
Research Article
Prediction of the Bending Strength of Boltless Steel
Connections in Storage Pallet Racks: An Integrated
Experimental-FEM-SVM Methodology

Zhi-Jun Lyu ,1,2 PeiCai Zhao ,1,2 Qi Lu,3 Qian Xiang,1,2 and HongLiang Li2

1College of Mechanical Engineering, Donghua University, Shanghai 201620, China
2Shanghai Engineering Research Center of Storage & Logistics Equipment, Shanghai 201611, China
3SAIC General Motors, Shanghai 201206, China

Correspondence should be addressed to Zhi-Jun Lyu; lvzj@dhu.edu.cn and PeiCai Zhao; 852692515@qq.com

Received 6 February 2020; Revised 16 July 2020; Accepted 9 September 2020; Published 22 October 2020

Academic Editor: Maksym Grzywinski

Copyright © 2020 Zhi-Jun Lyu et al. 2is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Due to many differences in the material, geometry, and assembly method of the commercially available beam-end-connectors in
steel storage pallet racks (SPR), no common numerical model has been universally accepted to accurately predict the M–θ
behavior of complex semirigid connections so far. Despite the fact that the finite element method (FEM) and physical experiment
have been used to obtain the mechanical performance of beam-to-column connections (BCCs), those methods have the dis-
advantages of high computational complexity and test cost. Taking, for example, the boltless steel connections, this paper proposes
a data-driven simulation model (DDSM) that combines the experimental test, FEM, and support vector machine (SVM)
techniques to determine the bending strength of BCCs by means of data mining from the engineering database. First, a three-
dimensional (3D) finite element (FE) model was generated and calibrated against the experimental results. Subsequently, the
validated FE model was further extended to perform parametric analysis and enrich the engineering case base of structural
characterization of BCCs. Based on theM–θ curve of the FE simulation, support vector machines (SVMs) were trained to predict
the flexural rigidity of beam-to-column joints. 2e predictive power of the SVM algorithms is estimated by comparison with
traditional ANNmodels via the root mean square error (RMSE), the mean absolute percentage error (MAPE), and the correlation
coefficient R. 2e results obtained indicate that the SVM algorithms slightly outperform the ANN algorithms, although both of
them are in good agreement with FEM and physical test. From the point of view of engineering application, DDM is able to
provide much more effective help for structural engineers to make rapid decisions on steel members design.

1. Introduction

With the rapid advancement of e-commerce, automated
storage and retrieval systems (AS/RS) have been so widely
applied in China that high-rise steel storage pallet racks
(SPR) have exhibited an explosive growth in production and
logistics system (Figure 1). Acting as one of the most im-
portant infrastructures for AS/RS, structural design for SPR
needs the elaborate decision-making between structural
systems and a variety of cold-formed steel members in such a
way that the stability and safety behave as intended by the
designer and satisfies the constraints imposed by capital
investment, environment, and so on. Opposite to traditional

civil engineering structures, the material of steel members in
storage pallet racking is thin and lightweight while the
racking system itself can usually carry live load many times
larger than the dead load with an extraordinary height.

Of all the members in the SPR, the beam-to-column
connections (BCCs) constitute the most critical part of the
assembly which largely determines the overall stability of
SPR in the down-aisle direction [1].2e details of the boltless
BCCs with the three rivets mostly used in industrial racking
system are shown as an example in Figure 2. Due to the great
variety of connector types and connected members, a
generalized analytical evaluation of the connection me-
chanical properties still appears to be very difficult [2]. One
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of main reasons for this is that the typical boltless steel
connections are essentially called “semirigid” or “partial-
strength” structure representing a strong nonlinear behavior
[3]. 2erefore, the most recent design codes, such as those of
the EN 15512 [4], RMI [5], and AS4084 [6], recommend
physical experiment method of the testing results to assess
the moment-rotation (M-θ) behavior of any SPR BCC.
Numerous studies in the last few years are available on the

experimental testing of SPR BCCs [7–11]. Apparently, these
investigations, dependent on experimental results, are rela-
tively accurate and reliable but their arrangements are too
expensive, and operations are too complicated to be utilized in
industrial production on a large scale. On the other hand, the
possibility of random or systematic errors in the experimental
investigations and the diversity of beam-end-connectors also
directed researchers towards the finite element (FE) modeling

