
tionship is approximately linear. *erefore, the variation in
the relationship between σ1 and σ3 in the M-W criterion is
similar to the H-B criterion.
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2.1. Wedge Model. *e wedge model is a rock failure model
based on the development of vertical and horizontal
microcracks in the shear potential failure zone [16]. *ere are
two features. (1)When the rock bears a load, the force transfer
through the potential failure zone must be concentrated on
the wedge vertices (similar to the concentrated forces P1 and
P2 shown in Figure 2) due to the influence of the microcracks.
*erefore, the ratio of the sum of all the concentrated forces
P1 andP2 to their respective areas is equal to the normal stress
σΦ and shear stress τΦ on the macroscopic failure surface of
the rock. (2) *e rock shear failure can be regarded as the
value of the shear stress maximum on the macroaspect.
Moreover, the shear failure can also be regarded as the tensile
stress (the tensile stress is negative) at the boundary of the
wedge particles when the potential failure attains a minimum
on the microaspect. *e second feature represents the
boundary conditions for solving the expression of the rock
failure angle Φ and principal stress; the detailed derivation
process is described in [16].

2.2. Physical Meaning of the Parameters. Considering that
the vast parameters in the criterion may be adverse to
practical applications, the parameters are arranged first.

(1) Parameters of K1 and K2

We introduce K instead of K1 and K2 because the
dimensions of K1 and K2 are 1 as follows:

K �
K2

K1
�
π + 2
π − 2

. (4)

(2) Parameters of W1 and σt
Reference [16] provides the following secondary
function:
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where W represents the particle stress concentration
factor.
*e upper limit of equation (5) actually represents the
uniaxial tension of the rock. *en, for σ1 � − σt and
σ3 � 0, the uniaxial tensile strength σt can be shown as
follows:

σt �
W1

B
. (6)

(3) Parameters of A, B, W, and Φ
*e equation betweenW and Φ can be found in [16]
as follows:

tan 2Φ � −
K2

K1
W, (7)

where Φ represents the rock failure angle.
*e observed dimensions of the parameters are as fol-

lows: A and B are M− 1LT2, and W and Φ are 1. *en, re-
ferring to the M-C criterion and H-B criterion, the
dimensions of both parameters are divided into two types,
namely, ML− 1T− 2 and 1. However, dimension 1 is not an
appropriate parameter to integrate the parameters (A, B,W,
and Φ). Ultimately, we introduced the parameter σw (the
dimension is ML− 1T− 2) as follows:

σ1

σK σ3

σ3 > σKσ3 ≤ σK

Nonlinear

Linear

O

Equation (1) Equation (1)

Figure 1: Variation in the principal stress for the M-W criterion.
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Figure 2: *e microcrack distribution pattern of the potential
failure zone in the wedge model [16].
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σw � −
1
A

. (8)

Substituting equations (5) and (7) and
A � − 2K2B/K1into equation (8) and rearranging the
equation yield

σw � −
σ∗1 + σ∗3 + σt( 􏼁

2 tan 2Φ∗
, (9)

where σ∗1 and σ∗3 are the triaxial test data of a group of rock
samples andΦ∗ is the rock failure angle when the confining
pressure is σ∗3 .

Substituting equations (4), (6), and (9) into equation (1)
gives

τm �

− σw ln

��������������

1 +
2σm + σt

2σw

􏼠 􏼡

2

􏽶
􏽴

−
2σm + σt

2σw

􏼠 􏼡
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
σt

2
, −

σt

2
≤ σm ≤Kσw −

σt

2
,

− cos 2Φ0σm + C, σm >Kσw −
σt

2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

Although the M-W criterion parameters are integrated,
the physical meaning of σw is unclear. Actually, we can
obtain another expression for σw from [16]. *e expression
of B is as follows:

B �
ha 1 − υ2􏼐 􏼑

(Eb)
, (11)

where h is the microcracks density, a is the major semiaxis of
the ellipse microcrack, b is the minor semiaxis of the ellipse
microcrack, and E and υ are the elasticity modulus and
Poisson’s ratio, respectively.

