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Mobile LiDAR is an emerging advanced technology for capturing three-dimensional road information at a large scale effectively
and precisely. Pole-like road facilities are crucial street infrastructures as they provide valuable information for road mapping and
road inventory. �us, the automated localization and classification of road facilities are necessary. �is paper proposes a voxel-
based method to detect and classify pole-like objects in an expressway environment based on the spatially independent and
vertical height continuity analysis. First, the ground points are eliminated, and the nonground points are merged into clusters.
Second, the pole-like objects are extracted using horizontal cross section analysis and minimum vertical height criteria. Finally, a
set of knowledge-based rules, which comprise height features and geometric shape, is constructed to classify the detected road
poles into different types of road facilities. Two test sites of point clouds in an expressway environment, which are located in
Bangkok, �ailand, are used to assess the proposed method. �e proposed method extracts the pole-like road facilities from two
datasets with a detection rate of 95.1% and 93.5% and an overall quality of 89.7% and 98.0% in the classification stage, respectively.
�is shows that the algorithm could be a promising alternative for the localization and classification of pole-like road facilities with
acceptable accuracy.

1. Introduction

Expressway facilities, such as lighting poles, traffic signs,
speed limit posts, overhead signs, emergency telephone
posts, or telecommunication stations, are crucial compo-
nents of the transportation infrastructure and play a vital
role in expressway asset management. Almost all the fa-
cilities mentioned above have, entirely or partially, the shape
of a pole [1]. For instance, expressway lights (all pole-like
objects (PLOs)) provide lighting for vehicles and pedestrians
at nighttime or in dark weather. Similarly, a traffic sign
(partially shaped PLOs) is an essential facility on a road to
guide users, to drive safely, and provides all the necessary
information for their travel. A shortage of lighting poles,
speed limit posts, or the inaccuracy of a traffic sign can lead
to severe traffic casualties [2]. �erefore, collecting and
updating all expressway facility information are essential for

an asset management agency. Traditionally, a visual on-site
survey was manually done by inspectors, to collect all ex-
pressway facility information. Nevertheless, due to the large
scale and complexity of an expressway, such a visual manual
method (e.g., optical images combined with real-time ki-
nematic surveying) had drawbacks. �ese drawbacks are
labor expenses, time consumption, tediousness, insufficient
collected facility data, and slowly updating expressway
assets.

With the development of laser scanning technologies,
there are several emerging advanced methods, such as aerial
laser scanning (ALS), terrestrial laser scanning (TLS), and
mobile laser scanning (MLS), that can be used for large-scale
city mapping in a three-dimensional (3D) format. By precise
capturing and producing highly dense 3D point clouds
(8,000 points/m2) of road facilities along the expressway at
road speeds, MLS is more advantageous, compared with ALS
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or TLS. MLS has been broadly used in the recent decade to
collect data for infrastructure management in an urban
environment [3]. �ere are wide applications of MLS data in
urban road engineering, which include urban power line
extraction [4], tree extraction [5], traffic sign extraction [6],
and 3D geometric road reconstruction [7]. Using point
clouds collected from MLS, all road facilities can be ob-
tained. Each facility object can be extracted individually for
maintenance and asset management. However, manual road
facility extraction is time consuming due to the bulk of point
clouds (e.g., 1.7 billion points per km of road) [8]. �us, it is
essential to propose a method that can detect and classify
PLOs in an automated and effective way by inheriting the
advantages of MLS.

To date, several efforts have been devoted in developing an
automatic algorithm to detect PLOs from point clouds. To
minimize the complicated data and reduce the processing
time, the extraction of the road surface is a crucial preparatory
task before extracting PLOs in many existing methods. Yu
et al. [2] first removed the ground points. �e 3D matching
framework was then used to extract PLOs. Yan et al. [9]
eliminated the ground points, and the PLOs were extracted
using a set of decision rules. However, the clustering method
using DBSCAN is a crucial step, which affected the accuracy
of this method. Yadav et al. [10] also first removed ground
points. After that, voxelization, devoxelization, vertical fitting,
and compactness factor evaluation were performed to identify
the PLOs. A method to extract road light poles was proposed
by Zheng et al. [11]. �e piecewise elevation approach was
built to remove the ground points. �en, the light poles were
detected using a Gaussian mixture model-based method. Yan
et al. [12] first removed the ground points. �e shape and
topology information (minimum pole height and cross sec-
tion size) of the poles were then used to recognize the PLOs.
Shi et al. [13] first removed the ground points and outliers.
Next, the RANdom SAmple Consensus (RANSAC) cylinder
model or the PCA linear feature was used to detect PLOs.
Some other researchers analyzed a local shape feature of the
point cloud to detect PLOs. Yokoyama et al. [14] used PCA
and Laplacian smoothing to classify each point of each
segment into planar, spherical, and linear. However, unsat-
isfactory detection results were obtained due to the low ac-
curacy of segmentation. Cabo et al. [1] developed a voxel-
based method for automatic detection of PLOs. �is method
cannot detect a pole that is close to other objects or partially
hidden behind other objects. Rodŕıguez-Cuenca et al. [15]
applied the Reed and Xiaoli anomaly detection algorithm to
detect the candidate PLOs. Teo and Chiu [16] performed the
coarse-to-fine framework method to extract the PLOs.
However, low point density greatly influenced the resulting
accuracy of this method. Yang et al. [17] generated a mul-
tiscale supervoxel to automatically extract urban objects.
Some additional information of the point cloud is needed,
such as colors and intensities. Kang et al. [18] proposed a
voxel-basedmethod to recognize PLOs. A cylinder model was
used to detect linear voxels belonging to PLOs. �e detection
result was influenced by the accuracy of the initial extraction
of linear objects. Li et al. [19] introduced a framework to
detect the road furniture.�e pole trunks and the attachments

were decomposed into different components, based on their
spatial relations. Li et al. [20] detected the road poles based on
the independent pole features and continuous height in the
vertical direction of the pole part. Machine learning was also
employed to detect PLOs by other researchers. Ishikawa et al.
[21] developed a method to recognize urban objects (in-
cluding PLOs) on a road using the support vector machine
(SVM) method. Due to the complex and tedious computing
feature quantities for SVM, the method may not be a robust
application. Fukano and Masuda [22] applied a supervised
machine learning method to detect the PLOs. Additional
information, such as GPS time and scan line, is needed for this
method. �e combined data scanned from the opposite di-
rection or using a different scanner limited the detection of
PLOs. Yu et al. [23] first constructed the visual phrase dic-
tionary by using feature regions created from supervoxel
segmentation. �en, the hierarchical deep model and bag-of-
visual-phrases were applied to detect the traffic signs.

