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*e present study proposes a rigorous expression of a yield function for sand based on the linear elastic threshold strain concept
and empirical expression for the maximum shear modulus. *e new yield function was calibrated for Toyoura sand. *e
calibration results show that the proposed yield surfaces are nonlinear curves that depend on the void ratio of sand in the p′-q
plane, whereas the linear lines have been adopted in the bounding surface modeling of sand. *is study also found that elliptic
yield surfaces are the best fitted with the proposed yield surface and they can be used as alternatives to the proposed yield surface
under the undrained shearing where the void ratio (or density) of sand is fixed.

1. Introduction

Bounding surface models [1–7] have successfully described
mechanical responses of sand including highly nonlinear
stress-strain relationship [8–11], entrance to the critical state
upon prolonged shearing [10–13], and dilatancy [10, 14–18],
which is plastic volumetric deformation caused by plastic
shear deformation. Figure 1 shows the bounding, critical-
state, and yield surfaces that have been commonly applied in
the bounding surface models [1–7] in the p-q′ (where p′ is
mean effective stress (�σ′kk /3), q is von Mises stress �((3/2)
sijsij), and σ′ij is the effective stress (�σij − uδij), u is pore-
water pressure, and sij is deviatoric stress (�σij–(σkk/3) δij))
plane where those surfaces are expressed as linear lines of
which slopes are Mb, Mc, and m, respectively, under the
isotropic consolidation conditions. In Figure 1, the critical-
state surface is the final destination of the stress upon
shearing; the bounding surface corresponds to the peaks
which depend on the density (or void ratio) of sand and
confining pressure acting on sand; the yield surface is a
region where sand shows elastic responses.

To calibrate the critical state surface, the bounding
surface models [1–7] relies on the final stress state (e.g., final
values of p′ and q) of sand upon shearing after full stabi-
lization of stress was confirmed; then, they calculated the

critical state stress ratio Mc (�(q/p′)c (where subscript c
denotes the critical state)) using the stress at the critical state;
thus, this calibration step is quite straightforward. For the
calibration of the bounding surface (which corresponds to
the peak), the pairs (e, p′) of the void ratio andmean effective
stress at the peaks are used to calculate the values of the state
parameter ψ [19] (which is defined as a vertical distance to
the critical state line from the current (e, p′) state in the e-p′
space) for numerous shearing tests; after this step, the slope
Mb of the bounding surface can be expressed as a function of
the state parameter ψ; thus, the calibration of the bounding
surface relies on the quantitative manner. For the yield
surface, the previous research studies on the bounding
surface modeling for sand [1–7] have tried to reflect the fact
that the elastic region of sand is very small in the stress space.
*e authors in [1, 2, 4] set the m� 0.05 in their models,
whereas Dafalias and Manzari [5] used a yield surface with
m� 0.01; some bounding surface models [3, 6, 7] even relied
on the yield line (so, the slopem of a yield surface is zero) so
that there is no elastic region in their models. For these
bounding surface models, however, the determination of the
yield surface has not followed the calibration step using
experimental data in a quantitative manner. From this
background, the following concern arises: “Is the linear line
enough to express the elastic range of sand in the stress
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space?”. *is study deals with this concern using the elastic
threshold strain concept.

Figure 2 shows the typical degradation curve of the ratio
between the secant shear modulus Gs and maximum shear
modulus G0 under the undrained cyclic shearing. In Fig-
ure 2, if the cyclic shear strain c is less than the linear elastic
threshold strain ctl, the sand shows the linear elastic re-
sponse and there is no plastic dissipation; therefore, the
linear elastic threshold strain represents the elastic range in
the strain field and it should correspond to the yield surface
in the stress space. Although Figure 2 represents the un-
drained response, this degradation is valid also under the
drained conditions until the shear strain is less than the
volumetric (or cyclic) threshold strain, which is much
greater than the linear elastic threshold strain ctl, because
there is no dilatancy before the strain reaches the volumetric
threshold strain. Based on this, this study aims to propose
the new yield surface (or yield function) using the concept of
the elastic threshold strain.

2. Formulation

According to Hardin and Richart [20], the maximum shear
modulus G0 is a function of void ratio e and mean effective
stress p′:

G0 � Cg

eg − e􏼐 􏼑
2

1 + e
p
1−ng

A p′
ng , (1)

where pA is the reference pressure (�100 kPa) and
Cg, eg, and ng are positive material parameters. Equation (1)
implies thatG0 has the greater value as e is the less or p′ is the
greater. If the shear strain is less than the elastic threshold
strain, the sand shows the linear elastic response (Figure 2);
in this case, under the pure shear loading conditions after the
isotropic consolidation, the relationship between shear stress
τ and (engineering) shear strain c is written by

τ � G0c. (2)

When shear strain c exceeds the linear elastic threshold
strain ctl, the plastic deformation starts to happen; thus, the
yield shear stress τy can be written by

τy � G0ctl, (3)

which represents the yield condition of sand under the pure
shear loading conditions after the isotropic consolidation.
Substitution of equation (1) into equation (3) leads