Figure 1: High-rise steel pallet racks under construction in China.
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Figure 2: Details of SPR BCC. (a) Physical map. (b) Top view. (c) Isometric drawing.
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of connections [2, 12]. FEmodeling, which wasmade by using
different analysis software, has proven itself to be a powerful
tool to gain a more predictable performance of the con-
nections and the effects of various parameters on the overall
performance of SPR. Furthermore, a suitable solution was
proposed to derive a particular uniform M-θ relationship for
each connection type on the basis of BCCs geometric pa-
rameters through experimental investigations and finite el-
ement (FE) modeling [13]. From analytic point of view, Zhao
et al. and Gusella et al. proposed amechanical model based on
the component method to predict the initial rotational
stiffness of beam-to-upright connections [14, 15]. 2ose
analytical models are based on physical knowledge of stability
mechanics, which not only are very appealing but also give a
thorough insight into the deformationmechanism ofmultiple
components. However, to cope with the inherent complexity
of structural mechanics, some assumptions have to be in-
troduced into these models, among which, the assembly
relationship of the beam-to-column joints has not specially
been addressed in previous studies. 2is may ultimately affect
the prediction accuracy of analytical models and then result in
unexpected deviation from physical tests. 2e increasing
demands for cold-formed thin-walled steel in modern in-
dustry need to explore more reliable methods of accurate
prediction of the behavior of storage racks, which have a wide
range of adaptability and operational convenience in engi-
neering design. 2e proliferation of industrial “big data” has
created many exciting opportunities for those working in
various fields such as science, engineering, and business. 2e
machine learning (ML) and data mining (DM) from in-
dustrial big data have been rapidly developed as new disci-
plines of computer science and engineering application
[16, 17]. It has been gradually realized that those data from
engineering experiments and analysis not only can be used for
the engineering practice, but also have the potential to provide
insight and knowledge for the designer to improve the
construction quality itself. 2e data-driven approaches focus
on analysis and discovery of the potential pattern of design
process and can realize precise prediction of complex engi-
neering problems, usually including some metaheuristic
optimization algorithms such as the genetic algorithm and
particle swarm optimization, artificial neural network (ANN),
support vector machines, and Bayesian models [18]. Within
the constructional steel fields, the advantage of an ANN was
used to propose an intelligent finite element for viscoelastic
material behavior in [19]; Shah et al. [2] also proposed a
hybrid intelligence model based on linear genetic program-
ming (LGP), artificial neural networks (ANNs), and adaptive
neuro-fuzzy inference system (ANFIS) to predict the mo-
ment-rotation (M-θ) behavior of boltless steel connections
[20].

In recent years, a variety of machine learning methods
have been applied on a large scale in the modern industrial
and civil engineering field. Among them, convolutional
neural network (CNN) is one of the representatives of deep
learning algorithm, which is suitable for multipixel and
audio processing. Cha et al. [21] and Wang and Cha [22]
used these novel deep learning methods for damage de-
tection in structural-health monitoring for civil structures.

In addition, Santos et al. [23] compared four kernel-based
algorithms for damage detection under varying operational
and environmental conditions, namely, based on one-class
support vector machine, support vector data description,
kernel principal component analysis, and greedy kernel
principal component analysis. Langone et al. [24] came up
with a technique called adaptive kernel spectral clustering
(AKSC) which unifies the data normalization and damage
detection steps. Inspired by the idea of unsupervised feature
learning that uses artificial intelligence techniques to learn
features from raw data, a two-stage learning method is
proposed, with Moving Kernel Principal Component
Analysis (MKPCA) and Nyström methods, by Ghiasi and
Ghasemi [25] for intelligent health monitoring of civil en-
gineering structures. Besides, support vector machines
(SVMs) are also receiving increasing attention in different
application domains for which artificial neural networks
(ANNs) have had a prominent role, due to their many at-
tractive features and promising empirical performance. 2is
systematic approach, motivated by statistical learning the-
ory, led to a class of algorithms characterized by the use of
kernels, the absence of local examples, the sparseness of the
solution, and the capacity control obtained by acting on the
margin. Unlike traditional ANN models, SVM models are
based on the principle of structure risk minimization (SRM),
which equips the latter with greater potential to generalize.
Since the foundation of the SVMs paradigm was laid down
by Vapnik in mid-1998 [26], applications in many engi-
neering fields have emerged, such as architecture [27],
communication system [28], geology [29], and even fi-
nancial management [30]. However, reports about which
SVMs are used for predicting theM-θ behavior of SPR BCCs
have not been seen so far.

Taking the riveted BCCs as our research object, we present
a novel data-driven model, using an integrated experimental-
FEM-SVM methodology to overcome many difficulties
associated with the mechanical performance of semirigid
beam-to-upright joint modeling, which is the main contri-
bution of this paper. 2e objective of data-driven based
predictive models is the development of enabling tools for
designers to make rapid and effective decision when big
datasets are available on prediction and reasonable number of
predictors. Compared with existing references, the obvious
distinctions of our work lie in the fact that the finite element
simulation data based on physical test are utilized to train
SVM model and predict the bending strength of the complex
boltless steel connections with data mining method. 2e
results have undergone comparative analysis with those of the
traditional FEM and ANN. 2e preliminary investigation
demonstrates that the data-driven models have a reasonably
good accuracy in most of the cases and are more suitable for
the nonlinear mechanical behaviors. 2e outline of the
remaining content of this paper is as follows. Section2 briefly
describes data-driven model framework and integrated
methodology. Based on the data from physical performance
tests of BCCs, Section 3 develops a finite element model to
exactly simulate the flexural behavior under monotonic loads.
Section 4 introduces the SVM regression algorithm and data
mining process. 2e results and discussion of the case study
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are presented in Section 5. Finally, the conclusions and future
work are summarized in Section 6.