For PLO classification, Yokoyama et al. [14] used the
shape features (pole height, number of attachments, and
type of attachments) and context features (relative distance
to nearby poles in the vicinity) to classify the PLOs. Nev-
ertheless, the classification result is dependent on the dis-
tribution of the nearby poles. A set of semantic rules,
including pole height and projected horizontal area of the
entire extracted pole, was used by Yan et al. [9] to classify
PLOs into five categories. Yu et al. [23] classified traffic signs
using a machine learning method. A hierarchical classifier
was constructed using a supervised Gaussian–Bernoulli deep
Boltzmann machine. �e catalog of known traffic signs was
used to train the detected traffic signs into different classes. A
machine learning method was also used by Yan et al. [12] to
classify the PLOs. To classify the detected PLOs into four
classes (utility poles, lamp posts, trees, and others), Kang
et al. [18] used a set of semantic rules for each type of class
(i.e., height and dispersion of attachments in 2D space). Shi
et al. [13] classified the PLOs using 3D shape matching. �e
height and root mean square error of the 3D shape were
calculated, and then the template and unclassified PLOs
were compared. However, in the case of missing data, the
height of the poles was shorter and misclassified as other
types.

In general, the existing methods were able to detect and
classify the pole-like road facilities in many complex scenes,
especially poles in the overlapping regions. However, the
roads in an expressway environment had significant height
variations, compared with the flat roads in residential areas
in some current studies. �us, the reviewed studies may not
be suitable [9, 10, 14]. Considering the drawbacks of past
studies, this paper proposes the voxel-based method to
detect PLOs based on spatially independent and vertical
height continuity analysis. A set of semantic rules was
constructed to classify the detected PLOs into different types
of expressway facilities.

2. Materials and Methods

�e method consists of three main steps (Figure 1): (1)
nonground extraction: the ground points were removed
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from the original point cloud, and the nonground points
were extracted and grouped into distinct clusters; (2) pole-
like road object detection: the entire road poles were
extracted from each cluster; and (3) pole-like road object
classification: the detected road poles were classified into
several types of expressway facilities, based on their height
and geometric shape.

2.1. Test Sites. MLS point clouds of two test sites in an
expressway environment were used to assess the efficiency of
the proposed method. Both survey sites were congested
expressways, located in Bangkok,�ailand (Figure 2(a)).�e
GT-4 MLS system, including two laser scanners RIEGL VQ-
450, one Global Positioning System (GPS), one 360° camera,
and an inertial measurement unit (IMU), was used to collect
the point clouds (Figure 2(b)). Site 1 covered about 2.1 km of
a cable stay on the Rama IX bridge with 147.2 million points,
resulting in an average point density of approximately
1,800 pts/m2. Site 2 is a part (5.1 km) of the Bang Na elevated
expressway. It included two ramps where a vehicle can exit
or enter the road, with a total of seven lanes. A total of 441.5
million points were obtained at the test site, with an average
point density of nearly 1,500 pts/m2. To collect all ex-
pressway objects, the speed of the MLS car was limited to
50 km/h, and each direction was scanned by two passes
(inbound and outbound). An overview of two point clouds
of two test sites is shown in Figure 3.

2.2.NongroundExtraction. MLSwas capable of collecting all
objects that were located away from the trajectory within an
extensive measurement range (e.g., up to 800m for a RIEGL
VQ-450 scanner [24]); thus, the original point clouds
captured by MLS were large. Some of these objects, such as
building facades, factories, trees, and bushes, were objects (of
noninterest) that were located away from the roadside.
Moreover, the ground points generally were well represented
in point clouds, while our regions of interest were the PLOs,
which were in the nonground areas. �erefore, it was first
necessary to eliminate the point clouds of regions of non-
interest where the poles were not available, to mitigate the
computation cost of our algorithm. �ree substeps were
introduced as follows: (1) preprocessing; (2) ground re-
moval; (3) Euclidean clustering.

2.2.1. Preprocessing. �e trajectory data were used to remove
regions of noninterest, which were defined as the points far
away from the boundary of the trajectory with a predefined
distance, d. �e boundary line of trajectory data (the side
where the MLS car was driving on a road shoulder, near the
roadside) was first obtained. Next, all point clouds were
projected onto the XY plane. All points with a distance to the
nearest boundary trajectory point of less than d were pre-
served while removing others. Finally, the points that sat-
isfied the above conditions and points located within the
boundary trajectory were maintained and considered as
regions of interest for further processing. �e result of
preprocessing is illustrated in Figure 4(a).

2.2.2. Ground Removal. �e nonground objects (including
PLOs) are connected through ground points; thus,
eliminating the ground points is needed, to group the
remaining points into different clusters. �e ground is
assumed to be a nearly smooth surface in a local region;
thus, the elevation difference between points and their
neighborhoods is small at a certain distance. First, a new
set of 2D points was created by projecting the 3D data
points onto the XY plane. �en, a 2D bounding box was
generated to cover the new 2D points. �e box was defined
by two points A(Xmin, Ymin) and B(Xmin + ∆, Ymin + ∆).
Here, ∆ �max[|Xmax −Xmin|, |Ymax −Ymin|] and Xmax,
Xmin, Ymax, and Ymin were the maximum and minimum of
the X and Y coordinate values from the 2D data points.�e
2D bounding box covering the point clouds of the new 2D
dataset was then divided into a set of square grids with the
grid size dgrid. �e analysis was performed in each grid to
extract the ground points.

