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-e weak surrounding rock has the characteristics of easy softening, poor integrity, low mechanical strength, etc., which makes it
easy to induce different degrees of deformation and damage under excavation disturbance and then seriously affects the stability of
the tunnel. Carrying out soft rock tunnel deformation prediction research and designing the supporting structure according to the
predicted value is of great significance to engineering construction and design. Based on the grey theory, the large deformation of
the vault, shoulder, and waist of the soft rock tunnel are predicted, and then the specific bolt support is designed in the maximum
predicted value (Smax·R) area. -e control effects of different bolts, spacing (d), length (L) on the maximum displacement (Smax·M),
and maximum stress (σmax·M) the surrounding rock are analyzed by numerical simulation. Results show that the gray model has
high prediction accuracy, the best prediction time is one week, and the maximum error is only 2.99%; with the decrease in d, resin
bolt support has a significant supporting effect compared withmortar bolt support, with Smax.M and σmax·M reduced by 64.38% and
10.35%, respectively; as the L of bolt increases, compared with the mortar bolt support, the resin bolt support has a more obvious
restraining effect on the surrounding rock deformation, and Smax·M and σmax·M are reduced by 28.20% and 10.00%, respectively;
when 4.5m< L< 6.0m and 0.6m< d< 0.7m, resin bolt support should be adopted; in other ranges, mortar bolt support or resin
bolt support has a less significant difference in controlling surrounding rock deformation.

1. Introduction

Large deformation of soft rock tunnels is a common disease
in the tunnel field, which not only affects the safety of tunnel
construction but also endangers its service life. For engi-
neering, it is crucially important to predict deformation and
propose countermeasures. At present, the study of tunnel
deformation prediction methods has been mentioned in
many documents [1, 2], but gray theory is applied to de-
formation prediction and few studies on the design of
support at the maximum deformation [3–5]. -erefore, it is
still necessary to research whether the gray theory prediction
method is carried out in-depth.

In terms of gray theory and the feasibility study of
bolting and shotcrete supports, many scholars at home and
abroad have elaborated on it in many aspects; researches
such as Szpak and Tchórzewska-Cieślak found that the gray

theory was widely used in domestic water, infrastructure
construction, economic development, etc. [6–8]; Lu believed
that the gray theory could predict mine water inflow with
high reliability and applicability [9]; Harding et al. found
that bolt support could effectively control surrounding rock
deformation, and its support effect was related to bolt pa-
rameters [10–12]; Forrestde and Liu convinced that the gray
theory prediction could grasp real-time problems in tunnel
deformation, slope collapse, and surface settlement [13];
Zhou believed that the gray theory could predict the stress
change and unknown deformation of tunnel lining [14]; Huo
et al. believed that the gray prediction was an effective means
of predicting tunnel deformation, which could be used as a
theoretical support for tunnel construction, design, and
support to improve operation efficiency [15–18].

Scholars have made many discussions on the research of
gray prediction accuracy. Chen et al. believed that the gray
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prediction model could monitor the deformation charac-
teristics of the surrounding rock of the tunnel entrance in
real time, the difference between the predicted value and the
monitored value was small, and the accuracy was higher
[19, 20]; Hu et al. believed that the gray model predicted
tunnel deformation more accurately [21–23]; Ning, Li, and
others believed that the use of gray prediction model to
monitor large tunnel deformation has high prediction ac-
curacy and small absolute error [24].

In the combined application of the gray theory and
numerical simulation, industry experts have carried out
many studies; Pan et al. found that the combination of gray
theory and numerical simulation can effectively evaluate the
deformation of foundation pit excavation and can make
real-time prediction [25, 26]; Zhang found that the accuracy
of numerical simulation was related to the continuity of the
gray sequence [27]; Bi et al. found that the application of gray
prediction and simulation technology could effectively
improve model accuracy [28]; Hu et al. believed that finite
element software analysis of tunnel surrounding rock de-
formation, combined with gray theory prediction and its
mechanical behavior, could effectively change the modeling
conditions and accuracy [29, 30].