Substituting equation (11) and A � − 2K2B/K1into
equation (8) and rearranging the equation yield

σw � N
E

1 − υ2
, (12)

where N � b/(2Kha).
Substituting G � E/2(1 + υ) into equation (12) and

rearranging the equation yield

σw � N
4G

2

4G − E
, (13)

where G is the shear modulus.
As for equation (13), we suggest that σw is related to the

elasticity modulus, shear modulus, and parameter N, which
contain the density and the eccentricity of an elliptical
microcrack. It follows that the parameter may be defined as
the crack modulus, which is a measure of the rock resistance
to cracking. In addition, according to the boundary con-
ditions of equation (10), the parameter K is a constant and
the value of uniaxial tensile strength σt is generally not larger.
*erefore, the parameter σw determines the magnitude of
critical confining pressure, that is, the difficulty of the rock
entering the critical state.

3. Test Data and Parameter Calculations

3.1. Triaxial Compression Test Data of Brittle Rock. *e tri-
axial compression test data of brittle rock are derived from
the published literature. Table 1 presents the test data of
Dunham dolomite [27], Mizuho trachyte [8], Jinping
sandstone [28], Cedar tonalite [29], Carrara marble [30], and
Westerly granite [29], which are digitized from [10]. *e
values of the confining pressure σ3 in Table 1 are below the
critical confining pressure σk. Table 2 presents the strengths
of Yamaguchi marble [27], Indiana limestone [31], and
Solnhofen limestone [27], which are compressed under
various confining pressures and the condition σ3> σk. *e
calculation of σk is stated in detail in the next section.

3.2. Parameter Calculation. Given that the comparative
analyses between the M-W criterion and other criteria are
undisposed, we take the M-C criterion, H-B criterion, and
Exp. criterion as the comparison to discuss the applicability
of M-W criterion.

*e expression of M-C criterion is as follows:

σ1 �
1 + sinϕ
1 − sinϕ

σ3 +
2c · cos ϕ
1 − sinϕ

, (14)

where φ is the angle of internal friction of the material and c
is the cohesion of the material.

*e expression of generalized H-B criterion, introduced
by Hoek [32], is expressed as

σ1 � σ3 + σc m
σ3
σc

+ s􏼠 􏼡

ai

, (15)

wherem, s, and ai are the rockmassmaterial constants, given
by
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m � mi exp
(GSI − 100)

(28 − 14D)
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s � exp
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1
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e
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− e
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where GSI is the geological strength index. D is a factor
which depends upon the degree of disturbance to which the
rock mass has been subjected to blast damage and stress
relaxation. For the intact rock, the material constants are
denoted by s� 1, ai � 0.5, and m. *e expression of H-B
criterion for intact rock is shown in equation (2).

*e H-B criterion is widely used in practical engineering.
Many researchers have made an improvement on the
Hoek–Brown criterion. *e latest major revision of the GSI

and its use in equations (16)–(18) was made by Hoek et al.
[33]. Hoek and Diederichs [34] used the database of rock
mass deformation modulus measurements and proposed
that the rock mass deformation modulus can be represented
as

Erm � Ei 0.02 +
1 − D/2

1 + exp[(60 + 15D − GSI)/11]
􏼨 􏼩, (19)

where Ei is the intact rock deformation modulus.
Hoek and Brown [35] summarized the research results of

most scholars on the H-B criterion and incorporated the
rock mass deformation modulus into the criterion and GSI
system, which further demonstrated practical applications of
the criterion and the GSI system. However, the parameters
of criteria in this work are obtained by using the least square
method to fit the criteria and triaxial compression test data.
*erefore, the applicability of H-B criterion under the

Table 1: Triaxial compression test data (MPa): all confining pressures σ3 below the critical confining pressure σk.

Dunham dolomite
(σk � 435.10MPa)

Mizuho trachyte
(σk � 198.83MPa)

Jinping sandstone
(σk � 154.22MPa)

σ3 σ1 σ3 σ1 σ3 σ1
0.0 257.0 0.0 100.0 0.0 61.6
25.0 400.0 15.0 193.0 5.0 109.5
45.0 488.0 30.0 253.0 10.0 138.6
65.0 568.0 45.0 300.0 20.0 174.6
85.0 624.0 60.0 339.0 30.0 209.0
105.0 679.0 75.0 365.0 40.0 240.5
125.0 724.0 100.0 419.0 50.0 263.0

60.0 288.5
70.0 305.4

Cedar tonalite (σk � 89.96MPa) Carrara marble
(σk � 217.05MPa)

Westerly granite
(σk � 851.21MPa)

σ3 σ1 σ3 σ1 σ3 σ1
0.0 13.1 0.0 137.0 0.0 201.0
5.0 64.4 25.0 234.0 2.0 231.0
10.0 88.9 50.0 314.0 20.0 430.0
20.0 112.6 68.4 358.0 38.0 612.0
30.0 148.9 85.5 404.0 60.0 747.0
65.0 228.4 161.8 558.0 77.0 889.0
75.0 248.7 100.0 1012.0

Table 2: Triaxial compression test data (MPa): part of confining pressure σ3 above the critical confining pressure σk.