�e points satisfying the first term of equation (1) are
referred to as ground points. In addition, it is observed that
the PLOs may be connected to other nonground objects
along the road by some short objects (e.g., guardrails, shrubs,
and parapets). �erefore, some parts of the abovementioned
short objects that exist along the expressway were removed
to discontinue the connection between the nonground
objects and also to minimize the computation time for the
following Euclidean clustering. If the height of any grid is
less than the minimum height threshold of the poles, then all
points in this grid were also removed, as shown in the second
term of equation (1):
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Figure 1: Workflow for PLO detection and classification.
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smallest value of minimum elevation from the jth grid and its
eight neighbors. �is ensured that in the case of missing
ground data below the attachment of PLOs, the minimum
elevation of the current grid was evaluated appropriately
(e.g., the lighting pole was erected behind and far away from
the guardrail at a certain distance, and the ground data

(a)

(b)

Figure 3: Point clouds of two test sites. (a) Site 1 and (b) Site 2.

(a) (b)

(c) (d)

Figure 4: Nonground extraction. (a) Preprocessing; (b) ground removal; (c) Euclidean clustering (different clusters are shown by different
colors); (d) the potential clusters consisting of PLOs.
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Figure 2: Two test sites. (a) Study area and (b) overview of the GT-4 MLS system.
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between them may be missing during the MLS data col-
lection; thus, the height of the grid containing the bulb of the
lighting pole and the missing ground data may be computed
incorrectly if the minimum elevation of only this grid was
used). H and Hpole denote the height difference threshold
and the minimum height of objects to be considered as
PLOs. Figure 4(b) illustrates the results of the ground and
short object part removal.

2.2.3. Euclidean Clustering. After the ground and points of
noninterest were eliminated, the remaining points that
consisted of PLOs were discrete and unorganized. �us, the
grouping of all points that belong to the same objects is
needed for further PLO detection. Euclidean clustering was
employed to group points into a set of distinct clusters. �e
points were organized using KD tree construction. If the
distance between two neighboring points was less than the
threshold distance (dE), they were merged into the same
cluster. Otherwise, they belonged to different clusters.
Figure 4(c) depicts an example of Euclidean clustering.

�e original point clouds were separated into different
clusters which could be used for PLO detection. However,
some clusters contained small objects with short height (e.g.,
bushes, shrubs, vegetation, fragments, and outliers) or ob-
jects with immense height (e.g., pylons or cables in a cable-
stayed bridge) that were not objects of interest. It was ob-
served that the PLOs were erected on the ground or the
parapet along the road.�us, all clusters that were short, had
large height, and were located above the ground at a certain
distance threshold were removed, to reduce the computa-
tional complexity of PLO detection in the following step:

Zi
max − Zi

min >Hmax,

Zi
max − Zi

min <Hpole,

Zi
min − Zi

ground



>Zt,
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where Zi
max and Zi

min represent the maximum and mini-
mum elevation of the ith cluster; Zi

ground is the elevation
of the ground near the ith cluster, and this value is estimated
from the elevation of the nearest trajectory point to the ith

cluster; Hmax and Zt denote the maximum height of the
objects to be considered as PLOs and the maximum vertical
distance between the lowest point in the cluster and the
ground, respectively.

�e minimum number of points in each cluster can also
be used to delete some outliers or small fragments (e.g., 100
points were empirically used in this study). Finally, the
potential clusters that consist of single PLOs, trees, cars,
vegetation, or PLOs mixed with other objects are (likely)
objects of interest that were preserved (Figure 4(d)).

2.3. Pole-Like Road Object Detection. In this step, each po-
tential cluster from the preceding step was checked whether
it contained a PLO section or not. �e whole PLO was then
extracted from each cluster. Due to the specific traffic
functionality of each type of PLO in the expressway, the
spacing between two adjacent PLOs was sufficiently large at a

certain distance. An entire or partial shape of a pole was a
typical shape feature of all PLOs. Based on these features of
PLOs, three assumptions about PLOs are given as follows: (i)
the diameter of poles varied within a range; (ii) the pole was
isolated from the other PLOs in the vicinity; (iii) the vertical
height of a pole should meet the minimum height value. As
shown in Figure 5, an approach for PLO detection is pre-
sented as follows: (1) voxelization; (2) selecting voxels that
contain pole section points; (3) bottom-up region growing;
(4) upward growing for attachment extraction.

2.3.1. Voxelization. To examine the existence of pole sections,
the point cloud in each cluster was partitioned into a set of
horizontal slices. Voxelization was applied, to subdivide the
points of each cluster into a set of cubes (also called voxels)
(similar to Vo et al. [25]), which were then structured into a
group of slices (Figure 6(a)). In this study, the voxel size was
selected as the termination condition (dvoxel).

2.3.2. Selecting Voxels �at Contain Pole Section Points

(1) Selecting Voxels Based on Horizontal Cross Section
Analysis. A circular shape with a certain diameter of the pole
cross section is a specific characteristic of PLOs, which can
be used to distinguish the other road objects. Furthermore, a
cross section of poles typically occupies a smaller number of
voxels in each horizontal slice compared with others (e.g.,
bushes, shrubs, parapets, guardrails, tree crowns, and cars).
Based on these features, the voxels containing the points of a
pole section in each horizontal slice could be identified. In
each slice, the procedure to detect the voxels containing a
pole section is performed individually. First, the connected-
component labeling algorithm was implemented to cluster
all adjacent voxels to be voxel groups. To determine the voxel
groups that contain points of a pole section, the following
criteria for these voxel groups were established:

(i) Considering the maximum diameter of a pole cross
section in test sites, the voxel groups that occupy the
pole section points should have an area that is not
greater than the area of the pole section with the
maximum diameter. �e number of voxels in each
voxel group should be less than or equal to
number � ceil(πR2

max/d
2
voxel). It is observed that the

value of the number is inversely proportional to the
voxel size. For the case that the voxel size is quite
large, the number may be small (e.g., 1 or 2).
However, there may exist a voxel group that consists
of four neighboring voxels with a large size, covering
all pole section points. Consequently, the voxel group
is considered as a candidate group of voxels con-
taining pole section points if the number of voxels in
this voxel group is smaller than or equal to N, as
expressed in the following equation:

N � max 4, ceil
πR2

max
d2
voxel

  , (3)
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where Rmax is the maximum radius of poles in a real
scenario and dvoxel is the voxel size. Figure 6(b)
shows an illustration of voxel groups that meet
the conditions of equation (3).

