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*ermal conductivity is a critical parameter playing an important role in the heat transfer process in thermal engineering and
enormous other engineering fields. *us, the accurate acquisition of thermal conductivity has significant meaning for thermal
engineering. However, compared to density test, moisture content test, and other physical property tests, the thermal conductivity
is hard and expensive to acquire. Apparently, it has great meaning to accurately predict conductivity around a site through easily
accessible parameters. In this paper, 40 samples are taken from 37 experimental points in Changchun, China, and the BPNN
optimized by genetic algorithm (GA-BPNN) is used to evaluate the thermal conductivity by moisture content, porosity, and
natural density of undisturbed soil. *e result is compared by two widely used empirical methods and BPNN method and shows
that the GA-BPNN has better prediction ability for soil thermal conductivity.*e impact weight is obtained through mean impact
value (MIV), where the natural density, moisture content, and porosity are 30.98%, 55.57%, and 13.45%, respectively. Due to high
complexity of different parameter on thermal conductivity, some remolded soil specimens are taken to study the influence of
individual factors on thermal conductivity.*e correlations between moisture content and porosity with thermal conductivity are
studied through control variable method. *e result demonstrates that the impact weight of moisture content and porosity can be
explained by remolded soil experiment to some extent.

1. Introduction

With the development of human activity, a great con-
sumption of traditional fuels has produced huge amounts of
greenhouse gases that are bad to the climate and a corre-
sponding further increased shortage of the traditional fuels,
such as oil, natural gas, and coal [1–9]. Due to this situation,
thermally active engineering projects, such as heat exchanges
systems, geothermal energy foundations, and energy piles,
have attracted a great attention to government planners and
engineering designers [7, 10–16]. Commonly, soil thermal
properties are important in thermal engineering fields,
which consists of thermal diffusivity, thermal capacity, and
thermal conductivity [3, 17, 18]. Meanwhile, thermal con-
ductivity, representing the ability to transfer heat, is one of

the most important parameters in thermally active engi-
neering projects [19–21]. However, it is not easy to directly
measure the soil thermal conductivity, because of high cost,
complicated work, and used shortage for larger-scale ap-
plications [20].*erefore, it is meaningful to obtain accurate
soil thermal conductivity from easily measured physical
parameters, such as moisture content, density, and porosity.

Soil thermal conductivity is thought to be affected by
moisture content, porosity, density, mineralogy composi-
tion, particle size, gradation, temperature, pore shape, pore
orientation, pore size and spatial arrangement of pores, and
so forth [22–28]. In the past few years, many studies in-
vestigated the relationship between these parameters and
thermal conductivity and predicted the thermal conductivity
through different models [10, 22, 29–35]. For example,
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Johansen proposed a model to evaluate the thermal con-
ductivities of unsaturated soils in both unfrozen and frozen
states by the relationship between degree of saturation (Sr)
and the normalized thermal conductivity [36]. Based on
Johansen’s work, Ewen and *omas proposed a new model
to solve the shortage, which underestimated the thermal
conductivity at low moisture content [37]. But ECôté and
Konard conducted that the influence of the fabric and the
grain mineralogy should be considered in evaluating soil
thermal conductivity [38]. Wang et al. studied the rela-
tionship between thermal conductivity and electrical resis-
tivity [19]. Mikey indicated that moisture content and
density can basically reflect the soil thermal conductivity
through in situ measured results [39]. Zhang et al. observed
the effects of moisture content, particle size, and density on
thermal conductivity of four types of soils and put forwarded
a new model [40]. Particularly, all the above-mentioned
researches were studied at the room temperature (20°± 2°C).

Artificial neural network (ANN) has already been used
in predicting soil thermal conductivity. For example, Zhang
Tao et al. proposed some ANN models to evaluate different
types of soil thermal conductivity based on dry densities and
moisture, including coarse, clay, fine sand, silty sand, and silt
[41]. Moreover, the generalized model (PM-G) was pro-
posed to evaluate the five type soils, and the results can be
basically predicted. As the above passage mentioned, the soil
thermal conductivity is under the multiple factors effect,
such as moisture content, porosity, density, pore shape, and
pore size. *us, the prediction of thermal conductivity,
based on moisture content and dry density, is not com-
prehensive. Not only does the dry density reflects less in-
formation for actual engineering comparing to natural
density, but also, as for the PM-G (a generalized model),
where c (clay content) and qc (quartz content) are added,
there is a lack of persuasion.*e mineral composition of soil
is hard to acquire, compared to the basically physical pa-
rameters, such as moisture content, porosity, and density.
Nowadays, ANN has been used in various fields of engi-
neering and plays an important role in predicting and
distinguishing. But, for the prediction of thermal conduc-
tivity, the application of ANN is still less and limited to the
BPNN.While the BPNN is one of themost widely used ANN
in engineering fields, it still has limitation in optimize
weights and thresholds, for falling into local optimum.
However, the genetic algorithm can well resolve these
problems, and this paper uses the genetic algorithm to
optimize the BPNN [42, 43].