Yamaguchi marble
(σk � 116.44MPa)

Indiana limestone
(σk � 40.22MPa)

Solnhofen limestone
(σk � 146.86MPa)

σ3 σ1 σ3 σ1 σ3 σ1
0.0 81.0 0.0 44.0 0.00 293.0
6.0 113.0 6.5 66.0 6.00 335.0
12.5 130.0 13.7 85.0 15.00 360.0
25.0 175.0 20.3 99.0 24.00 381.0
40.0 210.0 27.9 109.0 46.00 426.0
55.0 246.0 34.4 119.0 72.00 467.0
70.0 272.0 41.2 128.2 111.00 518.0
85.0 295.0 48.4 135.1 195.00 595.0
100.0 324.0 55.4 141.9 304.00 709.0
150.0 397.0 62.3 149.1
200.0 454.0 68.4 156.5
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condition of intact rock is discussed to obtain the parameters
of H-B criterion more easily.

*e expression of Exp. criterion is as follows [12]:

σ1 − σ3 � Q∞ − Q∞ − Q0( 􏼁exp −
K0 − 1( 􏼁σ3
Q∞ − Q0

􏼠 􏼡, (20)

where Q0 is the uniaxial compressive strength, Q∞ is the
limitation of stress deviator when confining pressure ap-
proaches infinity, and K0 is the ratio of strength increasing
with confining pressure at confining pressure of zero.

*e parameter values of the four yield failure criteria are
shown in Table 3. *e parameters of M-C criterion, H-B
criterion, and Exp. criterion are determined by using the
least square method to fit the criteria and triaxial com-
pression test data, and the determination of σt and σw is
similar to these criteria. Here, only the values ofΦ0 and C are
not obtained. Recall that, in the interpretation of the pa-
rameters in equation (1), Φ0 and C are closely related to the
critical state where the mean principal stress is σmk and the
maximum shear stress is τmk. *en, the expression of σmk is
as follows:

σmk � Kσw −
σt

2
. (21)

Substituting the value of σmk into equation (1), the value
of τmk can be found. Naturally, rearranging equation (1)
gives

C � τmk + cos 2Φ0σmk. (22)

*e parameter Φ0 is the rock failure angle at the critical
state, which is a constant that combines equation (6) with
equation (7). Eventually, taking the values of σmk, τmk, and
Φ0 into equation (22), the value of C can be obtained.

Referring to the calculation formula of σk (as shown in
equation (23)), we can easily solve σk on the premise that σmk
and τmk are known.

σk � σmk − τmk. (23)

4. Yield Surface

Assuming that the rock mass is isotropic, the size of three
principal stresses is not unique; then the stress state at any
point within the rock mass can be described by the
movement surface of the stress point in the principal stress
space with axes having the dimensions of the stress (σ1, σ2,
and σ3). *erefore, the plastic response can be confined to
the yield surface, which is the movement surface of the yield
stress point. Meanwhile, the yield surface is symmetric to the
positive and negative directions of the principal stress axes

due to the isotropic mass, which determine the symmetry of
the stress offset tensor. Naturally, the space diagonal (as
shown in Figure 3) that sets equal angles (θ) with the three
principal stress axes is defined in the principal stress space
[36], and cos θ � 1/

�
3

√
. Whenever any stress point is on the

space diagonal, the values of all three principal stresses are
equal.