(ii) After a constraint of the maximum number of voxels
in each voxel group was applied, a set of candidate
voxel groups that may contain pole section points
was generated. However, there may be voxel groups
that contain nonpole section points, where the
number of voxels is less than a threshold, but the
shape is a noncircular section (e.g., a scattered shape
or the shape of part of a large object). Differentiating
the voxel groups containing pole section points and

nonpole section points can be implemented by using
the circular section of a pole, which can be described
by the circle radius. �e points in each candidate
voxel group were projected onto a horizontal plane,
and the RANSAC circle fitting model [26] was
employed to fit the circle through the points. �e
estimated radius of the circle fitting (Restimated) was
used to identify whether the points of the pole trunk
were available in this voxel group or not. If the
estimated radius (Restimated) varied between a range
of predefined PLO radii (Rmin ≤Restimated ≤Rmax),
this voxel group is a part of a pole section. �e lower
constraint value (Rmin) was set to delete some PLOs

Potential 
PLO clusters

Selecting voxels that 
contain pole section points

Individual 
PLOs

Attachment extraction

Bottom-up region growing

Voxelization

Figure 5: Workflow for PLO detection from mixed clusters.

Slice 2

Slice 1

Slice i

Slice 14

(a) (b)

Figure 6: Selecting voxels based on horizontal cross section analysis. (a) Voxelization; (b) a set of voxel groups at slice 8, satisfying the
limited number of voxel criteria (different voxel groups are shown by different colors).
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with a small diameter (e.g., tree branches, guardrails,
wires, and small steel bars).

(2) Selecting Voxels Based on Vertical Height. After exam-
ining voxel groups in all horizontal slices, a set of voxels
consisting of pole points was obtained using the above two
criteria. �eoretically, only voxels containing pole points
were detected. Nonetheless, due to the variation of point
density, RANSAC circle fitting was capable of computing an
estimated radius of point sets that belong to non-PLOs (e.g.,
parts of tree crowns, tree leaves, or vehicles) within the
radius constraints (Figure 7(a)). In fact, a set of voxels
constituting a pole trunk should meet the minimum vertical
height to be considered as a partial part of a pole trunk or a
whole pole trunk. �us, this procedure can be utilized to
discard some discrete and discontinuous voxels that meet
the horizontal cross section analysis.

Only voxels that comply with the limited number of
voxels and radius constraints (voxels which satisfied hori-
zontal cross section analysis) were considered in the analysis.
First, all voxels that possessed the same face, edge, or vertex
were joined together to generate a group of voxel clusters.
�e vertical height threshold (h) was established to ensure
that only voxel clusters with their vertical height above h
were selected as a part of a pole trunk. Figure 7(b) illustrates
the voxel clusters that belong to a pole trunk. As a result,
only voxels containing pole trunk points are identified,
which will be utilized for further processing.

2.3.3. Bottom-Up Region Growing. A set of voxel clusters
containing a pole trunk was obtained from the preceding
step. As shown in Figure 8(a), some voxel clusters occupied
different parts of the same pole trunk. Based on the as-
sumption that the pole was isolated from the other PLOs in
the vicinity, a bottom-up region growing within a 2D
horizontal distance constraint was employed to merge these
voxels. It should be noted that only voxels containing pole
trunk points from Section 2.3.2 were considered for a
bottom-up region growing process.�e process started from
the voxel with the lowest elevation and grew upward to its
neighboring voxels. However, only neighbors whose 2D
horizontal distance is less than the threshold (d2D) were
selected for clustering. �is threshold is configured based on
the minimum distance between two neighboring pole trunks
in the test sites. Similarly, the growing iteratively continued
to all neighbor voxels until no voxels were detected, and all
voxels belonging to the identical pole trunk were grouped
into the current cluster. �en, the same procedure was
applied to the remaining voxels, and a new cluster, con-
taining voxels of an individual pole trunk, was created.

After the bottom-up region growing, the pole trunk of
each PLO was extracted individually. However, sometimes an
incomplete and discontinuous pole trunk was obtained due to
the connection of pole trunk points and nonpole points (e.g.,
the poles grew through the tree canopy or attachments were
connected to the poles), as shown in Figure 8(b). Based on the
assumption that the cross section of the pole trunk varied
gradually along its axis, the cylindrical growing model was

implemented to interpolate or estimate themissing pole trunk
points. �e process grew upward from the slice containing
pole trunk points with minimum Z elevation (Sliceinitial) and
downward from the slice containing pole trunk points with
maximum Z elevation. Due to the similarity of upward and
downward growing, only the downward process is presented
in Algorithm 1. All points in Sliceinitial (or Slicek) and
Sliceinitial−1 (or Slicem) were projected onto the XY plane, and
RANSAC circle fitting was adopted, to determine the circle
center and the radius of each dataset (center: Ck and Cm and
radius: Rk and Rm).�e points in the next slice (down-slice for
downward growing) where the distance to the pole trunk axis,
which defined by the vector goes through the circle center of
the two upper slices (CkCm)

��������→
, was less than the maximum

radius were considered as the points belonging to pole trunk
(see Figure 9(a)). �e maximum radius was selected based on
the larger radius of the pole trunk from two upper slices
(R�max{Rk; Rm}). However, considering the increase of an
actual pole’s diameter along the pole trunk height, a tolerance
(∆) was added to the maximum radius, to cover all pole trunk
points. A tolerance distance (∆) of 0.01m was used in this
study, which was chosen based on several preliminary ex-
periments. If the number of points n was larger than the
minimum number of points (N) for RANSAC circle fitting,
the center C and the radius R of the pole trunk points in the
current slice were calculated and updated for the next
growing. Similarly, the growing iteratively continued to all
next slices until no pole trunk points were detected. As a
result, all complete pole trunks of PLOs were detected
(Figure 9(b)).

2.3.4. Attachment Extraction. �e purpose of this research is
to extract the whole PLO, including the pole trunk and its
attachments. �e vertical region growing algorithm is adopted
to allocate the attached components to their corresponding
pole trunk. �e procedure is similar to Euclidean clustering.
However, the differences are as follows: (1) the process starts
from the initial point with maximum Z elevation belonging to
the pole trunk; (2) only neighboring points where the Z el-
evation is larger than the initial point are considered for
grouping to the attachment. �e spherical Euclidean distance
of dE was used to merge all neighboring points.

