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When only limited borehole data are available, making optimum use of the existing data is crucial for performing a preliminary
assessment of the investigated site. In this paper, the relationships between the borehole data and the permeability coefficient were
first analyzed.+ese relationships were then used to establish a model for estimating the permeability coefficient of rock mass that
takes into account the influence from the confining pressure on the seepage flow. +e proposed model can reduce the number of
hydraulic tests which are time consuming and very costly and allow the determination of change in the permeability coefficient
throughout the borehole. +e flow model could assist in providing important references for selecting an appropriate permeability
coefficient in hydrogeological simulation and in evaluating the condition of large cracks developed in boreholes. In general, the
seepage flow model developed in this study will contribute to the design practice of a tunnel project constructed in fractured
rock masses.

1. Introduction

+e success of underground water-sealed oil storage projects
depends on two major factors: the stability of the sur-
rounding rock and the condition of the water seal. Among
them, the water seal condition is considerably affected by the
underground seepage field. A commonly used method of
establishing the underground seepage field model during
construction is obtaining the rock permeability coefficient of
a specific area using in situ tests in the borehole [1, 2].

As a rock type of low permeability, natural granite rock
mass comprises discrete blocks of intact rock and discon-
tinuities, such as factures, fissures, and joints [3]. Its per-
meability is mainly controlled by the development state of
discontinuities. +erefore, evaluating the groundwater
seepage characteristics in granite areas is essential for
assessing the development level of fissures within under-
ground rock masses.

During the construction process, and in particular, the
prefeasibility stage when there is only limited borehole data
available, it is often difficult to evaluate the seepage field of

the site with a small amount of data [4]. Attempts to obtain
more borehole data by the hydraulic pressure test will re-
quire a considerable amount of time and cost, and therefore
exploring the relationship between available borehole data
and fracture seepage and then applying it to estimate the
permeability coefficient can effectively reduce the number of
hydraulic pressure tests and greatly save construction costs.

+e research of fracture seepage often starts from a series
of simplified models. +e goal of researchers is to deduce the
general formula from various models. Scholars from various
countries have done a lot of research on fracture seepage.
Many scholars consider the influence of the rough fracture
surface from different aspects and introduce the roughness
influence coefficient into the cubic law to analyze seepage
characteristics of the rough fracture [3, 5–8]. With the rapid
development of numerical simulation technology, the es-
tablishment of a three-dimensional or two-dimensional
model of the fracture surface to describe the surface mor-
phology characteristics of the fracture surface and its ap-
plication in seepage calculation has become a popular
method of studying fracture seepage [9–12]. +e theory of

Hindawi
Advances in Civil Engineering
Volume 2020, Article ID 4219847, 8 pages
https://doi.org/10.1155/2020/4219847

mailto:qingbing@cug.edu.cn
mailto:cernyr@fsv.cvut.cz
https://orcid.org/0000-0002-8844-4647
https://orcid.org/0000-0002-7634-7380
https://orcid.org/0000-0002-5268-4702
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/4219847


the lattice Boltzmann method is usually used to establish a
numerical model to simulate the seepage of cracks in rough
rock mass. +is became one of the effective numerical re-
search tools in solving the seepage problem of cracks in
rough rock mass [13–17].

+e researchmethods mentioned above are generally too
sophisticated for engineers to use in practice. A convenient
method is now put forward in this article, which is
straightforward and accurate enough for engineering ap-
plication. In this study, we established the relationship
between the parameters of the structural plane in the
fractured rock mass and the permeability coefficient of the
fractured rock mass by analyzing several crack indices such
as aperture and inclination angle.

+e studied site is located in a specific region in Yantai,
Shandong, as shown in Figure 1. It is geographically located
in the Shandong Peninsula of China, separated from Dalian
by the sea and connected to Shanghai and Qingdao by land
routes. +e proposed underground water-sealed oil storage
project is located in a hilly area with a tectonically denudated
terrain. +e middle region is covered by convex hills, which
possess deep cut slopes revealing bare rocks at local gullies.
+e surrounding terrain is a hilly alluvial plain with a low
altitude and a gentle slope. +e mound is composed of
coarse-medium grained porphyritic monzogranite and bi-
otite monzogranite.+e bedrocks at the hilltop and the slope
are mostly exposed directly to ambient weather with certain
local regions covered by a thin layer of residual soil.