τy � Cgctl
eg − e􏼐 􏼑

2

1 + e
p
1−ng

A p′
ng . (4)

Under the pure shear conditions (or the simple shear
conditions with very small strain) after isotropic consoli-
dation, the relationship between shear stress τ and vonMises
stress q is

q �
�
3

√
τ. (5)

After substitution of equation (5) into equation (4),

qy �
�
3

√
Cgctl

eg − e􏼐 􏼑
2

1 + e
p
1−ng

A
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦p′

ng � m(e)p′
ng , (6)

where qy is the yield von Mises stress; thus, under the pure
shear loading after the isotropic consolidation, the yield
function of sand can be written by

f � q − m(e)p′
ng � 0. (7)

*e bounding surface models [1–7] have considered the
stress anisotropy for the critical-state and bounding surfaces;
however, they have assumed the isotropic yield surface so
far; for the sake of simplicity, this study also relies on the
isotropic yield surface for sand and there is no dependency
of the yield function on loading directions. Considering the
kinematic hardening rule, the yield function in equation (7)
can be extended to
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Figure 1: Bounding, critical-state, and yield surfaces for iso-
tropically consolidated sand samples in the p’-q plane used in the
bounding surface models [1, 2, 5].
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Figure 2: Typical degradation curve of secant shear modulus Gs to
cyclic shear strain c and definition of the linear elastic threshold
strain ctl during undrained cyclic shearing.
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f � q − ap′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − m(e)p′
ng , (8)

where a is the back-stress ratio which represents the middle
line of the yield surface. *e gradients zf/zq and zf/zp′ of the
yield function f to q and p′ are

zf

zq
�

q − ap′( 􏼁
����������������

q − ap′( 􏼁 q − ap′( 􏼁

􏽱 � s, (9)

zf

zp′
� −sa − m(e)ngp′

ng− 1
, (10)

where variable s has 1 and −1 if q> ap′ and q< ap′, re-
spectively. *e gradient zf/zq (equation (9)) of f to q has the
same form with the linear line yield functions [1, 2]; how-
ever, the gradient zf/zp′ (equation (10)) of f to p′ has an
additional term (the second term in equation (10)), which
makes the yield surface gradually parallel to the back-stress
ratio as p′ increases (as ng is generally less than 1).

3. Calibration Yield Surface for Toyoura Sand

*e construction of the yield function (equation (8)) re-
quires the calibration of Cg, eg, ng, and ctl for sand.
According to Bolton and Oztoprak [21], the lower bound,
upper bound, and mean value of the linear elastic threshold
strain ctl are 0, 3×10−5, and 7×10−6 from 750 test data for
various sands; in this study, the average value 7×10−6 of ctl is
used for the yield surface. For Toyoura sand (clean uniform
sand of which maximum and minimum void ratios are
approximately 1.0 and 0.6, respectively), Woo et al. [22] and
Woo and Salgado [2] calibrated Cg, eg, and ng as 850, 2.17,
and 0.45, respectively, using a number of the resonance
column, torsional shear, and bender element test results.
Table 1 listed the calibrated parameters of the proposed yield
surface for Toyoura sand.

Figure 3 plots the calibrated yield surfaces with the back-
stress ratio a� 0 for Toyoura sand when void ratio e� 0.6, 0.7,
0.8, 0.9, and 1.0; it also draws linear yield surfaces with
m� 0.005, 0.01, 0.02, and 0.05. In Figure 3, the proposed yield
surface (developed from the linear elastic threshold strain
concept and based on the experimental data) depends on the
void ratio; the denser sand has the greater yield surface. Al-
though the linear yield surfaces have been commonly used for
the bounding surfacemodels [1, 2, 4, 5], Figure 3 shows that the
proposed yield surfaces are nonlinear curves in the p′-q plane.
Focusing on low confinement situations (p′ < 100 kPa), a yield
surface [1, 2, 4] withm� 0.05 overestimates the elastic region of
Toyoura sand, whereas yield surfaces [3, 5–7] with m< 0.01
generally underestimates the elastic region of Toyoura sand in
the stress space.

4. Comparision with the Elliptic Yield Surface

Taiebat and Dafalias [23] assessed the availability of the
elliptical, lemniscate, distorted lemniscate, and eight-curve
functions as yield functions for soil constitutive modeling;
according to Taiebat and Dafalias [23], the lemniscate,

distorted lemniscate, and eight-curve yield surfaces have a
sharp tip at the origin in the p′-q plane, whereas the elliptical
yield surface has a smooth tip at the origin; as the proposed
yield surface (Figure 3) has a smooth tip at the origin in the
p′-q plane, this study selects the elliptic yield function to
compare it with the proposed yield surface. In Taiebat and
Dafalias [23], one of the elliptic yield functions can be
written by

fe � q − ap′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − m

����������

p′ p0 − p′( 􏼁

􏽱

� 0, (11)

where a is the back-stress ratio and m and p′0 are material
parameters. Figure 4 illustrates the effect of parameters m
and p0 on the elliptic yield surface in the p′-q plane.
Figure 4(a) implies that when p0 is fixed, an increase of m
inflates the elliptic yield surface. In Figure 4(b), the elliptic
yield surface can be defined until p′� p0 and the greater p′0
makes the elliptic yield surface have the greater vertical size
at the same p′ value in the p′-q plane.