2.4. Pole-Like Road Object Classification. In the classification
step, nine types of PLOs were labeled, based on their different
traffic functionality and geometric shapes. Figure 10 depicts the
nine types of road facilities: high-mast lighting, lighting pole-2-
sided, lighting pole-1-sided, CCTV camera, telecommunica-
tion tower, speed limit pole, lighting pole-1-sided (special
type), overhead sign, and some types of small signboards (e.g.,
S-curve, intersection, metric distance, and warning sign). �e
height and bounding box of the projected area of PLOs onto
the XY plane representing the PLOs’ geometric shapes were
used as the two criteria for classification.

Height is one of the specific features of PLOs [18]. Due to
the explicit function of each type of PLO, the heights for
different kinds of PLOs are dissimilar. Based on examining
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the height of some known classifiers, a set of height varia-
tions for each PLO category was generated within this study
(Table 1). From the extracted PLOs, only objects where the
height varied between the ranges of the given height criteria
were labeled as the same classifier. For instance, the high-
mast lighting had the highest height, compared with other
PLOs (>13m); thus, all detected PLOs with a height larger
than 13m were classified as high-mast lighting.

However, there was an insignificant height difference for
some types of PLOs (e.g., lighting pole-1-sided vs.CCTVcamera/
overhead sign or telecommunication tower vs. speed limit pole).
�e shape of a PLO can be roughly characterized by a bounding
box, which can be utilized to separate the different PLOswith the
same height [22]. First, the minimal bounding rectangle (MBR)
enclosing all 2D projected points of PLOs was constructed [27].
As shown inFigure 11(a), the dimensions of theMBRof different
PLOswere dissimilar (green rectangles).�erefore, the length (L)
of MBRs for an overhead sign, lighting pole-1-sided, and CCTV
camerawas computed andwas then used to distinguish PLOs. In
this study, the PLOs were classified as an overhead sign if

L≥ LO, defined as lighting pole-1-sided if LL<L<LO, and
labeled as a CCTV camera, otherwise. However, due to the
similarity of MBR dimensions, using only the length of the
rectangle cannot classify some PLOs (i.e., telecommunication
tower vs. speed limit pole), as seen in Figure 11(b). �e actual
boundary shape of a speed limit pole, which is represented by
a concave hull occupying all 2D boundary points in the
horizontal plane is a rectangular shape. However, a tele-
communication tower is considerably smaller than its
bounding rectangle. �erefore, the boundary shape (BSH) of
the object is considered, to differentiate PLOs (red polygon in
Figure 11). If the ratio of the area of the BSH to the MBR was
greater than rS, the object was a speed limit pole. Otherwise,
the object was labeled as a telecommunication tower.

3. Results and Discussion

3.1. Parameter Settings. �e input parameters for the two
test sites are tabulated in Table 2. In the nonground ex-
traction step, the value of dE should be less than the maximum

(a) (b)

Figure 7: Selecting voxels based on vertical height. (a) A set of voxels satisfying horizontal cross section analysis; (b) voxel cluster containing
a pole trunk, using the vertical height constraint.

(a) (b)

Figure 8: Bottom-up region growing. (a) Bottom-up growing within a horizontal distance constraint for voxels (different voxel clusters are
shown by different colors). (b) Voxels belonging to different individual PLOs (different colors denote different pole trunks).
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spatial distance between two neighboring objects, to separate
them into individual objects. However, this value should be
larger than the point spacing and the distance between two
neighboring scan lines. At a region near the laser scanner, the
point spacing can be estimated based on the point density
(�1000mm/

�������������
1500 points/m2


≈ 3 cm). �e distance of 7 cm

between two neighboring scan lines is approximate, according

to the scan rate (200 scans/sec) and average speed of the MLS
car during a measurement (50 km/h). Considering the point
density reduction of PLOs that stand at the far range from the
laser scanner, dE was selected as 0.2m. In the PLO detection
step, the voxel size dvoxel is a critical parameter that signifi-
cantly affects the efficiency of the detection approach. Due to
the point density variation, the voxel size should be

Input:
Q1: pole trunk points in Slicek (�Sliceinitial)
Q2: pole trunk points in Slicem (�Sliceinitial−1)
Parameters:
i: current slice
Start:
Initialize: i� k− 2
Compute Ck and Rk of points in Q1
Compute Cm and Rm of points in Q2
Repeat
(1) Find R�max(Rk; Rm)
(2) Extract and count the number of points n in slice i where distance to CkCm

�����→
is less than R+∆

(3) if 0<n<N
(4) Add these points to pole trunks (cluster T)
(5) i� i− 1
(6) else
(7) Add these points to pole trunks (cluster T)
(8) Compute center Ci and radius Ri of points in the current slice i
(9) i� i− 1
(10) k�m
(11) m� i+ 1
Until no points were found
Output: T: pole trunk points.

ALGORITHM 1: Cylindrical growing algorithm.

Initial-1 (m)

Initial (k)

i

i − 1

.

.

.

Ck

Cm

(a) (b)

Figure 9: Cylindrical growing model. (a) Cylindrical growing with an adaptive pole diameter. (b) �e two complete pole trunks.
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adequately large to ensure that there are sufficient points in
each horizontal slice, during horizontal cross section
analysis. However, according to isolation analysis, the voxel
size should not be too large, to mitigate the connection of
the surrounding non-PLO voxels to the pole trunk. As
shown in Figure 12(a), due to the short vertically con-
tinuous height of an overhead sign pole (the center-to-
center distance of the horizontal truss) in this study, dvoxel
should be chosen to guarantee the independent and vertical
continuity analysis of a pole. �us, dvoxel was configured as
0.15m based on the point spacing and the vertical height of
the target pole trunk at the test sites. A voxel cluster that has
a vertical height threshold (h) greater than 0.6m was

considered a part of a pole trunk. �e lower bound of the
PLO radius Rmin was set to avoid the detection of some
small objects with a linear and cylindrical shape (e.g., small
steel bars, wires, guardrails, and tree branches) while the
upper bound of the PLO radius Rmax was configured based
on the maximum pole radius. �e 2D horizontal distance
d2D should be less than the minimum distance between two
neighboring pole trunks (Figure 12(b)).