According to on-site geological mapping and geological
drilling, the regional exposed strata are rocks formed at the
Quaternary period during the Cenozoic era and a large area
of intrusive rocks. +e intrusive rocks identified in the target
site are primarily Luliang, Sinian, and early Yanshanian
intrusive rocks. In addition, some diorite-like porphyry,
lamprophyre, and granite porphyry rocks also invaded the
Luliang and Yanshanian magmatic rocks in the vein shape.

2. Fracture Seepage Model Based on
Borehole Data

2.1. (eoretical Basis of Permeability Coefficient of Fractured
Rock Mass. Poiseuille derived a theoretical formula to de-
scribe the motion of a viscous incompressible fluid in the gap
between smooth parallel plates under homogeneous and
constant velocity conditions; it is expressed as [18]

u �
gb2

12]
 J, (1)

where u is the flow rate (m/s), g is the gravitational ac-
celeration (m/s2), b is the width between smooth parallel
plates (m), ] is the kinematic viscosity coefficient of water
(m2/s), and J is the hydraulic gradient.

Snow conducted a parallel plate fissure seepage test and
suggested the popular cubic law for fractures [19, 20]:

q �
gb3

12v
 J, (2)

where q is the flow per unit length (m2/s).

+e width between two parallel plates can be treated as
the crack width of the ideal fractured rock layer. When the
liquid is in laminar flow, the average flow rate is given by

u �
B2

12
·
c

μ
J, (3)

where B is the aperture of the crack (m), c is the volumetric
weight (N/m3), and μ is the dynamic viscosity of water (Pa·s).

If the crack system is treated as a lot of straight cracks
and all the apertures are considered equal, then the flow
velocity along the line of intersection of the fracture group is
given by

v �
NB2

12
·
c

μ
J, (4)

where v is the total flow velocity of all the cracks (m/s) andN
is the number of the cracks.

+erefore, the permeability coefficient can be calculated
by

K �
NB2

12
 

c

μ
 , (5)

where K is the permeability coefficient (m/s).
Figure 2 shows the schematic of the fracture distribution

in the borehole. As shown in the figure, we can always obtain
the aperture and angle between the crack and the horizontal
direction regardless of the shape of the fracture revealed by
the borehole.

In the smooth parallel-plate model, the fracture system is
treated as multiple equal-width and flat-fracture groups. In
real engineering practices, however, the cracks in the frac-
ture system revealed by drilling usually exhibit different
inclination angles, a variety of aperture, and rough surfaces.
Some of the cracks are even packed with filling materials.
+erefore, several additional factors neglected by the smooth
parallel plate model need to be considered when analyzing
the permeability coefficient in engineering practices. +ese
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Figure 1: Geographic schematic map of the selected site of the
water-sealed storage caverns in the Yantai city of Shandong
province in China.
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factors include the inclination angle, roughness, and aper-
ture of the fracture.

2.2. Parameter Selection at the Structural Plane. By analyzing
the results of the hydraulic pressure test performed in the
borehole and the fracture development characteristics of the
corresponding section, several factors affecting the perme-
ability of the rock mass can be inferred.

+e results of the borehole TV (Figure 3) can be used to
extract basic fracture information, as shown in Figure 4.

According to the picture of the borehole televiewer, the
altitude difference of the crack can be calculated. Given the
known diameter of the drill hole, the inclination angle can be
obtained. On the other hand, the aperture could be observed
from the picture.

2.2.1. Aperture of the Crack. +e crack aperture revealed by
the borehole is not equivalent to the hydraulic aperture of
the seepage flow through the crack. However, these two
parameters can be connected to each other based on Barton’s
empirical equation [21]:

ah �
a2

m

JRC2.5, (6)

where ah is the equivalent hydraulic aperture (m), am is the
mechanic aperture (m), and JRC is the roughness coefficient.