2. Data-Driven Based Methodology Framework

Generally speaking, the current models available to solve the
mechanical performance problem of the SPR BCCs can be
mainly categorized into two types: physical experiment
based analytical models and FE based numerical model.
However, the use of the two techniques for analyzing this
wide range of beam-to-upright assembly in massive engi-
neering practices could be inappropriate due to the great
amount of time and economic resources required. 2e
methodology proposed in our paper is based on a hybrid
approach of experimental, numerical (finite element
method), and machine learning (support vector machines)
techniques, which allows the obtainment of computational
efficient results for various design solutions to make rapid
and accurate evaluation. As shown in Figure 3, the data-
driven modeling framework includes three stages, and the
general task in each stage is described as follows.

Stage I: Data acquisition
2e task of this stage is to collect and transform the data
from the beam-to-column physical experiment and
finite element simulation into engineering database.
Because the physical experiments are so costly that
volume of real dataset is relatively limited, the finite
element simulation is employed to expand engineering
data as machine learning required. On the basis of the
test data, the finite element model in the commercial
software ANSYS is repeatedly calibrated and validated
in order to exactly simulate the blending process of the
cantilever beam experiment; then, using the so-called
virtual testing method, the different rotational stiffness
from finite element simulation for the existing joint
solutions is obtained instead of the real physical test.
Finally, the substantial data such as the geometric
features, assembly relationship, and corresponding
mechanical behavior on the diverse BCC joints are
stored in engineering analysis database.

Stage II: Machine learning
2is stage is the core module of data-driven modeling
which can cover the full machine learning pipeline
from data processing to result evaluation. Inmost cases,
those modeling data from the engineering database fall
within different ranges. It is highly essential to pre-
process the input data before applying them to the
machine learning models, so as not to affect the ob-
tained results. On the other hand, these raw data and
engineered features probably have a large number of
independent or redundant variables, which often make
models more complex and incomprehensible.2ere are
two main dimensionality reduction methods for data:
one is to extract the main features of the data by
destroying the original structure of the data. 2e other
is to conduct correlation analysis on the data and select
the attributes of the data according to certain rules to

achieve the purpose of dimensionality reduction.
Kernel methods belonging to the first type, such as the
kernel principal component analysis (KPCA), have the
ability to find nonlinear patterns from the data while
keeping the computational elegance of matrix algebra,
but they often take up a lot of memory and the cal-
culation is more complicated [31]. Here, the correlation
coefficient after Pearson R falls into the second type as
an easier feature extraction method is used to reduce
the data dimensionality and improve the generalization
performance of a predictive model. In the model
training, the normalized dataset is randomly divided
into separate train and test sets; on the basis of those
data, the control parameters of the SVM model are
continuously adjusted and optimized through iterative
loop mode until the predictive accuracy satisfies the
need of engineering practice as a whole.
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Figure 3: Methodology framework.
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Stage III: Design decision
Once the predictive model is trained well, new design
solutions for the BCC joint are input into it one by one,
and their mechanical performance can be quickly
obtained so that structural engineers can make more
reasonable decisions.
Unlike the existing programs and methods
[2, 14, 32, 33], the merits of data-driven model
framework lie in the following:

(i) SVM/ANN is a self-adaptive and data-driven
method in nature, so there is no need to make
some rigorous assumptions about the statistical
distribution on real engineering data.

(ii) SVMs are good at handling data with much more
features than samples, which makes it more ac-
curate for modeling complex data patterns, as
opposed to traditional modeling approaches based
on a large amount of test data.

(iii) Along with the growth of engineering data, the
proposed framework is very expandable and has
the capability of improving prediction accuracy by
system self-learning.

(iv) Robust reasoning machine in the intelligent pre-
diction model is utilized to optimize design pa-
rameters on the SPR BCCs as predictive model
calculating without consideration of the potential
rule collision from explicit design knowledge.

3. Experiments Based Finite
Element Simulation

2e flexural tests on the different BCCs are the foundation of
analyzing the mechanical performance of boltless connec-
tions. On the basis of the physical test, a refined finite el-
ement model on SPR BCCs was built to simulate the
cantilever test process as accurate as possible in this section.

3.1. Experimental Program. 2e cantilever testing method is
considered to be an efficient method to predict the strength
characteristics of SPR BCCs [34], which can give a precise
experimental evaluation of the flexural behavior of locally
manufactured beam-to-column connections when subjected
to increasing static hogging loading. In this method, both
ends of the column are kept rigidly fixed. 2e end of the
pallet beam attached to the end connector is inserted in the
perforations at the center of the column, and the other end is
left in cantilever. A lateral restraint is provided to prevent the
twisting of the beam end, and the beam is left free to move in
the loading direction. Loading should be applied 610mm
from the face of the column.2e consequent displacement in
the line of action of the applied load and/or the rotation near
the connector is observed.2e rotation is measured by either
transducers or inclinometers.

3.1.1. Material Properties. 2e material properties of the
column, beam, and beam-end-connector were obtained
through the tensile coupon test and are given in Table 1. 2e

test was conducted according to EN 15512 [4]. 2e standard
specifies that the testing specimens for tensile test should be
cut from the direction of rolling on samples of raw material
coil, in accordance with EN 10002-1 [35].