3.2. Detection Results. Figure 13 depicts the results of the
PLO detection from the two test sites. To assess the per-
formance of the proposed method, the detected PLOs from
the proposed approach were compared with those obtained

Table 1: Parameter settings for PLO classification.

Category Height variation (m) L of MBR (m) Ratio rS
High-mast lighting 13.0–15.0 — —
Lighting pole-2-sided 10.0–12.0 — —
Lighting pole-1-sided 8.5–9.5 >2 —
Overhead sign 7.0–10.0 >10 —
CCTV camera 8.5–9.5 — —
Telecommunication 5.5–7.0 — —
Speed limit pole 5.5–6.5 — 0.8
Lighting pole-1-sided (special type) 4.0–5.5 — —
Small signboard <4 <2 —

(a) (b)

Figure 11: Bounding box of 2D projected points of PLOs in the horizontal plane (from left to right). (a) Group of PLOs with the same height
(7–10m): overhead sign, lighting pole-1-sided, and CCTV camera. (b) Group of PLOs with the same height (5.5–6.5m): telecommunication
tower and speed limit pole.

Figure 10: Expressway facilities being classified (from left to right) as high-mast lighting, lighting pole-2-sided, lighting pole-1-sided, CCTV
camera, telecommunication tower, speed limit pole, lighting pole-1-sided (special type), overhead sign, and some types of small signboards.
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from the ground truth data, which were manually extracted
by a visual investigation. In this study, three evaluation
indices, namely, recall, precision, and F1 score, were used for
quantitative evaluation. Recall denotes the completeness of the
PLO detection. Precision represents the correctness of PLO
recognition. �e F1 score is a combination of recall and
precision and indicates the overall quality of the method. �e
calculation of the three indices is expressed by equations (4–6):

recall �
TP

TP + FN
× 100%, (4)

precision �
TP

TP + FP
× 100%, (5)

F1 � 2 ×
recall × precision
recall + precision

× 100%, (6)

where TP denotes the number of detected PLOs thatmatch the
ground truth, FN indicates the number of undetected PLOs,
and FP represents the number of incorrectly detected PLOs.

�ere were 126 and 323 PLOs at Sites 1 and 2 that were
manually extracted, respectively. As shown in Table 3, 120
PLOs were extracted successfully at Site 1, where 117 poles
were correctly detected. �ere were 9 undetected PLOs, and
3 objects were misclassified as poles. As a result, the recall,

precision, and F1 score were, respectively, 92.9%, 97.5%, and
95.1%, for Site 1. For Site 2, 319 PLOs were detected, where
300 objects were correctly recognized as PLOs by the pro-
posed method, 23 PLOs were not detected, and 19 PLOs
were falsely detected. �e recall, precision, and F1 score of
Site 2 were 92.9%, 94.0%, and 93.5%, respectively.

Almost all road facilities were extracted from both sites.
However, there are some PLO detection errors. At Site 1,
three bare poles were mistakenly recognized as PLOs be-
cause they had a circular section and met the vertical
continuity pole trunk conditions (Figure 14(a)). At Site 2,
almost all incorrectly detected PLOs were obtained near the
tollgate. Four building frames with supporting columns that
have a pole-like shape were mistakenly detected (red ellipses
in Figure 14(b)). Due to the salient function of the tollgate,
many objects with structures that were pole-like were lo-
cated inside the tollgate and were falsely extracted. As shown
in Figure 14(c), the tollgate contains pillars with a circular
shape that were mistakenly recognized (purple color). Two
parts of the collection booths were incorrectly extracted
because of the linear and cylindrical appearance of their wall
corners (red ellipses in Figure 14(c)). A drainage pipe close
to the tollgate wall was also extracted due to its pole-like
features (black ellipse in Figure 14(c)). Eleven nontarget
objects with a cylindrical shape that were situated inside the

Table 2: Input parameters for PLO detection.

dgrid (m) ∆H (m) Hpole (m) dE (m) Hmax (m) Zt (m) dvoxel (m) Rmin (m) Rmax (m) h (m) d2D (m)

Site 1 1 0.1 1.5 0.2 30 3 0.15 0.03 0.25 0.6 0.7Site 2

0.75m

(a)

0.9m

(b)

Figure 12: Illustration for parameter settings in this study. (a) Selection of voxel size dvoxel and minimum vertical height h. (b) Selection of
2D horizontal distance d2D.
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(a) (b)

(c)

Figure 14: Incorrect PLO detection. (a) Bare poles. (b) Four building frames with their supporting columns (pole-like structures). (c)
Wrongly detected tollgate and 11 objects as PLOs due to their pole-like structures (different colors indicate different detected PLOs).

(a)

(b)

Figure 13: PLO detection results. (a) Site 1 (Rama IX Bridge). (b) Site 2 (Bang Na elevated expressway). All detected PLOs are displayed in
red.

Table 3: Quantitative evaluation of PLO detection at two test sites.

Test site Ground data Algorithm TP FN FP Recall (%) Precision (%) F1 score (%)
Site 1 126 120 117 9 3 92.9 97.5 95.1
Site 2 323 319 300 23 19 92.9 94.0 93.5
Average 92.9 95.8 94.3
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tollgate were also extracted (5 small traffic lights, 1 bollard
(short, vertical post), 3 stop-barrier arms, 1 welcome
overhead sign, and 1 small camera pole). �ese mistaken
detection errors can be avoided by eliminating the wrongly
extracted tollgate. It was observed that the tollgate had an
extreme 2D projected area. If the area of the MBR of
extracted PLOs was larger than a predefined value, these
objects were not considered as PLOs. �en, all detected
objects which are positioned inside the tollgate were re-
moved by considering their relative location with the BSH of
a tollgate. If they are placed inside the tollgate’s BSH, they are
removed.