*e yield function has always been investigated by the yield
surface plotted in the principal stress space. In fact, the deviatoric
plane is the foundation of the yield surface.*e deviatoric plane
is perpendicular to the space diagonal, and the π-plane is the
deviatoric plane through the origin. We define three orthogonal
unit vectors denoted by nD, nE, and nF, where nD (as shown in
Figure 3) is the unit vector coinciding with the space diagonal
and nE and nF are the unit vectors on the deviatoric plane (as
shown in Figure 4). Suppose that e1, e2, and e3 are the unit basis
vectors of the three principal stress axes (σ1, σ2, and σ3), re-
spectively. With the help of the vector cross product, we know
that [36]

nD �
1
�
3

√ (1, 1, 1)
T
, (24)

nE � e1 × nD �
1
�
2

√ (0, − 1, 1)
T
, (25)

nF � nD × nE �
1
�
6

√ (2, − 1, − 1)
T
. (26)

Recall that the sizes of the principal stresses are not
unique, which indicate that the yield surface is symmetric
with respect to the line AD, BE, and CF. *ese symmetries
divide the deviatoric plane into six segments possessing
similar properties (I, II, III, IV, V, and VI as shown in
Figure 4). It is hypothesized that σD, σE, and σF are the
stresses in the direction of nD, nE, and nF, respectively. *en,
the coordinate transformation of the deviatoric plane and
principal stress space is as follows [36]:

σD �
1
�
3

√ σ1 + σ2 + σ3( 􏼁

σE �
1
�
2

√ − σ2 + σ3( 􏼁

σF �
1
�
6

√ 2σ1 − σ2 − σ3( 􏼁

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (27)

where σD, σE, and σF are proposed to facilitate the study of
yield surfaces. σD is the stress on the space diagonal, which is
proportional to the mean stress p. σE and σF are the stresses
on the deviatoric plane, which are related to the deviatoric
stress q [36]. p and q can be expressed as
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Table 3: Parameter values of the three yield failure criteria.

Rock types
M-W criterion H-B criterion M-C criterion Exp. criterion

σt (MPa) σw (MPa) Φ0 (°) C (MPa) m σc (MPa) φ (°) c (MPa) Q∞ (MPa) Q0 (MPa) K0

Dunham dolomite 7.05 192.77 51.26 242.16 8.22 286.58 38.61 66.72 683.85 257.00 6.51
Mizuho trachyte 2.09 87.60 51.26 109.37 6.63 135.42 33.39 34.75 332.19 100.00 6.79
Jinping sandstone 0.24 67.34 51.26 83.24 8.24 89.00 32.26 26.13 243.83 61.60 7.91
Cedar tonalite 0.18 39.30 51.26 48.60 10.47 37.20 28.55 13.78 176.60 13.10 7.51
Carrara marble 0.92 95.03 51.26 117.82 5.53 153.79 25.81 52.86 467.44 137.00 4.11
Westerly granite 0.64 371.40 51.26 458.68 48.67 163.67 51.49 42.14 1286.72 201.00 12.46
Yamaguchi marble 2.64 51.92 51.26 65.67 4.40 97.65 29.36 26.81 236.52 81.00 4.46
Indiana limestone 4.18 19.36 51.26 26.44 2.97 50.24 21.16 17.31 89.43 44.00 4.02
Solnhofen limestone 54.23 87.67 51.26 141.17 2.77 315.86 22.55 105.48 453.90 293.00 3.29

Deviatoric plane

Space
diagonal

σ2

σ1

σ3

co
sθ 

= 1/
√

— 3

O1

O2

θ

θ

θ

η0

ηE

ηF

Figure 3: *e space diagonal and deviatoric plane in the principal stress space.
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Figure 4: Orthogonal unit vectors nE and nF on the deviatoric plane: looking down the space diagonal.
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p �
σ1 + σ2 + σ3( 􏼁

3
, (28)

�������

σ2E + σ2F
􏽱

�

������������������������������
2
3

σ21 + σ22 + σ23 − σ1σ2 − σ2σ3 − σ3σ1􏼐 􏼑

􏽲

�

�
2
3

􏽲

q �

����������
2
3

I
2
1 − 3I2􏼐 􏼑

􏽲

, (29)

where I1 and I2 are, respectively, the first and second
principal stress invariants.

4.1. M-W Criterion. To create the form of the yield surface
on the deviatoric plane, we invert equation (27):

σ1 �
1
�
3

√ σD +

�
2
3

􏽲

σF

σ2 �
1
�
3

√ σD −
1
�
2

√ σE −
1
�
6

√ σF

σ3 �
1
�
3

√ σD +
1
�
2

√ σE −
1
�
6

√ σF

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (30)

It is convenient for the M-W criterion to label the
piecewise function. We mark the yield surface of equation
(10) as M-W-1and equation (10) as M-W-2.

For M-W-1, substituting equation (30) into equation
(10) gives the following.