In order to accurately evaluate soil thermal conductivity,
moisture content and porosity, which are easily obtained
and have huge influence on thermal conductivity, are se-
lected [1, 30, 36, 39]. Comparing the natural density and dry
density, natural density can better reflect the actual situation
than density, such as the distribution of soil particles, pore
size, pore shape, and pore orientation. Furthermore, the
natural density, which is multifield coupled, can reflect more
information, benefiting for evaluating thermal conductivity.
Particularly, the measurement of dry density is complicated
compared to natural density and easily disturbed, leading to
underestimating the accuracy. As for the saturation, Sr has

an obvious influence on soil thermal conductivity. But it can
be reflected directly or indirectly by natural density, mois-
ture content, and porosity. *erefore, this paper will study
the relationship between natural density, moisture content,
porosity, and thermal conductivity.

2. Materials and Methods

2.1. Preparation of Soil Samples. *e silty clay is selected as
the research object, which is obtained from Changchun, Jilin
Province, China. In order to make the result more reliable,
40 samples are drilled at 37 different locations in Chang-
chun. All the soil samples are obtained in the depth varying
from 4m to 6m. A total number of 40 soil samples are tests.
Sampling position of the silty clay is shown in Figure 1.

2.2. Measurement of Soil Physical Parameters. *e natural
density (ρ), moisture content (ω), and porosity (n) of soil
samples are precisely measured; among them, the natural
density is obtained through Wax seal experiment. *e
moisture content of soil samples is statistically calculated by
drying experiment. Schematic of physical parameters test
systems is shown in Figure 2.

As for the porosity (n), the results are calculated through
the natural density and moisture content, caused to the high
cost and low accuracy of direct measurement.*e porosity is
obtained by the following equation:

ρd �
ρ

1 + w
,

n � 1 −
ρd

ρs

,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where ρ is the natural density (g·cm−3), ρd is the dry density
(g·cm−3), and ρs is soil particle density. Normally, the soil
particle density of silty clay is in the range of 2.71 to
2.73 g·cm−3. In order to simplify calculations, this paper set
the soil particle density (ρs) of silty clay as 2.7 g·cm−3.

*e transient plane source (TPS) method is used to
obtain the thermal conductivity of all the soil samples. *e
experimental apparatus is the Hot Disk *ermal Conduc-
tivity Analyzer (as shown in Figure 3), which has ±3%
measurement accuracy.

*e principle of TPS method is based on the transient
temperature response of a step-hearted disc-shaped heat
source. *e relationship between temperature of probe and
dimensionless time constant is shown in the following
equation:

ΔT(τ) �
Q

λr
��
π3

􏽰 D(τ), (2)

whereΔT(τ) is the temperature variation value,Q is the total
output of power,D(τ) is the dimensionless time constant,
and r is the radius of Kapton film sensor. *e detailed ex-
perimental procedures can be acquired in other previous
works [44]. All the data is precisely measured, and the result
of the natural soil density, moisture content, porosity, and
thermal conductivity is shown in Table 1.
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2.3. Building Model. In this study, 40 data sets (each set
contains the values of 4 factors: natural soil density,
moisture, porosity, and thermal conductivity) are used to
compare the BP Neural Network optimized by genetic al-
gorithm (GA) and some commonly used models. *e
subsequent passage gives a useful overview of BPNN and
genetic algorithm (GA).

BP Neural Network (BPNN) is a commonly used ANN
model, which can be divided into three layers: an input layer,
a hidden layer, and an output layer. Each layer is connected
through processing elements [45]. Each neuron is connected
to all the neurons of next layer, and the connection medium
is called weight [41]. Although the BPNN is so popular in
ANN, it also has the limitation in optimizing weights and
thresholds, for falling into local optimum. While the GA is
useful searching technique proposed by Holland and applied
in many different fields [46, 47], through the adaptation
biological and survival processes, the GA is used to obtain
the near-optimal solutions in every search space. Generally,
the GA starts with the initial population using binary bits,
such as 1 and 0, strings generated through random ways. All
the integers, real numbers, and the potential solutions are
encoded by these binary strings and are taken from the
problem search space, which is included with all the po-
tential solutions. *ese strings are decoding into a search
space and the performance of these strings is evaluated
through computing the fitness value for objective function.
*e fitness is key factor of the quality of each string in

(a) (b)

Figure 2: Schematic of physical parameters test system. (a) Wax sealing experiment. (b) Drying experiment.
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Figure 1: Sampling positions of the silty clay.
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Figure 3: *e thermal conductivity test system.
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problem’s domain. After the evaluation of the strings, a
better population will be created through genetic operators.
*e GA is used to optimize the BPNN. *e flowchart of the
BPNN optimized by the genetic algorithm is shown in
Figure 4.

As shown in Figure 4, the weights and thresholds of
BPNN are encoded, when the topology of BPNN is deter-
mined. Training is determined by the thresholds and specified
weights. In the genetic algorithm part, the fitness value, se-
lection, crossover, and mutation are calculated. Decide if the
new group is satisfied; if not, the weights and thresholds of
BPNN are changed till the requirement is met. In the end, the
optimized weights and thresholds are obtained. As the
analysis of above passage, the natural density (ρ), moisture
content (ω), and porosity (n) of soil samples are set for the
input parameters. *e thermal conductivity is set as the only
output parameter, named as predicted conductivity, λp. *ese
values of all the parameters are listed in Table 1.