As seen in Figure 15(a), eight speed limit signs were
undetected at Site 1 because their pole trunk height did not
satisfy the minimum vertical height (<0.6m) and their radii
were small (<Rmin � 0.03m). One telephone pole was also
not detected due to the existence of noise around the
telephone pole, which damaged the isolation assumption
(Figure 15(b)). A total of 23 poles were not detected at Site
2. One traffic light was occluded by a reflective board at-
tached to its trunk, which resulted in a lack of vertical
continuity, and its density was too low to be recognized
(Figure 15(c)). One incomplete overhead sign with sup-
porting columns that were mostly inclined was not detected
(Figure 15(d)). One lighting pole was not detected because
it was not situated on the ground and was removed in the
nonground extraction (Figure 15(e)). �ree small speed
limit signs failed to be extracted due to a small radius
(Figure 15(f )). Six kilometer signs were not detected due to
the square section of their trunks. Poles with noncircular
sections were PLOs of noninterest in this study and were
not recognized by the proposed algorithm. However, they
were a type of road facility and were considered as missing
detection (Figure 15(g)). Figure 15(h) shows a set of small
traffic signs, which are typical road facilities on an ex-
pressway.�ese PLOs were not extracted because they have
a short trunk height and a small radius.

As shown in Figures 16(a) and 16(b), the proposed
method could correctly extract the poles in the occluded
scenes where a lighting pole was mixed in with trees or a
traffic sign was tangled with shrubs. Although the tele-
communication pole was attached by electricity cables and
signal wires to its trunk which may lead to an imperfect
circular shape of the pole section, the algorithm successfully
detected the pole due to the RANSAC circle fitting, which is
robust to outliers and noise (Figure 16(c)). �e complex
overhead signs with four supporting pillars which were
connected by diagonal and horizontal truss were also cor-
rectly recognized (Figure 16(d)). However, there are some
incomplete extraction results for the attachments of the
poles. For instance, only the upper part of the traffic board
was extracted as an attachment of the traffic sign (green
ellipse in Figure 16(b)). �is is because the vertical region
growing algorithm for attachment extraction was applied for
only points where the Z elevation is higher than the point
with maximum Z elevation belonging to the pole trunk.
Similarly, all structural members (horizontal and diagonal
trusses) constituting the supporting columns of the over-
head sign were not extracted (Figure 16(d)). To tackle this

challenge, the attachment extraction method was modified
and applied to only the overhead sign. It is observed that the
overhead sign contains four columns with a similar height.
Also, the structural members are located above the bottom of
the column at a certain distance. Based on these features of
overhead sign, if the potential cluster contains four different
groups of pole trunks (after Section 2.3.3) with a similar
height, this potential cluster is considered to contain an
overhead sign. �en, the modified vertical region growing is
implemented for this cluster. �e process starts from the
initial point belonging to the columnwhere the Z elevation is
higher than the point with minimum Z elevation belonging
to the column at a certain distance (e.g., 1.5m in our real
scenes). And, the connected-component analysis is applied
to connect all points where the Z elevation is higher than the
initial point.

3.3. Classification Results. �e confusion matrix was com-
puted to assess and analyze the performance of the classi-
fication method, which is represented by recall, precision,
and overall quality. �e first two indices were defined the
same as those in the detection section, while the last index
was determined as the ratio of the correct classification to the
total of correctly detected PLOs. �e road facilities at Site 1
are different from those at Site 2 because they belong to a
different expressway network. �us, the PLOs were divided
into five types at Site 1 and nine types at Site 2, based on their
different geometric shapes and height features. �e criteria
for PLO classification are shown in Table 4 for Site 1, and in
Table 1 for Site 2.

�e PLO classification results of Site 1 and Site 2 are
shown in Figures 17 and 18, respectively. At Site 1, 105
PLOs were correctly labeled from 117 correctly extracted
PLOs, resulting in 89.7% for overall quality (Table 5). At
Site 2, 294 out of 300 PLOs were correctly classified, and the
overall quality was 98.0% (Table 6). It is observed that the
classification result for Site 2 is higher than Site 1. �at is
because the heights for different types of facilities at Site 2
are significantly identified, which led to most PLOs being
correctly categorized. However, there are some classifica-
tion errors. As seen in Figure 17(a), the seven correctly
detected telephone poles were misclassified as small
signboards at Site 1 because their height and geometric
shape are similar to a signboard. �erefore, the proposed
classification is unable to classify this type of road facility.
�ree lighting poles were also misclassified. �is is because
the data at the bottom part were missing, which resulted in
a height reduction. A bare pole was miscategorized as a
small signboard because its height and L of MBR satisfy the
criteria for a signboard (cyan rectangle, in Figure 17(b)). As
depicted in Figure 18(a), the lighting pole-1-sided (special
type) was mislabeled as a small traffic signboard due to the
missing data of the bottom part, which led to a height
reduction of the poles. Figure 18(b) illustrates the incorrect
classification of the lighting pole-2-sided. Since the lighting
pole-2-sided is similar to the lighting pole-1-sided in
height, the lighting pole-2-sided is misclassified as a
lighting pole-1-sided.
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3.4. Comparison with Past Studies. It is challenging to
compare the results of this proposed method with previous
methods since the experimental datasets of previous research
are quite different in the road environment, road complexity,
point density, and accuracy of laser scanners. Nevertheless, a
quantitative comparison was conducted to produce a com-
prehensive understanding of the proposed method and
existing methods, based on the presented datasets in the past
studies. �e average recall and precision were 92.3% and

83.8%, respectively, for the four test sites in the method
proposed by Cabo et al. [1]. Teo et al. [16] presented the
coarse-to-fine method to detect PLOs with a recall and
precision of about 95%. An average detection rate of 95% was
also achieved by Rodŕıguez-Cuenca et al. [15]. Yan et al. [9]
extracted and classified the expressway facilities into five types
with an overall accuracy of 91%. �e detection rate yielded
88.9% for extracting the lighting poles and traffic signposts by
the approach of Guan et al. [28]. Yan et al. [12] proposed a

(a) (b) (c) (d) (e)

(f ) (g) (h)

Figure 15: Missing PLO detection (a-b): Site 1 and (c–h): Site 2. (a) Speed limit sign with a short trunk height and a small radius. (b)
Telephone pole with the presence of surrounding noise points. (c) Small traffic light with a low density trunk. (d) Overhead sign at a ramp
with large inclined poles. (e) Undetected lighting pole. (f ) Speed limit sign with a small radius. (g) Kilometer poles with a square section. (h)
Some small traffic signs with a short trunk height and a small radius.