For the stress area I (σ1 ≥ σ2 ≥ σ3) of Figure 4,

�
6

√
σF −

�
2

√
σE + 4σw ln

����������

1 +
S1

2σw

􏼠 􏼡

2

􏽶
􏽴

−
S1

2σw

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 2σt,

(31)

where S1 � σt + (2/
�
3

√
)σD + (1/

�
2

√
)σE + (1/

�
6

√
)σF.

For the stress area VI (σ1 ≥ σ3 ≥ σ2) of Figure 4,

�
6

√
σF +

�
2

√
σE + 4σw ln

����������

1 +
S2

2σw

􏼠 􏼡

2

􏽶
􏽴

−
S2

2σw

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 2σt,

(32)

where S2 � σt + (2/
�
3

√
)σD + (1/

�
2

√
)σE + (1/

�
6

√
)σF.

For the stress area II (σ2 ≥ σ1 ≥ σ3) of Figure 4,

−
�
2

√
σE + 2σw ln

����������

1 +
S3

2σw

􏼠 􏼡

2

􏽶
􏽴

−
S3

2σw

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � σt, (33)

where S3 � σt + (2/
�
3

√
)σD − (2/

�
6

√
)σF.

Since nD is perpendicular to the deviatoric plane and σD
is constant in the deviatoric plane. *e expression of σE and
σF is shown in equations (31)–(33), which represent the
intersection of the yield surface with the stress areas I, IV,
and II in Figure 4. To plot the yield surface, we take Sol-
nhofen limestone as an example, and the parameters of the
M-W yield criterion are shown in Table 3. Equations (31)

and (32) are substituted to obtain the coordinate value of A
(as shown in Figure 4), which is the crossing point of the
yield surface between stress area I and stress area VI.
Naturally, the coordinate value of B (as shown in Figure 4)
can be obtained, and then the value range of σE in stress area
I can be known. Using Equation (31) and the value range of
σE, the yield surface of stress area I can be obtained.
*erefore, referring to the yield surface of stress area I, we
can graph the M-W-1 yield surface of the other stress areas
(II, III, IV, V, and VI). When σD � 0, the yield surface is
shown in Figure 5(a).

For M-W-2, substituting equation (30) into equation
(10) gives the following.

For the stress area I (σ1 ≥ σ2 ≥ σ3) of Figure 4,
�
6

√
σF 3 + cos 2Φ0􏼐 􏼑 − 3

�
2

√
σE 1 − cos 2Φ0􏼐 􏼑

� 12C − 4
�
3

√
σD cos 2Φ0.

(34)

*e graphing steps of the M-W-2 yield surface are the
same as those of M-W-1. Recall that the M-W yield criterion
is a piecewise expression and the yield surface on the three-
dimensional principal stress space exists as an interface
because of σk. When σm � (Kσw − σt)/2, we mark the value
of the interface (as shown in Figure 6) that intersects with the
space diagonal is σDmid. When σm � − σt/2, the value of σD
approaches the minimum and is exhibited as σDmin.
Substituting these boundary conditions into Equation (27),
we can obtain the value of σDmin and σDmid, as shown in
Table 4.

As shown in Figure 5(b), when σDmin ≤ σD ≤ σDmid, the
yield surfaces of M-W-1 that are black polygons varied
nonlinearly as a function of σD. When σD > σDmid, the yield
surfaces of M-W-2 are red irregular hexagons varied lin-
early as a function of σD. When σD � σDmid, the green
irregular hexagon is the interface yield surfaces of M-W-1
and M-W-2. *is variation trend is consistent with the
change in the principal stress in the principal stress space
(as shown in Figure 6).

4.2. M-C, H-B, and Exp. Criterion. For stress area I
(σ1 ≥ σ2 ≥ σ3) of Figure 4, substituting equation (30) into
equations (14), (2), and (20) gives the following:

(1) M-C criterion:

−
�
3

√
σE(1 + sin ϕ) + σF(3 − sin ϕ) � 2

�
6

√
c cosϕ + 2

�
2

√
σD sinϕ.

(35)
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Figure 5: *e yield surface of the M-W yield criterion on the deviatoric plane. (a) π plane (σD � 0). (b) Sparse yield surface.
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Figure 6: *e yield surface of the M-W yield criterion in the principal stress space.

Table 4: Critical value of the space diagonal.