In summary, it was found that the gray prediction model
could solve many problems in engineering fields, and its
prediction accuracy was higher, which could provide an
important reference for the safe construction of the project.
However, in their research studies, scholars mainly con-
sidered the engineering application of the gray prediction
model and analyzing its error between the prediction value
and the monitoring value, there was little research on the
combination of the prediction model and support design.
-erefore, in order to well grasp the tunnel deformation and
design support in real time, this article relies on the tunnel of
Tong Province, establishes a prediction model based on the
gray principle, uses related programming software to draw
its prediction curve, and analyzes the rationality of the
prediction results. -e design support of the dangerous
point (Smax·R) is selected, the maximum displacement (Smax)
and the maximum stress (σmax) of the surrounding rock
under the support conditions are calculated by numerical
simulation, and the optimal support proposal is finally given.

2. Establishment of Gray Forecasting Model

-e tunnel deformation monitoring data generally have no
regularity, after the probability and statistics analysis; the
gray theory can be used to generate the sequence number
with time as the axis to construct the prediction model such
as constructing the original sequence number of time
[31, 32]:
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In equation (1), k(0)(j) is the jth original sequence number
corresponding to the sequence number j.

In order to make the data of equation (1) into a regular
sequence, the data are accumulated and processed to obtain
the following:
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In equation (2), k(1)(j) is the jth time new sequence
number generated by the accumulation of j original se-
quence numbers.

Construct a new time series number as follows:

k
(1)

  � k
(1)

(1), k
(1)

(2), . . . , k
(1)

(b − 1), k
(1)

(b) . (3)

-us, the original sequence and the new sequence of
tunnel deformation monitoring values can be obtained as
follows:
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In equation (4), F(0)·(j) is the jth original tunnel de-
formation monitoring value sequence number corre-
sponding to the sequence number j and F(1)·(j) is the new
sequence number generated by the accumulation of j
original sequence numbers.

Knowing from the gray principle, equation (4) obeys the
exponential distribution, constructing a linear differential
equation between the monitoring value S and the time K,
and integrates it to obtain the following.

Differential equation:

dS

dk
+ RS � H. (5)

Integrating both sides of equation (5), we get

S(k) � C · EXP(R − Rk) + HR
− 1

. (6)

In equation (6), R andH are gray parameters and C is the
integral constant.

When k� 1, S (K)� S (1); substituting it into equation
(6), we get the following equation:
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. (7)

Substituting equation (7) into equation (6), the differ-
ential equation of S and K can be obtained as
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According to the definition of the derivative of the
function, we get

dS

dk
� lim
Δk⟶0

S(k + Δk) − S(k)

Δk
,

dS

dk
� lim
Δk⟶1

S(k + Δk) − S(k)

Δk
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

Knowing from the function continuity, when Δk is
smaller, the fluctuation of the function value is small. In
order to reasonably represent the deformation monitoring
value, replacing S with the average value of S (k) and S
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(k+ 1), and substituting the average value into equation (6),
we get
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Based on the above derivations, substituting k� 1, 2, . . .,
b− 1, b in equation (10), we get
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To solve equation (11), it can be written in matrix form as
follows:
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Simplifying equation (12), it can be obtained as follows:
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equation (13) can be written as
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From equation (15), we get
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Equation (16) is expressed by the least square method as
follows:
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Equation (17) is the calculation formula of gray
parameters.

Summarizing equations (8)–(17), the prediction model
of large deformation of soft rock in a tunnel can be obtained
as follows:
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In equation (18), S
(1)

(j + 1) is the predicted value cor-
responding to sequence j, where j� 1, 2, . . ., b – 1, b.

2.1. Model Analysis. -e prediction accuracy and error of
equation (18) are not known for the establishment of the
prediction model. -is section will analyze in detail from the
following aspects and study its accuracy.

2.1.1. Error Analysis. -e mean and variance of the original
data of tunnel deformation monitoring value F are as
follows:
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In equations (19) and (20), S(0) is the average value of the
original monitoring data and β2S is the variance of the
original monitoring data.

-e establishment of the gray forecastingmodel takes the
time series as the axis, and the residual analysis needs to use
the sample series.