3.1.2. Specimen Details. 2e specimens were distinguished
by three different types of columns, four different beam-
end-connector thicknesses (Table 2, Figure 4), three
different beam positions (Figure 5), three different
clearances between the connectors and the column webs
(Figure 5), and other characteristics (see Section 5). All the
dimensions of the specimens are the measured values.

3.1.3. Testing Arrangement. Six groups of beam-to-columns
chosen in pallet racking have been tested and analyzed from
the existing experimental data which were collected from the
Shanghai Jingxing Logistics Equipment Engineering Co.,
Ltd, China. 2e experiment setup and supporting systems
are shown in Figure 6.

At the beginning of the test, an initial load F of 10% of the
expected failure load was preloaded at 400mm from the beam
flange surface to the column.2e purpose is tomake the rivets
on the beam-end-connector fully contact the column grooves,
then fix the components, and then unload. 2e measuring
instrument was reset, and then the force F was gradually
increased to the maximum load value until the BCCs failed.
During the test, load F was measured by a load cell, and the
vertical components of the displacements d1 and d2 at the
loaded section were directly monitored by the linear variable
displacement transducer (LVDT) of the testing machine.
LVDTs and wire-actuated encoders were connected to a
computer-aided data recording system and load cells.

3.1.4. .e Experimental Results and Moment-Rotation
Response. 2e stiffness of beam-to-column is obtained by
moment-rotation (M-θ) curve. 2e rotation may be mea-
sured by displacement transducers bearing onto a plate tack-
welded to the beam close to the connector, but with enough
clearance to allow for connector distortion. 2e moment M
and rotation θ were calculated by the following equations:

M � b · F, (1)

θ �
d1 − d2

k
, (2)

where F is the loading; b is the distance between the loading
jack and the surface of the column, which is 400mm; d1, d2
are the displacements; and k is the distance between d1 and d2.

According to the code EN 15512 [4], the yield stress and
thickness of the materials of the beam, upright and con-
nector in Table 2 are used to calibrate the observed value of
M and θ of the test. 2e acquisition of stiffness requires an
over coordinate origin line at the M-θ polynomial fitting
curve (Figure 7), which, with the line of design moments
Mt,Rd, divides the test curve into two equal parts (A1 andA2).
Apparently, the bending strength of beam-to-column is
determined by the slope of the line.
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3.2. Finite Element Simulation. 2e goal of the finite element
(FE) model of the BCCs in our work is the flexibility to
represent the complex cross-sectional geometry of the
component and the ability to assign semirigid behavior to
the seam and take into account the effects of local defor-
mation, as well as flexural buckling of the ultimate bearing
capacity of the structure. With reference to the finite element
(FE) modeling of storage rack system [20], the commercial
finite element software ANSYS R17 is used for the model
development and analysis presented in this paper.

3.2.1. Establishment of Geometric Model. Firstly, the 3D
models are established based on the real value of the tested
samples using the SolidWorks software. It is noticed that the
cross section and the hole setting are not simplified to ensure
the accuracy of the finite element model, but the chamfer
and fillet have been simplified accordingly.2e beam and the
measuring plate on the beam are welded in the actual test, so

the beam and the measuring plate are integrally modeled
during the three-dimensional modeling, as shown in
Figure 8. Different finite element types in the ANSYS
software package are used in the modeling of beams,
columns, connectors, and rivets. Among them, SHELL163 (4-
node 3D elastic shell) was used to model beams, columns, and
connectors. SOLID45 (8-node 3D structural solid) was used
to model rivets and load plates. 2e spar elements carry only
axial forces, and any shear on the interface between the
connector and the column flange will be transferred through
the friction allowed by the contact elements. Specific element
characteristics are shown in Table 3.

3.2.2. Material Properties and Mesh. 2e materials on the
tested samples were set as nonlinear steel for subsequent
buckling analysis by the ANSYS Workbench with Structural
Steel NL.2ematerial properties of all the three components
listed in Table 1 were imported to the FE model (FEM).

Table 2: Specimen from the columns, beams, and connectors.

Structural elements Web length/beam width Flange width/beam height Mean thickness tt,m (mm) Mean yield strength fy,m (N/mm2)

Column 94 77 2.023 339.8
100 100 2.055 375.8

Beam 48 100 1.51 348
Connector 4.030 358.5
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Figure 4: Cross section of the connection components. (a) Column. (b) Beam. (c) Beam-end-connector.

Table 1: Material properties of the specimens.