Rock types
M-W criterion H-B criterion M-C criterion Exp. criterion

σDmin(MPa) σDmid(MPa) σDmin(MPa) σDmin(MPa) σDmin(MPa)
Dunham dolomite − 12.21 1184.39 − 60.39 − 144.71 − 63.24
Mizuho trachyte − 3.62 569.16 − 35.38 − 91.32 − 24.88
Jinping sandstone − 0.42 439.10 − 18.71 − 71.70 − 13.30
Cedar tonalite − 0.31 256.22 − 6.15 − 43.86 − 3.35
Carrara marble − 1.59 618.99 − 48.17 − 189.31 − 63.83
Westerly granite − 1.11 2422.56 − 5.82 − 58.08 − 27.87
Yamaguchi marble − 4.57 335.72 − 38.44 − 82.55 − 32.64
Indiana limestone − 7.24 121.49 − 29.30 − 77.46 − 17.65
Solnhofen limestone − 93.93 509.41 − 197.50 − 439.98 − 126.21
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(2) H-B criterion:

�
6

√
σF −

�
2

√
σE � 2

�����������������������

mσc

σD�
3

√ +
σE�
2

√ −
σF�
6

√􏼠 􏼡 + σ2c

􏽳

. (36)

(3) Exp. criterion:

�
6

√
σF −

�
2

√
σE � 2Q∞ − 2 Q∞ − Q0( 􏼁exp −

K0 − 1( 􏼁

Q∞ − Q0

σD�
3

√ +
σE�
2

√ −
σF�
6

√􏼠 􏼡􏼢 􏼣. (37)

*e graphing steps on the yield surface of the M-C, H-B,
and Exp. are the same as those of M-W-1. *e parameter
σDmin of the three criteria (as shown in Table 4) approaches
the minimum when σE and σF are equal to zero in equations
(35)–(37).*e yield surfaces of M-C criterion, H-B criterion,
and Exp. criterion are shown in Figures 7–9, respectively.
*e results show that the intersection of the M-C surface
with a deviatoric plane is irregularly hexagonal, and H-B
surface with a deviatoric plane is a nonlinear gradient from
triangular towards irregular hexagonal surfaces. *e inter-
section of the Exp. surface with a deviatoric plane is similar
to H-B. In the principal stress space, the M-C yield surface
varies linearly as a function of σD, and the H-B and Exp. yield
surfaces vary nonlinearly as a function of σD. In addition, the
yield curve of H-B on the deviatoric plane is a curve of slight
curvature, almost equivalent to a straight line [37]. Although
the slight curvature is not obvious in Figure 8(a), the
nonlinearity of the H-B criterion is obvious along the axes of
Oσ1, Oσ2, and Oσ3. Similarly, the Exp. yield curve on the
deviatoric plane may be a curve of slight curvature because
of the nonlinearity of the Exp. criterion. It is worth noting
that all four failure criteria are only used for conventional
triaxial compression, and deviatoric plane shape in other
stress states will be never used.

5. Comparison

Taking Solnhofen limestone as an example, four criteria
yield surfaces in the principal stress space are shown in
Figures 6, 7(b), 8(b), and 9(b), respectively. Considering that
the nonlinearity of Exp. criterion is similar to H-B criterion,
we mainly focus on M-C criterion, H-B criterion, and M-W
criterion in the discussion of slope characteristics of yield
surface. When σD � 0MPa, 200MPa, and 600MPa, three
criteria yield surfaces on the deviatoric plane are shown in
Figure 10. All vertices occur on the lines of symmetry where
two of the principal stresses are equal. *e uppermost vertex
corresponds to the condition where σ1> σ2 � σ3, which
represents the conventional triaxial compression tests.
Figure 10 shows that with the increase of σD, the vertices of

the three yield surfaces undergo three stages of separation,
coincidence, and separation again.

To make that difference more intuitive and less com-
plicated, we set σE to zero and then only consider the yield
surfaces with the σD-σF plane as shown in Figure 11, which is
a slice through the three-dimensional yield surface shown in
Figures 6, 7(b), and 8(b). When σF> 0, the upper yield
surfaces correspond to conventional triaxial compression
(σ1> σ2 � σ3), which also represents the uppermost vertex as
shown in Figure 10. When σF< 0, the lower yield surfaces
correspond to conventional triaxial tensile stress
(σ1< σ2 � σ3), which represents the lowermost vertex as
shown in Figure 10. Figure 11 shows that the yield surfaces
corresponding to the three criteria have a vertex consistent
region with increasing σF; however, except for the vertex
consistent region, the yield state of rock predicted by the
three criteria is quite different.