-e residual sequence ω(0) (j) is as follows:
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Average value of ω(0) (j) is as follows:
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-e variance value of ω(0) (j) is as follows:
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In equations (24) and (25), ] is the variance ratio, P is the
error probability, βS is the variance value of the original data
of the tunnel deformation and settlement monitoring value
S, and βω(0) is the mean square error of the residual sequence
ω(0) (j).

2.1.2. Relevance Analysis. Correlation analysis is mainly to
establish the mutual influence relationship between the
predicted value and the monitored value and calculate the
accuracy of the model through the correlation calculation.
-e calculation is as follows.

From equation (18), we get
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Relevance calculation is as follows:
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In equation (27), ξ(j) is the correlation coefficient,
|S
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(j) − S(0)(j)| is the absolute error value,
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and χ is the error accuracy coefficient, generally 0.5.
Solving equation (27), the correlation degree can be

obtained as
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Equation (18) is the calculation formula for the degree of
relevance. Equation (28) is obtained by combining equations
(26) and (27). -erefore, theG value is uniquely determined,
and the R value represents the prediction accuracy; the larger
the value, the much higher the precision.

3. Typical Case Analysis and Support Design

3.1. Analysis of Typical Cases. -is paper relies on the
Duimenzhai Tunnel on the left line, the ground elevation of

the project is 1310m∼1390m, the relative elevation differ-
ence is 80m, and the mileage is ZK190 + 780∼ZK191 + 275.
-e geological structure is complex, with well-developed
rock folds, joints, and cracks, active faults fractures are
developed, and the rock mass is relatively broken. -e
surrounding rock is prone to instability and failure. And the
deformation of the tunnel increases with time. -e geo-
logical longitudinal section is shown in Figure 1, and the
layout of monitoring and measuring points is shown in
Figure 2. -e gray model is used to predict the tunnel de-
formation, and the results are shown in Table 1.

In order to more intuitively study the relationship be-
tween the tunnel deformation monitoring value and the
predicted value, programming drawing software is used to
draw the predicted values of S1 (left), S1 (right), S2 (left), S2
(right), and the vault, respectively. -e monitoring value
trend chart is shown in Figure 3.

3.1.1. Forecast Duration Analysis. -e data in Figure 3 show
that, at S1 (left), the inflection point occurs on the 7th day
(8 d), the error probabilities PH1 � 0.42 and PH2 � 0.43, and
the correlation coefficients RH1 � 0.68 and RH2 � 0.67; at S1
(right), the inflection point occurs on the 7th day, the error
probability PF � 0.41, and the correlation coefficient
RF � 0.69; at S2 (left), the inflection point occurs on the 6 d,
the error probability PE � 0.42, and the correlation coeffi-
cient RE � 0.72; at S2 (right), the inflection point occurs on
the 6th day, the error probability PJ � 0.38, and the corre-
lation coefficient RJ � 0.71; and at the vault, the inflection
point occurs on the 6th day, the error probability PA � 0.41,
and the correlation coefficient RA � 0.67.

At S1 (left) and S1 (right), the error inflection points
occurred on the 7th day of prediction, and the prediction
error inflection points at S2 (left), S2 (right), and the tunnel
vault all occurred on the 6th day of prediction; at S1 (left), S1
(right), S2 (left), S2 (right), and the vault, P and R are closer;
comprehensive analysis and gray prediction belongs to a
short-term prediction model; the prediction time is about 6
days; beyond this range, the prediction error and correlation
coefficient are all great changes that have occurred, so it is
recommended that if the graymodel is used to predict tunnel
deformation, the prediction duration should be controlled.

3.1.2. Error Analysis. Figure 3 shows that the predicted value
is close to the monitored value, and the maximum error is
only 2.99%. If the forecast time becomes longer, the error
reaches 5.67% on the 9th day. Although the error is within
the allowable range, the error increases with time.