Structural elements Young’s modulus E (GPa) Poisson’s ratio v Yield strength fy (N/mm2) Ultimate strength fu (N/mm2)
Column

210 0.3
376 562

Beam 348 496
Beam-end-connector 359 528

Clearance

Beam position

(a) (b)

Figure 5: Assembly parameters. (a) Beam position of BCC. (b) Clearance of BCC.
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Meshing is the basis of finite element analysis. Rea-
sonable meshing can reduce the use of computer memory,
and the results are more accurate. Firstly, the 3D assembly
model of beam-column joint is sliced in the geometry
module, and the column, connector beam weldment, and
rivet are manually split into three independent parts.
2en the independent parts are from new part processed,
and the model is divided into 20-node full hexahedron
units. As the main structures for transmitting torque, the
open hole parts of the upright posts, connectors, and rivet
structures are more prone to deformation, so the grids of
these parts are more finely divided. Numerical trials using
different mesh sizes have shown that mesh size of 10mm
is more appropriate to achieve accurate results. After
division, Figure 9 shows the meshing of the entire
connection.

3.2.3. Surface Interaction. 2e beam-column joints are
semirigid assemblies with welded and riveted components and
different contact surfaces between members. 2e accuracy
of simulation results will be affected by surface-to-surface
contacts directly.2erefore, different contact settings are made
for the contact surfaces that interfere when the beam-column
joints are stressed. As shown in Figure 10, in the assembly of
beam-column joints, except for the welded beams and
mounting plates, the mounting plates and rivets with inter-
ference fit are not required to be set as a whole by default. 2e
contact surface of each rivet matching with the column hole is
shown in Figure 10(a). 2e contact surface on which the
hanging plate and the column may deform under stress is
shown in Figure 10(b). 2e contact between the rivet and the
column hole is set to friction so that the connection between
the beam and the column is loose and meets the semirigid
property of the BCCs. Frictional parameters were set at 0.3 by
referring to GB 50017-2003 steel structure design specification.
During the simulation process, the contact surface between the
column and the connector may be deformed without inter-
fering with each other; in order to ensure the simulation ac-
curacy, the contact surface parameters need to be set to the
“adjust to touch” option (contact only).

3.2.4. Loading and Boundary Conditions. In the experi-
mental setup, the bolt-type fixed connection was used to
completely restrain the six degrees of freedom of the column.
Further, the fixed frame was used to limit the displacement
of the beam perpendicular to the column. 2erefore, similar
boundary conditions were applied to the end of the column
and the beam. For the test setup, a force loading was applied
to the beam at a distance of 400mm from the contact surface
of the column and the connector. Similar loading protocol

was adopted for the FE analysis. 2e load was applied to the
top of the beam which causes compression in the top of the
beam-end-connector and tension at the bottom. All node
displacements of the bottom plates on column and side
plates on beam in the negative Y axis have been set to zero
(Figure 11). Two probe points were placed on the top flanges
of the beams on either side to observe the deflection in the
beams.2e stiffness of FEM simulation could be obtained by
M-θ curve as shown in Figure 7.

3.2.5. Validation of the FE Model. 2e simulation results of
beam-column joints when the load F reaches 1000N are
shown in Figure 12. Referring to the method of obtaining
stiffness value of beam-column joint in mechanical per-
formance test, the four measuring points are, respectively,
placed at four corners of beam measuring plate, corre-
sponding to displacement sensors in mechanical perfor-
mance test. Among them, the average value of the results of
the two measuring points A and B is taken as the value of d1
in formula (2), the average value of the results of the two
measuring points C and pointD is taken as the value of d2 in
formula (2), the M and θ values under the corresponding
loads are obtained according to the calculation method in
Section 3.1, and theM-θ curve of the finite element model is
obtained by curve-fitting finally.

A comparison of the M–θ graphs plotted for the ex-
perimental and finite element studies is provided in
Figures 13(a)–13(d). Four specimens with varying column
thickness values and column cross-sectional areas were
compared to illustrate the agreement between the experi-
mental and FE analysis results. It was found that the stiffness
of the specimens was on the verge of that in the experimental
result even though the ultimate moment capacity of the
connection obtained from the FE model for specimen was
slightly higher than that from the experiments. 2is is be-
cause the imperfections from material and fabrication are
not considered by the FE model [1]. Moreover, due to the
assembly defect between rivets and columns and the small
applied load at the initial stage of the test, there is a deviation
between the two M-θ curves near the origin. According to
formulas (2) and (3), the stiffness values of M-θ are cal-
culated, and it is found that the stiffness values are not much
different, and the average error of the four groups is about
4.6%.

During the mechanical performance test and finite el-
ement simulation, three failure modes of beam-column
joints were observed.2e failure modes are shown in Table 4:
(i) yielding of the beam-end-connectors, (ii) tearing of the
column material, especially the holes, and (iii) fracture or
yielding of the rivets. When the beam-column joint is under

Table 3: Element characteristics of SHELL163 and SOLID45.