Substituting σE � 0 into equations (31) and (34)–(37)
gives the following:

(1) M-C yield criterion:

σF(3 − sinϕ) � 2
�
6

√
c cos ϕ + 2

�
2

√
σD sinϕ. (38)

(2) H-B yield criterion:

�
6

√
σF � 2

������������������

mσc

σD�
3

√ −
σF�
6

√􏼠 􏼡 + σ2c

􏽳

. (39)

(3) Exp. yield criterion:

�
6

√
σF � 2Q∞ − 2 Q∞ − Q0( 􏼁exp −

K0 − 1( 􏼁

Q∞ − Q0

σD�
3

√ −
σF�
6

√􏼠 􏼡􏼢 􏼣.

(40)
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(4) M-W yield criterion:

�
6

√
σF + 4σw ln

����������������������������

1 +
σt +(2/

�
3

√
)σD +(1/

�
6

√
)σF

2σw

􏼠 􏼡

2

􏽶
􏽴

−
σt +(2/

�
3

√
)σD +(1/

�
6

√
)σF

2σw

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 2σt, (41)

�
6

√
σF 3 − cos 2Φ0􏼐 􏼑 � 12C − 4

�
3

√
σD cos 2Φ0. (42)

*at difference depends on the extent of the negative
values for σD and the magnitude of the slopes of the yield
surfaces. As shown in Figure 11, when σF � 0, the cohesion

and the internal friction angle control the value at the
starting point for the M-C criterion; the uniaxial com-
pression strength and the experience parameter control the
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Figure 7: M-C criterion yield surface. (a) Yield surface on the deviatoric plane. (b) Yield surface on the principal stress space.
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Figure 8: H-B criterion yield surface. (a) Yield surface on the deviatoric plane. (b) Yield surface on the principal stress space.
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value for H-B criterion; and only the uniaxial tensile strength
controls the value for the M-W criterion. Similarly, the
parameters Q0, Q∞, and K0 control the value for Exp. cri-
terion according to equation (40). In addition, we can clearly
realize the characteristic slopes of the yield surfaces from
equations (38)–(42). *e slope of the M-C criterion surface
is linear. *e slopes of the H-B and Exp. criteria surfaces are
nonlinear. However, the slope of the M-W yield surface is
nonlinear, and when σD> σDmid, the slope becomes linear.

Although many factors determine that the four yield
surfaces are different, the vertex consistent region may
appear due to the increasing value of σD. In fact, we exploit

the upper yield surfaces on the σD-σF plane to fit the triaxial
compression test data from Tables 1 and 2, and the fitting
results shown in Figures 12 and 13 suggest the existence of
the vertex consistent region. Figure 12 shows the fitting
results when the confining pressure is below the critical state,
and Figure 13 shows the fitting results when the confining
pressure is above the critical state. *e results show that four
yield surfaces have a vertex consistent region, and within this
region, the yield state of rock can be better predicted.
However, outside this region, the predicted results of the
four yield criteria are different. *erefore, we introduce the
relative error Er to estimate the dissimilarity degree.
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Figure 10: *e position relationship of three criteria yield surfaces when (a) σD � 0MPa. (b) σD � 200MPa. (c) σD � 600MPa.
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Er �
􏽐

n
i�1 σcalcF − σtestF􏼐 􏼑/σtestF

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

n
× 100%, (43)

where Er is the relative error between the test and calculate,
σtestF is the deviatoric stress test data, σcalcF represents the
calculated data, and n is the number of triaxial test groups for
each rock.

When σ3 ≤ σk, the relative errors of the fitting results in
Figures 12 and 13 are shown in Figure 14. In terms of the
relative error, the M-C criterion is higher than the others and
the M-W criterion is generally lower than the H-B criterion
(except the Dunham dolomite). In addition, the relative error
values of M-W criterion and Exp. criterion are lower than the
M-C criterion and H-B criterion. It is suggested that theM-W
criterion has certain applicability in predicting the rock yield
state under a confining pressure below the critical state.