*e gradients of the elliptic function fe (equation (11)) to
q and p′ are written by

zfe

zq
� s, (12)

zfe

zp′
� −sa − m

p0 − 2p( 􏼁

2
���������
p p0 − p( 􏼁

􏽱 . (13)

Table 1: Calibrated parameters of the proposed yield surface for
Toyoura sand.

Parameter Value Reference
Cg 850 [2, 22]
eg 2.17 [2, 22]
ng 0.45 [2, 22]
ctl 7×10−6 [21]

e = 0.6

e = 0.7

e = 0.8
e = 0.9
e = 1.0

q = 0.005 p′
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q = 0.05 p′
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Figure 3: *e calibrated yield surfaces (black lines) for Toyoura
sand with various void ratio (0.6 to 1.0) compared with the linear
yield surfaces (grey lines).
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*e gradient of fe to q (equation (12)) is identical to
the gradient of f (the proposed yield function) to q
(equation (9)), whereas the gradient of fe to p′ (equation
(13)) has a different second term from the gradient of f to
p′ (equation (10)). In equation (10), zf/zp′ is −∞ at the
origin (p′� 0) in the p′-q plane; as p′ increases, zf/zp′
increases and it approaches to −sa as p′ goes to infinity;
zfe/zp′ is also −∞ at the origin (p′� 0) in the p′-q plane;
zfe/zp′ approaches to −sa as p′ evolves to (1/2)p0 from the
origin; beyond this point (p′� (1/2)p0), zfe/zp′ starts to
increases; at p′� p0, zfe/zp′ gets ∞; thus, for the elliptic
yield surface to describe the proposed yield surface
properly, the parameter p0 should have great value so that

the elliptic surface within p′ < p0/2 is close to the pro-
posed yield surface.

Figure 5 shows how to determine p0 of the elliptic yield
surface corresponding to the proposed yield surface for
Toyoura sand within the typical range (0 to 3000 kPa) of
p′. In Figure 5, the grey lines are elliptic yield surfaces
when p0 � 5,000, 10,000, and 20,000 with m values that
make the elliptic yield surfaces as close to the proposed
yield surface as possible. Figure 5 shows that the greater p0
enables the elliptic yield surface more closed to the
proposed yield surface with a wide range of p′; this study
sets p0 as 20,000 for Toyoura sand. Figure 6 illustrates the
proposed yield surfaces for Toyoura sand with void ratio
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Figure 4: Dependency of an elliptical yield surface [23] on parameters (a) m and (b) p0 when back-stress ratio a� 0.3.
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Figure 5: Determination of p0 of the elliptic yield surface based on the proposed yield surface for Toyoura sand.
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e � 0.6, 0.8, and 1.0 overlapped the elliptical yield surfaces
with various values of m and fixed value of p0 (�20,000).
According to Figure 6, for Toyoura sand specimens with
e � 0.6, 0.8, and 1.0, the best matched elliptic yield surfaces
havem � 1.03e−3, 0.7e−3, and 4.5e−4, respectively. For the
undrained shearing, where the density (or void ratio) does
not change, these calibrated elliptic yield surfaces (which
have a simpler form than the proposed yield surface) can
be adopted instead after proper determination of p0 and
m.

5. Conclusions

*e present study proposes a rigorous mathematical ex-
pression of a yield function for sand based on the linear
elastic threshold strain concept for the advanced constitutive
modeling of sand. Conceptually, the linear elastic threshold
strain in the strain space should correspond to the yield

surface in the stress space. *e new yield surface is for-
mulated based on the linear elastic threshold strain that
locates the yield points and empirical expression of the
maximum shear modulus G0, which represents the stress-
strain relationship within the elastic range. *e proposed
yield function was calibrated for Toyoura sand. *e cali-
bration results show the following: (1) the size of yield
surface depends on the void ratio of sand; the denser sand
has the greater yield surface and (2) the proposed yield
surfaces are nonlinear curves in the p′-q plane, whereas the
linear lines have been adopted in the bounding surface
modeling of sand.

*is study also compared the elliptic yield surface with
the proposed yield surface. *e elliptic yield surface can
describe the proposed yield surface accurately with adjust-
ment of parameters and it can be used alternatives to the
proposed yield surface under the undrained shearing where
the void ratio (or density) of sand is fixed.
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Figure 6: Determination ofm of the elliptic yield surface (grey dot lines) based on the proposed yield surface (black solid lines) for Toyoura
sand when p0 is fixed as 20,000: (a) void ratio e� 0.6, (b) e� 0.8, and (c) e� 1.0.
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Géotechnique, vol. 36, no. 1, pp. 65–78, 1986.

[19] K. Been, M. G. Jefferies, and J. Hachey, “*e critical state of
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