3.1.3. Correlation Analysis. -edata in Figure 3 show that, at
S1 (left), there is an associated area from 7 d to 8 d. In this
area, P and R are close, PH1 � 0.42, PH2 � 0.43, RH1 � 0.68,
and RH2 � 0.67; at S1 (right), there is an associated area from
3 d to 4 d, PG1 � 0.41, PG2 � 0.40, RG1 � 0.65, and RG2 � 0.67;
at S2 (left), there is an associated area from 2 d to 3 d,
PM1 � 0.38, PG2 � 0.37, RM1 � 0.71, and RM2 � 0.70; at S2
(right), there is an associated area from 3 d to 4 d, PK1 � 0.39,
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PK2 � 0.40, RK1 � 0.69, and RK2 � 0.70; and there is no as-
sociated area at the vault.

Associated areas appear at S1 (left), S1 (right), S2 (left),
and S2 (right), indicating that the tunnel deformation in this
area is in a gentle state, and the deformation hardly increases

with time. It is relatively safe to carry out tunnel construction
at this moment; Figure 3(e) shows that the deformation of
the vault increases with time, and after the 6th day, its de-
formation is relatively slower; comprehensive analysis shows
that the design of the support at the maximum deformation
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Table 1: Tunnel deformation monitoring data.

Time
(d)

S1 (left) S1 (right) S2 (left) S2 (right) Dome
Monitoring
value (m)

Predictive
value (m)

Monitoring
value (m)

Predictive
value (m)

Monitoring
value (m)

Predictive
value (m)

Monitoring
value (m)

Predictive
value (m)

Monitoring
value (m)

Predictive
value (m)

1 50 50.03 45 45.06 121 121.34 95 95.39 44 44.05
2 60 62.25 65 60.30 188 190.36 123 125.46 55 55.08
3 99 110.38 95 99.02 189 193.56 151 153.47 79 81.00
4 150 153.42 101 103.40 236 240.63 153 154.65 111 113.02
5 197 200.96 127 129.36 251 256.37 161 163.45 131 134.05
6 240 243.50 146 147.56 256 259.78 167 168.94 145 149.69
7 279 283.00 160 164.30 258 265.96 168 172.99 150 154.87
8 281 285.30 184 190.36 259 266.97 178 184.74 153 156.40
9 307 312.50 185 195.39 262 269.35 179 189.92 155 159.90
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Figure 3: Continued.
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in the associated area is very important for the safe con-
struction of the tunnel, and it can prevent large settlement of
the vault.

-e proposed tunnel is located in a soft rock area, and
the surrounding rock grade is Grade V. Figure 3 shows that
the deformation of the tunnel increases with time, and the
maximum predicted value reaches Smax·R � 312.50mm. If
effective treatment measures are not taken, the safety of
tunnel construction will be endangered. In the following
part, the author will design the support measures at Smax·R
using numerical simulation to compare and analyze Smax·M
and σmax·M generated by the surrounding rock under dif-
ferent support conditions and giving optimal support
recommendations.

3.2. Design of Support Measures at Smax·R

3.2.1. Selection of Support Methods. -e mechanical
mechanism of the conventional mortar bolt and the resin
bolt support is the same [33], but the force transmission
effect of the resin bolt is slightly weaker than that of the
mortar bolt, and the pulling force is smaller, as shown in
Figure 4. However, resin bolts also have some advantages as
a means of tunnel support:

(1) In terms of anchoring force, the anchoring force of
resin anchors is equivalent to that of mortar anchors
of the same specification. For example, the anchoring
force of φ15mm resin anchors can reach
50 kN∼75 kN, which can provide sufficient anchor-
ing force to effectively control the surrounding rock
deformation.

(2) In terms of processability, the resin anchor rod is a
composite material composed of unsaturated poly-
ester resin as the matrix material and glass fiber as
the reinforcing material; it has high tensile strength,
but low shear resistance and good cutting perfor-
mance, and no spark. Ordinary mortar anchor rods
are prone to damage the processing machinery (such
as being involved in the drum to damage the pick)
during the cutting and processing of the support site,
and sparks are prone to occur during the cutting and
processing of the construction site, which poses
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Figure 3: Schematic diagram of comparative analysis of tunnel deformation prediction value and monitoring value: (a) S1 (left); (b) S1
(right); (c) S2 (left); (d) S2 (right); (e) dome.
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safety hazards such as fire and explosion in special
geological sections.