Name SHELL163 SOLID45
Position Column, beam, connector Rivet
Character Elastic shell element 3D solid structural unit
Node number 4 8
Nodal freedom UX, UY, UZ and ROTX, ROTY, ROTZ UX, UY, UZ
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compression, the rivet will bear the shear force opposite to
the direction of the connector and the column, resulting in
plastic deformation. 2e three simulated failure modes

basically agree with the mechanical performance test, which
verifies the validity of the simulation results. It is shown from
the above diagrams that the FE model can predict the

(a) (b)

Rivet-hole interface 
Column-connector

interface

Figure 10: (a) 2e interaction between surface of column and surface of beam-end-connectors. (b) 2e interaction between surface of rivet
and holes of column.
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Figure 9: Diagram of mesh.
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Figure 11: Boundary condition and loading.
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Figure 13: Comparison between experiment and finite element analysis. (a) Column: 90/77/2.0; beam/connector: 100/48-3 rivets. (b)
Column: 100/90/2.5; beam/connector: 100/48-3 rivets. (c) Column: 100/100/2.0; beam/connector: 100/48-3 rivets. (d) Column: 120/94/2.0;
beam/connector: 100/48-3 rivets.
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experimental behavior well as a whole, and the physical test on
the BCCs can be replaced by the FE simulation from the
perspective of engineering structure design. Consequently,
with similar FE simulationmethod, 432 bending tests of beam-
to-column joints were carried out by selecting representative
columns includingM90B,M100A, andM100B, which are the
most widely used in industrial application. 2e detailed pa-
rameters and specific simulation data are shown in the
Supplementary Material (available here).

4. Empirical Studies

To validate prediction performances on the SPR BCCs used
by the proposed data-driven methods, some empirical cases
are conducted in this study. 2is section first argues the
mapping relationship of predictive model between the input
data and output data. 2en, it describes how the empirical
cases were carried out. Finally, it provides a description of
how the search for the parameter that achieves the best
possible performance was made.

5. SVM Regression Algorithms

Support vector machines (SVMs) are based on principles
of convex optimization and statistical learning theory
proposed by Vapnik and Izmailov [36]. 2e main idea of
the SVM regression algorithm is to estimate the output
variable y from original input data vector x mapped into a
higher-dimensional feature space through nonlinear

transformation, and extract the information and regu-
larity contained among the data. 2e SVM regression
function is defined as

y � f(x) � w
Tφ(x) + b, (3)

where f(x) denotes the estimated value, w the weight vector,
b a constant known as “bias”, and φ(x) a mapping function
that maps the input data vector x into a high-dimensional
feature space. Minimized risk function can avoid overfitting
and thereby improving the generalization capability while
obtaining the weight vector wT, as shown in

min
1
2

w
T
w + c 

T

t�1
ζt + ζ ∗t( 

s.t. w
Tφ xt(  + b≤ϕ + ζ ∗t (i � 1, 2, . . . , T),

yt − w
Tφ xt(  + b ≤ϕ + ζt(i � 1, 2, . . . , T),

(4)

where c is penalty parameter, and ζt and ζ ∗t are the sizes of
the stated excess positive and negative deviations which are
termed nonnegative “slack” variables, as shown in Figure 14.
It is important to note that the feature φ(x) need not be
computed; rather, what is needed is the kernel function that
has to satisfy Mercer’s condition. Some of the mostly used
kernels include polynomial, radial basis function (RBF), and
sigmoid. In this study, RBF is used which is relatively simple
and suitable for high-dimensional feature sets, as shown in

Table 4: Comparison of failure modes between the experimental test and FEM.

Failure mode Experiment FEM

Yielding of the connectors

Tearing of the column

Fracture of the rivets
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2

2σ2
⎡⎣ ⎤⎦, (5)

where σ represents width of the RBF. Correct selection of
kernel function parameters is critical to the performance and
compensation accuracy of SVMs, which are described in
detail in [37]. Some advances and more detailed description
of SVM for regression can be found in [27, 36].

5.1. .e Relational Mapping of Predictive Model Data.
2e construction of the prediction model only depends on
the mapping relationship between input and output data,
so the determination of input and output indexes of the
prediction model plays an important role in the model
construction. 2e only output of each prediction model
based on data-driven method was the bending strength
(BS) of boltless BCCs in our study. According to the
properties of parameters, the performance parameters
that may affect the BCCs are divided into two categories:
structural parameters and assembly parameters. 2e
influence of structural parameters such as column-related
parameters, beam-related parameters, and connector-
related parameters is considered, respectively, as the model
inputs with reference to the existing analytical model
[14, 38]. On the other hand, according to the proposal in
[39], the flexural rigidity of boltless BCC is largely affected
by the different wielding positions between the connector
and the stub beam. In fact, the boltless BCC is made up
from the beam and the connector with the welding tech-
nology. 2e connector has an interference fit to the rivet,
which makes the rivet in clearance fit with the column.
Accordingly, in this paper, two additional assembly vari-
ables such as the beam position (BP) and the clearance
between the connector and the column web (CL2) are also
supposed to be utilized as the predictive model inputs so as
to make it as close as possible to the practical application.
2e general relational mapping of predictive model data
and its description are listed in Table 5.

5.2. Model Train

5.2.1. SVM Model Train. In this work, the regression pre-
diction model of support vector machine is established by
compiling relevant programs using the “Regression Learner
App” in Matlab2017a [33]. A total of 432 sets of data were
collected from finite element simulations of beam-column
joints, of which 400 sets were used for model establishment
and the remaining 32 sets were used for model result veri-
fication. 2e establishment of support vector machine pre-
diction model includes the selection of verification methods,
kernel functions, loss accuracy, and related parameters.