+ough this equation yields an approximation, the ap-
erture of the crack can still be used to reflect the aperture of
the seepage channel to a certain extent, and thus it reflects
the seepage capacity of the channel.

2.2.2. Inclination Angle Index at the Structural Plane.
+e distribution of the inclination angle at the structural
plane can reflect the average direction of the inclination
angle distributed in the study area. +is direction can reflect

the effective seepage path in the target area in the field of
seepage research. +ere should exist a certain relationship
between the distribution index of the inclination angle at the
structural surface and the permeability coefficient itself.

According to the established model, a change in the
inclination angle will affect the length of the seepage path.
+erefore, the permeability coefficient associated with this
path will be reduced by cos θ owing to the variation in the
crack inclination angle. +us, cos θ is proposed as the in-
clination angle index at the structural plane.

2.2.3. Joint Roughness Coefficient (JRC). Barton established
the straight-edge method of JRC measurement (Figure 5) on
the basis of the in situ rock mechanics test, by which JRC is
determined by measuring the surface fluctuation amplitude
of the rock mass structural plane [22].

+e crack development diagram shown in boreholes
should theoretically adhere to the triangular function curve,
as illustrated in the following function:

y � A sin(ωx + t), (7)

where A is the amplitude, ω is the angular velocity, and t is
the initial phase.

After measuring the amplitude from the drill televiewer,
the basic form of the crack curve can be determined using
the period of the curve function which can be calculated.
+en, the curve could be used as the datum line to measure
the fluctuation amplitude. +e amplitude will be put on
Barton’s straight edge figure to obtain the final JRC, as
shown in Figure 6.

3. Model Development

Because the size of the water-sealed cavern is much larger
than that of the crack in the borehole, the following formula
valid for each crack is introduced to simplify the calculation:

K �
1
12

·
c

μ
B
2 cos θ, (8)

where c is the volumetric weight (N/m3), μ is the coefficient
of viscosity (Pa·s), θ is the inclination angle of the crack (°).
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Figure 3: Picture of the borehole televiewer.
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Figure 2: Schematic map of fracture distribution during the
borehole hydraulic pressure test.
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+erefore, by combining this with the empirical equation
proposed by Barton, equation (8) can be converted into

K �
1
12

·
c

μ
a4

m

JRC5 cos θ. (9)

+emechanical aperture and the inclination angle index
used in the equation can be obtained from the drilling video.
+ese parameters allow us to calculate the permeability
coefficient of an arbitrary crack and thus determine the
seepage characteristic of any section in the borehole.

Based on the calculation, the permeability coefficient of
the section in the drilling hole is the sum of the permeability
coefficients of cracks in all directions:

Km � 
n

i�1

1
12

·
a4

mi

JRC5
i

·
c

μ
cos θi, (10)
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Figure 5: Barton’s straight edge method.
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where Km is the permeability coefficient of the section (m/s),
n is the number of cracks, ami is the mechanic aperture (m),
JRCi is the roughness coefficient, c is the volumetric weight
(N/m3), μ is the viscosity (Pa·s), and θi is the inclination
angle of the crack (°).

4. Model Validation

4.1. Calculation of Permeability Coefficient and Comparison
with the Measurement Value. According to the actual
drilling condition, the measured permeability coefficient is
affected by both its own spatial characteristics and the stress
from surrounding rocks. Neglecting other influential con-
ditions, the permeability coefficient derived from the crack
seepage model based on the borehole data needs to be
constrained using the confining pressure which yields a
certain level of attenuation. +erefore, based on the com-
parison of the permeability coefficients obtained from the
crack model calculation and those measured from the water
pressure test in the borehole (as shown in Table 1), we can
estimate the extent to which the permeability coefficient is
attenuated by the confining pressure. After integrating all
data, the comparison charts are obtained, as shown in
Figures 7 and 8.