(a) (b) (c) (d)

Figure 16: Performance of PLO detection. (a) Lighting pole mixed with tree crowns. (b) Traffic sign occluded by shrubs. (c) Tele-
communication tower with the electricity cable connected to its trunk. (d) Overhead sign. All extracted PLOs are in red.
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Table 4: Parameter settings for PLO classification at Site 1.

Category Height variation (m) L of MBR (m)
Lighting pole-1-sided 11.0–13.0 >2
Overhead sign 8.0–11.0 >10
Speed limit pole 5.5–6.5 >1
Telephone pole 2.5–3.5 —
Small signboard <4 <2

Overhead sign
Speed limit pole

Lighting pole-1-sided
Others
Small signboard

(a)

Overhead sign
Speed limit pole

Lighting pole-1-sided
Others
Small signboard

(b)

Figure 17: Classification results at Site 1. (a) �e light pole was miscategorized due to a short height, and the telephone poles were
mislabeled as a small traffic signboard. (b) �e bare pole was misclassified as a small traffic signboard.

Lighting pole-2-sided 
Lighting pole-1-sided
Overhead sign

High-mast lighting

CCTV camera

Speed limit pole

Small signboard

Lighting pole-1-sided 
(special type)

Others

Telecommunication 

(a)

Lighting pole-2-sided
Lighting pole-1-sided
Overhead sign

High-mast lighting

CCTV camera

Speed limit pole

Small signboard

Lighting pole-1-sided 
(special type)

Others

Telecommunication 

(b)

Figure 18: Classification results at Site 2. (a) �e lighting pole-1-sided (special type) was mislabeled as a small traffic signboard. (b) �e
lighting pole-2-sided was misclassified as a lighting pole-1-sided.
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method to extract the PLOs in a motorway environment, and
the detection rate from the two test sites was 93.7% and 95.9%,
respectively. �e PLO classification method was also pre-
sented in their study, and an overall accuracy of 96.5% and
97.9% for two datasets was achieved. �e average recall and
precision of the method by Shi et al. [13] were about 91.6%
and 97.3%, respectively. �ey also successfully classified the
PLOs into street lamps, utilities, and traffic signs with an
overall accuracy of 91.8%.�emethod of Li et al. [19] detected
the road furniture at a recall of 95% and a precision of 90%
from two datasets. �e average recall and precision were
achieved at 95.5% and 83.6%, respectively, by Li et al. [20].

�e proposed PLO detection method in this study achieved
an average recall of 92.9% and a precision of 95.8% for two test
sites. An overall quality of 89.7% and 98.0%was achieved for the
classification of PLOs. �e two test sites in our study dem-
onstrated a typical expressway, which consisted of many
overlapped objects, as the light poles were standing very close to
guardrails or were partially occluded by shrubs. �e results
showed that our method could detect and classify with a rel-
atively high detection rate, compared with the existingmethods.
Our method also successfully extracted and classified some
common road facilities with 100% accuracy, such as overhead
signs, which were not detected and labeled by Yan et al. [9].

4. Conclusions

�is paper presented amethod for the automatic detection and
classification of the road facilities in an expressway environ-
ment from MLS point cloud data. First, the ground points
were removed, and the nonground points were grouped into
distinct clusters. Next, PLOs were detected based on spatially
independent and vertical height continuity analysis. Finally,
the detected PLOs were classified into different types of ex-
pressway facilities based on their height features and geometric
shapes. Two test sites were used to evaluate the accuracy of the
proposed method. �e average F1 score was 94.3% in the
detection stage, and an average overall quality of 93.9% in the
classification stage was achieved. �is shows that our method
is effective, robust, and reliable, to detect and label road fa-
cilities with high accuracy. Our method uses only XYZ co-
ordinates of the point cloud.�is is suitable for other datasets.
However, the method could not detect PLOs with a large
inclined pole, some small signboards with a short trunk height,
or poles with a square section. �e method also failed to
classify telephone poles where the height and geometric shape
are similar to a signboard. Additional geometric features or
training data can be used to overcome these limitations, which
will be considered in our future research.

Table 5: Confusion matrix of PLO classification at Site 1.

Lighting pole-
1-sided

Overhead
sign

Speed
limit

Telephone
pole

Small
signboard Others Precision

(%)
Lighting pole-
1-
sided

95 0 0 0 0 0 100.0

Overhead sign 0 3 0 0 0 0 100.0
Speed limit pole 0 0 4 0 0 0 100.0
Telephone pole 0 0 0 0 0 0 0.0
Small
signboard 0 0 0 7 3 4 21.4

Others 3 0 0 0 0 1 25.0
Recall (%) 96.9 100.0 100.0 0.0 100.0 20.0
Overall quality: 105/117� 89.7%

Table 6: Confusion matrix of PLO classification at Site 2.

A B C D E F G H I J Precision (%)
A 23 0 0 0 0 0 0 0 0 0 100.0
B 0 141 0 0 0 0 0 0 0 0 100.0
C 0 3 93 0 0 0 0 0 0 0 96.9
D 0 0 0 11 0 0 0 0 0 1 91.7
E 0 0 0 0 5 0 0 0 0 0 100.0
F 0 0 0 0 0 5 0 0 0 0 100.0
G 0 0 0 0 0 0 4 0 0 0 100.0
H 0 0 0 0 0 0 0 4 0 0 100.0
I 0 0 0 0 0 0 0 2 8 14 33.3
J 0 0 0 0 0 0 0 0 1 4 80.0
Recall (%) 100.0 97.9 100.0 100.0 100.0 100.0 100.0 66.7 88.9 21.1
Overall quality: 294/300� 98.0%
Legend: A� high-mast lighting; B� lighting pole-2-sided; C� lighting pole-1-sided; D� overhead sign; E�CCTV camera; F� telecommunication tower;
G� speed limit pole; H� lighting pole-1-sided (special type); I� small signboard; J� others.
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