(1) Choose Verification Scheme. Choose a validation method
to examine the predictive accuracy of the fitted models. Val-
idation estimates model performance on new data, helps
choose the best model, and protects against overfitting. A
model that is too flexible and suffers from overfitting has a
worse validation accuracy. Choosing a validation scheme be-
fore training anymodels can allow comparing all the models in
the session using the same validation scheme. Each round of
cross-validation involves randomly partitioning the original
dataset into a training set and a testing set. 2e training set is
then used to train a supervised learning algorithm, and the
testing set is used to evaluate its performance. 2is process is
repeated several times, and the average cross-validation error is
used as a performance indicator. 2is paper uses the K-fold
validation method provided in the “Regression Learner App.”

(2) Selection of Kernel Function. 2e app can train regression
support vector machines (SVMs) in Regression Learner. For
greater accuracy on low-through medium-dimensional
datasets, train an SVM model using “fitrsvm” function. 2e
predictive results applying different core functions including
Linear SVM, Quadratic SVM, Cubic SVM, Fine Gaussian
SVM, Medium Gaussian SVM, and Coarse Gaussian SVM
are shown in Table 6. By comparison with the root mean
square error (RMSE), R-squared, mean squared error
(MSE), and mean absolute error (MAE), the Cubic SVM is
selected as the best core function of the model.

(3) Advanced SVM Options. 2e remaining advanced SVM
options in Matlab App are demonstrated as follows. 2e box
constraint is set to 4500, the epsilon to 450, and the kernel
scale to 2. 2e model training results are shown in Figure 16.

After training a regression model, the predicted vs.
simulated response plot (as shown in Figure 17) is used to
check model performance, which is used to understand how
well the regression model makes predictions for different
response values. A perfect regression model has a predicted
response equal to the true response, so all the points lie on a
diagonal line. 2e vertical distance from the line to any point
is the error of the prediction for that point. A good model has
small errors, and so the predictions are scattered near the line.

2e residual plot (as shown in Figure 18) is used to check
model performance.2e residual plot displays the difference
between the predicted and simulated responses. Usually a
good model has residuals scattered roughly symmetrically
around zero.

y

x

ξ

ξ∗

f(x) + ε

f(x) – ε

f(x)

Figure 14: Diagram of support vector machine.
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Table 5: 2e input feature indicators.

Related category Indicators Descriptions Notes

Column CT 2e types of the columns On the basis of research by Shah et al. [14, 38],
as shown in Figure 15CT1 2e column thickness

Beam

BH 2e beam height Referring to the research by Zhao et al. [11],
the beam structure can be simplified to a rectangle for the

convenience of modeling and analysis,
as shown in Figure 4

BW 2e beam width

BT 2e beam thickness

Connector
OPC 2e opening position of connector On the basis of research by Markazi et al. [39],

as shown in Figure 4NT 2e number of the rivets
CT2 2e thickness of connector

Assembly
parameters

BP 2e beam position 2is paper proposed assembly parameters as input indicators,
as shown in Figure 5CL 2e clearance between the connector

and the column web

Table 6: Comparison of prediction models of different kernel functions.

Name RMSE R-squared MSE MAE
Linear SVM 7306.48 0.21 53422823.02 4186.19
Quadratic SVM 4597.41 0.68 21327775.39 3911.93
Cubic SVM 1227.21 0.98 1522405.96 847.19
Fine Gaussian SVM 6099.04 0.45 37151937.61 4036.13
Medium Gaussian SVM 4577.70 0.69 20947018.98 2672.64
Coarse Gaussian SVM 7490.49 0.17 56083875.77 4300.80

Front flange

Behind flange

Reinforcement

Web

Opening

Figure 15: Section details of column.
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Figure 16: Response plot.
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5.2.2. ANNModel Train. Artificial neural network (ANN) is
a powerful data-modeling tool that is able to capture and
represent any kind of input-output relationships. BP is
widely used in engineering because of its simple model and
high prediction accuracy [40].

2e design of BP model program adopts the artificial
neural network app in Matlab2017a. 2e model training
uses the same 400 sets of training data as SVM model.
Similarly, the datasets from BCCs virtual test are divided
into two groups of training data and testing data. 2e
training process of the model includes the determination
of hidden layer number, the selection of transfer function,
and the preset number of neurons in hidden layer. 2e
error of observation results can be modified by adjusting
the above parameters, until the expected results are
obtained.

In the light of Bishop’s report, more than one hidden
layer is usually not necessary. 2erefore, the ANN archi-
tecture for thin-walled steel design has only one hidden
layer. As proposed in the literature [41], the node number of
hidden layers was obtained as 8 by

s �

��������������������������������������

0.43mn + 0.12n
2

+ 2.54m + 0.77n + 0.35 + 0.51


,

(6)

wherem is the number of neurons in the input layer and n is
the number of neurons in the output layer.