As shown in Figure 7, the permeability coefficients
calculated from the seepage model based on the borehole
data are generally greater than the measured permeability
coefficient. +is is because the impact from the confining
pressure on the crack aperture becomes greater with in-
creasing confining pressure, which results in a decrease in
the permeability coefficient. As each crack exhibits different
levels of compressive deformation, the degree of change in
the permeability coefficient is also different. However, the
measured permeability coefficient is apparently larger at the
borehole depth of 35.5m and 160.5m. +e fracture data for
these two depth intervals are provided in Table 2, which
indicates that the fracture aperture is essentially small and
hence the measured permeability coefficient should be
relatively low. +erefore, the apparently larger permeability
coefficient measure may arise from two aspects: (1) the

hydraulic pressure test is not completely accurate and (2)
some engineering operation in the borehole, such as flushing
borehole, damages the original crack shape and results in
inaccurate crack aperture and number.

Because the calculated and measured data are from
different lengths of the study section, it is a little inconve-
nient to compare the permeability coefficient of the whole
section of the borehole. A new parameter Kn is defined to
describe the permeability coefficient per unit depth:

Kn �
Km

H
, (11)

where Kn is the permeability coefficient per unit depth (/s),
Km is the permeability coefficient of the section (m/s), and H

is the depth of the section (m).
In Figure 8, the comparison of the permeability coeffi-

cient per unit depth by calculation and measurement clearly
highlights the relevance of the two results.

Table 1: +e results of water pressure tests in the borehole.

Section no.
Depth Altitude

Length of test section (m) Permeability rate (Lu) Coefficient of
permeability (m/d)Start (m) End (m) Start (m) End (m)

1 5.13 15.50 124.10 113.73 10.37 10.08 0.10401
2 15.13 25.50 114.10 103.73 10.37 8.80 0.09490
3 25.13 35.50 104.10 93.73 10.37 8.87 0.10484
4 35.02 48.40 94.21 80.83 13.38 0.75 0.02719
5 48.32 61.70 80.91 67.53 13.38 0.16 0.00302
6 61.32 74.70 67.91 54.53 13.38 0.40 0.00739
7 74.42 87.80 54.81 41.43 13.38 0.15 0.00336
8 86.82 100.20 42.41 29.03 13.38 0.38 0.00671
9 96.82 110.20 32.41 19.03 13.38 0.19 0.00537
10 106.92 120.30 22.31 8.93 13.38 0.28 0.00302
11 117.32 130.70 11.91 −1.47 13.38 0.50 0.01074
12 127.32 140.70 1.91 −11.47 13.38 0.24 0.00705
13 137.32 150.70 −8.09 −21.47 13.38 0.27 0.00906
14 147.12 160.50 −17.89 −31.27 13.38 1.05 0.02820
15 157.12 170.50 −27.89 −41.27 13.38 0.30 0.00403
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Figure 7: Comparison of the permeability coefficient by mea-
surement and calculation.
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4.2. Trend Analysis of the Permeability Coefficient. +e
confining pressure is the most direct and influential factor
affecting seepage flow through cracks. +e relationship
between the confining pressure and the permeability

coefficient has been studied by many domestic and inter-
national researchers. +e relationship between the perme-
ability coefficient per unit depth and confining pressure (or
buried depth) should be built to contribute to the prediction

Table 2: +e fracture data for sections 3 and 14 of the borehole.

Section no.
Depth

Length of test section (m) Inclination angle (°) Inclination (°) Aperture (cm)
Start (m) End (m)

3

25.193 25.203 0.01 24.61 240.37 1.044
25.377 25.495 0.118 57.53 128.49 0.217
25.737 25.89 0.153 63.96 359.45 0.391
25.845 26.06 0.215 70.76 358.89 0.391
25.895 26.086 0.191 68.51 359.45 0.261
26.083 26.266 0.183 67.77 358.89 0.174
26.453 26.564 0.111 56.14 275.82 0.174
27.331 27.544 0.213 70.57 359.45 0.217
28.761 28.954 0.193 68.77 358.89 0.261
29.203 29.488 0.285 75.25 270.83 0.348
33.176 33.24 0.064 40.64 94.15 0.435
33.657 33.72 0.063 40.06 137.35 0.217
33.675 33.739 0.064 40.45 175.57 0.217
33.716 33.804 0.088 49.65 189.42 0.217
33.859 33.902 0.043 29.61 151.2 0.217
34.479 34.547 0.068 42.32 96.37 0.261