(3) In terms of dead weight, the density of resin anchor
rods is generally about 2.0 g/cm3, which is equivalent
to 1/4 of conventional metal anchor rods. -erefore,
resin anchor rods are lighter in handling, less difficult
to transport, and faster, achieving the purpose of
timely construction, improving construction effi-
ciency and construction schedule.

For these reasons, in the design of supporting mea-
sures below, we plan to compare the control effects of
resin bolts and mortar bolts on surrounding rock de-
formation to determine whether resin bolts can be used as
one of the options for controlling large deformation of
soft rock tunnels, so as to give reasonable support
recommendations.

Table 2: Physical and mechanical parameters of rock mass.

Surrounding rock
category

Layer thickness
(m)

Weight
(kN m−3)

Elastic modulus
(GPa)

Poisson’s
ratio

Cohesion
(MPa)

Internal friction angle
(°)

Powder clay 14 20.4 0.042 0.25 1.46 46
Sand stone 27 17.3 0.014 0.32 0.026 30
Argillaceous rock 19 16.5 0.006 0.35 0.043 37
Ordinary mortar bolt — 81.3 200 0.30 — —
Resin anchor — 76.6 280 0.28 — —

Table 3: Bolt support parameters.

Anchor types Length (m) Ring distance (m) Longitudinal distance (m) Diameter (mm)
Mortar bolt 4.5 1.0 1.0 φ22
Resin anchor 4.5 1.0 1.0 φ22

60
m

14
m

27
m

19
m

60m

Mudstone

Sandstone layer

Clay layer

Figure 5: Model size diagram.

Figure 6: Mesh division.

Table 4: Encrypted bolt support parameters.

Anchor types Length (m) Ring distance (m) Longitudinal distance (m) Diameter (mm)
Mortar bolt 4.5 0.7 0.7 φ22
Resin anchor 4.5 0.7 0.7 φ22
Mortar bolt 4.5 0.4 0.4 φ22
Resin anchor 4.5 0.4 0.4 φ22

Table 5: Parameters of lengthened bolt support.

Anchor types Length (m) Ring distance (m) Longitudinal distance (m) Diameter (mm)
Mortar bolt 7.5 1.0 1.0 φ22
Resin anchor 7.5 1.0 1.0 φ22
Mortar bolt 6.0 1.0 1.0 φ22
Resin anchor 6.0 1.0 1.0 φ22
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3.2.2. Supporting Parameters. -e supporting project was
originally designed for spray-anchor support; the circumfer-
ential arrangement of anchor rods is 1.0m apart, after the small
pipes are grouted and consolidated; the upper, middle, and
lower step method is used for weak blasting excavation or
mechanical excavation. Physical and mechanical parameters of
relatedmaterials are shown in Table 2. As shown in Figure 3(a),
when the original design support is adopted, the tunnel de-
formation is large, according to the gray model prediction, and
the maximum predicted value Smax·R� 312.50mm. For Smax·R,
the following bolt supports are designed:

(1) Design resin bolts with the same parameters as the
original mortar bolts and analyze the effect of the
resin bolts and mortar bolts on controlling sur-
rounding rock deformation through numerical
simulation. -e supporting parameters are shown in
Table 3.

(2) Change the L and d of the mortar bolt and the resin
bolt, study the Smax·M and Smax·M produced by the
surrounding rock based on the numerical method,
and give the optimal support recommendations. -e
support parameters can be seen in Tables 4 and 5.

3.2.3. Model Establishment. Using FLAC3D finite element
software, a two-dimensional numerical model of the
Duimenzhai Tunnel is established. After considering the
excavation of an underground tunnel, only the rock mass
within the excavation range of 5 times the size of the
tunnel has a disturbing effect, and the tunnel height of this
project is 11.58m, and the width is 10.60m.-erefore, the
height ×width of the proposed model is 60m × 60m, and
the model size and grid division are shown in Figures 5
and 6.

3.2.4. Analysis of Surrounding Rock Stress and Displacement.
Figure 7 shows that when the mortar bolt is used to support
the tunnel, Smax·M � 0.487 cm and σmax·M � 681.92 kN/m2;
when the resin bolt is used to support the tunnel,
Smax·M � 0.398 cm and σmax·M � 228.55 kN/m2.