2e BP network toolbox in Matlab2017a has a variety of
transfer functions for modeling, including linear function,
nonlinear function, and other error surface functions. In this
paper, “logsig” is selected as the model transfer function,
which is a differentiable logarithmic s-type transfer function,
which maps the input range of neurons (−∞, +∞) to the
interval of (0, +1), and its equation is

logsig(n) �
1

1 + e
− n. (7)

2e detailed parameter settings of the ANN prediction
model are summarized in Table 7.

5.3. Results and Discussion. After the establishment of the
model, it still needs to be verified, so it is compared with the
results of the four groups of mechanical properties tests, as
shown in Table 8. It can be seen that both SVM model and
BP model are close to the test value, with mean absolute
error (AE) of over 3% and correlation coefficient R close to 1.
2e accuracy of the model is preliminarily verified. Because
the training set of the prediction model comes from the
calculation results of the numerical model, the overall value
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Figure 17: Predicted vs. simulated response plot.
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Table 7: 2e selection of ANN model parameters.

Name Parameters
Hidden layer node number 8
Hidden layer number 1
Transfer function logsig

Table 8: Comparison between the test values, SVM predicted
values, and ANN predicted values.

Number Test SVM AE (%) ANN AE (%)
1 34870.00 35033.05 0.47 36607.54 4.98
2 49890.00 51735.48 3.70 50863.15 1.95
3 60640.00 60463.71 0.29 62736.40 3.46
4 65170.00 65553.39 0.59 64236.76 1.43
MAE 40.7625 434.385
RMSE 950.06 1519.20
MAPE 0.12% 1.19%
Correlation
coefficient R 0.9978 0.9959

R-squared 0.9956 0.9919
Cases with an error
of more than 3% 1 2

Note. 2e unit of bending strength is kNmm/rad.
AE � |(Test − Predicted)/x0| × 100% . MAE � (1/N) 

N
n�1 AEn
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is higher than the experimental value. 2e final results are
listed in Table 9, where “FEM,” “SVM,” and “ANN” refer to
the finite element values, the SVM predicted values, and
ANN predicted values, respectively. Statistical parameters,
such as the mean absolute error (%) and correlation coef-
ficient R between the expected and real value, are used to
judge the predictive power of the data-driven models. It is
evident that the accuracy of all the predictive models is
relatively high (R> 95%), while the SVM model, in terms of
the mean absolute error and the ratio of the cases with more
than 5% error, is lower than the ANN model. It is evident
from Table 9 that the predictive power of the SVMmodel the
predictive power of the SVM model is the better of the two
models considered here.

6. Conclusion

Due to computational complexity and accuracy, the analytical
expressions for the moment-rotation stiffness of thin-walled
steel beam-to-column connections are not widely used for steel
member design so far. In this paper, the M-θ behavior pre-
dictions from a novel data-driven model with the integrated
experimental-FEM-SVM methodology are compared with
those obtained from the traditional FEM and ANNmodel. It is
noted that the data-driven model based on SVM technique is
very efficient because the prediction performance is much
closer to the physical test and FEM than those obtained from
the ANNmodels. Here, we only demonstrate that, trained with
the engineering datasets from experiment and simulation, the
data-driven model is able to predict the M-θ behavior of
different BCCs through self-learning, which can help engineers
to make quick and effective decisions for complicated rack
design. 2e results of our paper appear to be preliminary and
limited to boltless BCCs situations, but it has been found that
data-driven models for solving complex semirigid component
design problems are very promising. Future research should

focus on the following aspects: (1) expansion of the engineering
analysis database to improve the flexibility of the data-driven
model and then optimize the design configuration among a
large number of beam-to-column joints; (2) development of
new methodologies that can effectively explain the results of
these apparently incomprehensible models. We believe that
this research can be finally fused together with other pioneering
analytic or experimental studies. With advancement of data
mining and cloud computing techniques, many of the pro-
ducers’ subjective intuitions in steel pallet rack industry will
finally be replaced by smart and friendly expert systems in the
near future.
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Table 9: Comparison between the FEM values, SVM predicted values, and ANN predicted values.

Number FEM SVM AE (%) ANN AE (%)
1 43945.22 45042.03 2.50 48907.54 11.29
2 52853.68 53755.41 1.71 52873.51 0.04
3 56572.25 56453.72 0.21 56736.45 0.29
4 53116.89 56553.71 6.47 54236.05 2.11
5 56792.16 56853.3 0.11 57766.89 1.72
6 62064.84 61920.47 0.23 62083.12 0.03
7 47064.88 47399.29 0.71 45548.75 3.22
8 51237.39 50781.86 0.89 49606.38 3.18
9 55195.33 54033.37 2.11 54038.4 2.10
. . .

31 51897.03 51306.61 3.59 50754.98 4.63
32 55933.86 54525.76 1.78 55121.01 0.71
MAE 25.51 115.40
RMSE 2329.36 1806.92
MAPE 0.06% 0.24%
Correlation coefficient R 0.9560 0.9651
R-squared 0.9140 0.9315
Cases with an error of more than
5% 3 7

Note: the unit of bending strength is kNmm/rad.
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2e detailed simulation and test data used to support the
results of this study are provided in the Supplementary
Material (Supplementary Materials)
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