6. Discussion

*eM-W criterion includes linear and nonlinear sections. In
the absence of the derivation process of the yield criterion,
the reader can refer to [16]. *is study attempted to in-
vestigate whether there are differences in predicting the rock
yield state for the four yield criteria (M-C, H-B, Exp., and
M-W criteria). However, as shown in Figure 13, when
σD> σDmid, the M-C criterion and H-B criterion cannot
predict the accuracy of the rock yield state, the Exp. criterion
can better predict the Indiana limestone plastic state, and the
M-W criterion can better predict the Yamaguchi marble
plastic state. In addition, none of them can effectively predict
the yield state for Solnhofen limestone when the confining
pressure is above the critical state. *e possible reason may
be related to the ductility of the rock.
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Figure 12:*e yield surfaces on the σD–σF plane: the confining pressure below the critical state. (a) Dunham dolomite. (b) Mizuho trachyte.
(c) Jinping sandstone. (d) Cedar tonalite. (e) Carrara marble. (f ) Westerly granite.
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*e rock strength increases with the confining pressure.
*e strength growth rate of rock is generally large under the
condition of low confining pressure, but with an increase in
the confining pressure, the strength growth rate will grad-
ually decrease [22]. Mogi [38] suggested that the fracture
behavior of rock changes from brittle to ductile when the
confining pressure continues to increase, where the critical
confining pressure is assumed to be σcr. Hoek [31] proposed
that the Indiana limestone transition from the brittleness to
ductility stage when σcr is equal to σc. Singh et al. [9] analyzed
201 groups of rock triaxial test results to show that the
minimum consistent variance was achieved when σcr was
approximately equal to σc. However, some scholars put
forward a different view to the critical confining pressure. Xu
[39] proposed that σcr is approximately equal to 0.85σc∼σc
for marble, and Yang [40] suggested that σcr is equal to
0.47σc for marble with medium and coarse grains. In ad-
dition, Barton [41] proposed that the critical state is related
to the principal stress, namely, σ1 � 3σ3.

*e different opinions indicate that the critical confining
pressure depends on the type of rock, and the value of σcr
may not necessarily be related to σc. As shown in Figure 13,
the slope of Exp. yield curve on the σD–σF plane becomes
gently when σD> σDmid, which indicates the critical state
proposed in this work is reasonable. It is noteworthy from
Figure 13(c) that the critical confining pressure σk proposed
by the M-W yield criterion seems to be related to the
transition from brittleness to ductility. Assuming σcr � σk,
the yield surfaces of the M-W yield criterion can be shown in
Figure 15 when σD> σDmid (namely, σ3> σk), which is only a
schematic diagram due to the complex characteristics of
rocks in the ductile state. If the ductile characteristics of
Solnhofen limestone shown in Figure 15 can be confirmed,
we can explain the inaccuracy of Figure 13(c).

Although the M-W yield criterion cannot effectively
predict the yield state for Indiana limestone and Solnhofen
limestone when σ3> σk, the parameter σk can be regarded as
the critical confining pressure of the rock during the
transition from brittleness into ductility.*e indicator of the
critical confining pressure of more rocks and the expression
of criterion on the condition of σ3> σk will be studied in
future work.

7. Conclusions

*is study introduced a piecewise rock yield criterion that is
a theoretical formula derivation based on microcosmic
experiments. Although the actual failure process of the rock
may be more complicated than the wedge model, the model
is reasonable to a certain extent. When the vertical and
horizontal microcracks in the shear potential failure zone of
the wedge model are compacted, the failure behavior of the
rock enters a critical state. *e model accounts for the
nonlinear variation in the principal stress when the con-
fining pressure is below the critical state and linear variation
in the principal stress when the confining pressure is above
the critical state. All of the defining parameters are related to
rock damage and can be obtained by a rock axial loading test.

Alternatively, we find that the yield surfaces of different
criteria can be obtained through the coordinate transfor-
mation of the deviatoric plane and the principal stress
space. *en, the rock yield state of the three-dimensional
space can be transformed into a two-dimensional plane.
Increasing the density of the yield surfaces on the deviatoric
plane (namely, the σE-σF plane), the M-W yield surface
behaves in a nonlinear and linear fashion because of the
critical state. Furthermore, we show that different criteria
yield surfaces have a vertex consistent region by slicing the
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Figure 15: *e characteristics of the brittleness and ductility for Solnhofen limestone.

16 Advances in Civil Engineering



three-dimensional yield surface along the σD-σF direction.
On the σD-σF plane, the fitting results indicate that the
M-W criterion and the Exp. criterion can predict the rock
yield state more accurately than the M-C and H-B criteria.
*is finding suggests that the M-W criterion has certain
applicability in predicting the rock yield state.
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