-e results show that compared with the tunnel sup-
ported by mortar bolts, Smax·M is reduced by 22.36% and
σmax·M is reduced by 66.48% for resin bolts. -e supporting
effect of resin bolts is significant.

Figure 8 shows that when the mortar bolts are used to
support the tunnel, Smax·M � 0.320m and
σmax·M � 220.55 kN/m2; when the resin bolts are used to
support the tunnel, Smax·M � 0.177m and
σmax·M � 183.65 kN/m2.

-e results show that compared with mortar bolts
support, Smax·M is reduced by 32.46% and σmax·M is reduced
by 47.08%, and its supporting effect is significant.

Figure 9 shows that when the mortar bolts are used to
support the tunnel, Smax·M.� 0.114m and
σmax·M � 243.38 kN/m2; when the resin bolts are used to
support the tunnel, Smax·M � 0.077m and
σmax·M � 128.80 kN/m2.

-e results show that compared with mortar bolt sup-
port, resin bolts have a reduction of Smax·M by 44.68% and a
reduction of σmax·M by 16.73%. -e supporting effect is
significant.

Figure 10 shows that when the mortar bolts are used to
support the tunnel, Smax·M � 0.078m and
σmax·M � 165.38 kN/m2; when the resin bolt is used to sup-
port the tunnel, Smax·M � 0.036m and σmax·M � 87.99 kN/
m2.-e results show that compared with mortar bolts
support, Smax·M is reduced by 53.85% and σmax·M is reduced
by 46.80%, and its supporting effect is significant.

Figure 11 shows that when the mortar bolts are used to
support the tunnel, Smax·M � 0.056m and σmax·M � 148.55 kN/
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m2; when the resin bolts are used to support the tunnel,
Smax·M � 0.032m and σmax·M � 95.65 kN/m2.

-e results show that compared with the tunnel sup-
ported by mortar bolts, the Smax·M is reduced by 42.85% and
the σmax·M is reduced by 35.61%, and the supporting effect is
significantly improved.

From the comparative analysis of Figures 5–9, when
mortar bolts are used for support, Smax·M and σmax·M are
approximately 1.6 times and 3 times than that of resin bolts
support; Figures 6 and 7 are compared with Figure 5, the

surrounding rock deformation decreases with the reduction
of the bolt spacing, and when it is reduced to 0.4m～0.7m,
the resin bolt support has a significant effect on controlling
the surrounding rock deformation; Figures 8 and 9 are
compared with Figure 5; when the length of the bolt is 4.5m
～6m, the effect of using resin bolt support to control
surrounding rock deformation is significant, but with the
increase in the length of the bolt, the mortar bolts or the resin
anchor effect of rod support in controlling the deformation
of surrounding rock is small.
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4. Conclusion

-e gray theory is used to derive new tunnel deformation
and monitoring time series, combined with the differential
method, matrix transformation method, least square
method, and other methods, to summarize the large de-
formation prediction model of the soft rock tunnel and
finally support design in Smax·R, numerical analysis of its
supporting effect is carried out, and the relevant conclusions
are as follows:

(1) After predicting the large deformation of the sup-
porting project, it is found that the gray theory

prediction model is more accurate, the best pre-
diction time is one week, and the maximum error is
not more than 3%.

(2) According to Smax·R, the mortar bolts and resin
bolts support are designed, and the Smax·M and
σmax·M generated by the surrounding rock under
different parameters of the bolts support are an-
alyzed by numerical software. Compared with
mortar bolts, resin bolts have a more significant
effect on controlling surrounding rock deforma-
tion, and Smax·M and σmax·M can be reduced by
about 50%.
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(3) -e study finds that when the length of the bolts is
4.5m～6m and the local density range is 0.4m～
0.7m, resin bolts support should be selected; for the
rest, the effect of mortar bolts support and resin bolts
support of difference is smaller.

(4) -e shortcoming of the gray model is that it can only
make short-term forecasts. If the forecasting time
increases, the error will be within the allowable range
of the project, but it will increase over time.
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