14

148.082 148.084 0.002 76.92 202.09 0.217
148.976 148.978 0.002 45.34 163.44 0.173
149.266 149.274 0.008 63.58 193.25 0.781
149.38 149.382 0.002 53.54 149.63 0.173
150 150.002 0.002 57.36 198.77 0.217

150.396 150.4 0.004 50.53 127.55 0.347
150.875 150.879 0.004 52.7 126.44 0.39
150.915 150.917 0.002 49.01 152.39 0.173
150.958 150.963 0.005 43.48 125.34 0.52
151.82 151.823 0.003 55.11 195.46 0.26
153.532 153.534 0.002 60.04 128.65 0.173
159.497 159.501 0.004 56.68 200.43 0.347
159.589 159.594 0.005 61.69 184.42 0.52
160.219 160.225 0.006 27.76 93.31 0.607
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Figure 8: Permeability coefficient per unit depth with buried depth.
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of the permeability coefficient of different sections of a
borehole.

+e first study on this relationship was performed by
Louis [23], who believed that normal stress has a consid-
erable influence on the fracture surface while the influence of
shear stress can be neglected. He tested the coupling rela-
tionship between normal stress and seepage flow and ob-
tained an exponential relationship between the total stress
and the permeability coefficient as a general conclusion.
Later, the author revised this relationship and believed that
“effective stress” should be used instead of total stress. In
other words, there exists an exponential relationship be-
tween the effective stress and the permeability coefficient.
Since then, many researchers have studied normal stress and
seepage, and they have obtained a plethora of results.
Currently, researchers believe that there exists a certain
correlation between the stress and the permeability coeffi-
cient, which can be expressed by exponential, power,
polynomial functions, etc. [24–28].

According to the previous research results, the data are
fitted by power function, as shown in Figure 9.

+e function of the fitting curve could be obtained by the
software Origin, as illustrated in the following:

y � 1.04 × 10− 5
x

− 1.37
, (12)

y � 3.05 × 10− 6
x

− 1.13
, (13)

where function (12) is the fitting curve of the permeability
coefficient per unit depth by calculation and function (13) is
the fitting curve of the permeability coefficient per unit
depth by measurement.

+us, the permeability coefficient per unit depth evi-
dently varies based on the buried depth in an approximate
power function. +e calculation data are larger than the

measurement data in near-surface areas on account of lower
confining pressure, which produces some error when the
buried depth is smaller than 60m. However, it matched
precisely when buried depth was greater than 60m.

+erefore, the aforementioned method can be used to
estimate the permeability coefficient of any section in the
well. Simultaneously, the permeability coefficient of the
borehole can be estimated using the fracture characteristics
in the borehole. If a large deviation of measured data from
the calculated value arises, it is then necessary to conduct
further studies to investigate the faults and caves around the
borehole.

5. Conclusions

A method for estimating the permeability coefficient was
proposed considering the aperture, inclination angle, and
joint roughness coefficient. During the prefeasibility stage or
under the condition with the limited borehole, the method
could help reduce the number of hydraulic pressure tests and
save a large amount of cost. Further work should be done on
more drill holes to establish a theoretical model of generality.

+e conclusions of the study are listed as follows:

(1) Based on the crack aperture, inclination angle, and
JRC in the borehole data, we can estimate the seepage
flow through the cracks in a target section. +e es-
timated value reveals a similar trend to that of the
measured permeability coefficient. +e fitting curve
of the permeability coefficient per unit depth with
buried depth approximates a power function.

(2) During the prefeasibility stage, the permeability co-
efficient of the borehole can be estimated based on the
fracture characteristics in the borehole. +e perme-
ability coefficients of different areas in boreholes can
be estimated by the abovementioned method, which
greatly reduces the number of hydraulic pressure tests
and consequently reduces a lot of costs.

(3) +e method could be used for the judgment of faults
or caves. If there exists a large deviation between the
measured data and the calculated value, it is nec-
essary to further investigate the faults and caves
around the borehole.
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