*e cross-validation technique is adopted, and the
training data and testing data account for 75% (30 sets) and
25% (10 sets) of the database in total, respectively. One
hidden layer is adopted in this paper, which caused one
hidden layer to have the ability to approximate any con-
tinuous functions in geotechnical engineering. *e training
and testing processes are used in the artificial neural network
toolbox in MATLAB 2018b, due to their application and
accuracy. *e momentum factor (μ � 0.01) is set for the
GA-BPNN model for the most efficient structure, while the
maximum training cycle, cmax, is selected as 1000 times in
this paper. *e minimum error is set as 0.00001, while the
highest failure time is selected as 6. *e gradient descent
method is used in this study. *e pure line (pure liner
function) and tan-sigmoid function, which are selected as
the transfer functions, are employed for hidden layer and
output layer. *e best hidden neurons are 6, which is ob-
tained after the training and testing processes.

Table 1: Physical parameters of silt clay and thermal conductivity.

Sample no. Soil natural density (ρ) (g·cm−3) Moisture content (ω) (%) Porosity (n) (%) *ermal conductivity (λ) (Wm−1K−1)
1 1.854 48.83 45.49 1.149
2 1.809 27.21 38.56 1.418
3 2.160 36.65 33.15 1.348
4 2.304 7.37 11.12 1.209
5 1.944 10.30 25.39 1.501
6 1.998 13.76 25.81 1.390
7 2.043 13.91 24.46 1.392
8 2.052 7.43 19.79 1.378
9 1.908 12.50 27.95 1.476
10 2.088 6.07 17.99 1.321
11 2.169 13.74 20.31 1.388
12 1.971 20.40 30.49 1.465
13 2.097 13.92 22.74 1.393
14 2.079 14.86 23.91 1.359
15 2.214 6.98 13.90 1.295
16 2.291 15.23 26.34 1.666
17 2.227 18.21 30.21 1.634
18 2.380 26.34 30.52 1.688
19 2.125 22.31 35.64 1.390
20 2.192 17.63 30.98 1.594
21 2.213 19.63 31.46 1.585
22 2.162 23.64 35.21 1.406
23 2.045 35.79 44.22 1.296
24 1.910 42.31 50.31 1.158
25 1.900 37.49 48.82 1.210
26 2.273 19.64 29.64 1.665
27 2.212 24.61 34.26 1.451
28 2.091 36.22 43.15 1.314
29 1.978 45.61 49.69 1.149
30 2.381 10.98 20.55 1.584
31 2.241 12.65 26.31 1.638
32 2.025 33.87 43.95 1.309
33 1.976 31.96 44.55 1.314
34 2.024 26.58 40.78 1.361
35 2.100 27.63 39.11 1.360
36 2.110 34.22 41.77 1.337
37 2.215 13.85 27.93 1.644
38 2.231 19.85 31.05 1.611
39 2.386 11.66 20.87 1.599
40 2.418 28.93 30.54 1.692
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2.4. Verification of BPNN and GA-BPNN. In order to verify
the accuracy and application of GA-BPNN and BPNN, the
result of GA-BPNN is compared with BPNN. Figure 5 re-
flects the relationship between the measured thermal con-
ductivity and predicted thermal conductivity.

*e red points stand for the training data, and the black
points and the blue points are stand for BPNN and GA-
BPNN, respectively. As shown in Figure 5, it can be easily
found that, for both BPNN method and GA-BPNN method,
predicted thermal conductivity values are all quite close to
the measured thermal conductivity, which means high
quality of this model. Comparing the GA-BPNN method
with the BPNN method, it can be approximately observed
that the prediction results of GA-BPNN have higher degree
of fit with measured thermal conductivity than BPNN. In
order to further compare the BPNN and GA-BPNN, the
prediction results and measured results of testing data are
shown in Figure 6.

For Figure 6, it can be easily found that the GA-BPNN
method has better prediction and higher accuracy than
BPNN method, especially at point 9. As for the BPNN
method, it cannot reflect the law of change well for the
measured thermal conductivity. Usually, the coefficient of
correlation (R2), mean absolute percentage error (MAPE)
for variability accounted for (VAF), mean absolute error
(MAE), and root mean square error (RMSE) are used to
quantitatively check the reliability of results. Meanwhile, the
model is considered as excellent, when the errors in terms of
RMSE andMAE are close to 0, and the VAF and R2 are close
to 1. In this paper, these parameters are used to further
compare the BPNN and GA-BPNN. *e results of BPNN
and GA-BPNN are shown in Table 2.

As is listed in Table 2, it is evident that both BPNN and
GA-BPNN are accurate in predicting thermal conductivity
since R2 is close to 1 and the maps are both lower than 5%. In

addition, all the parameters of GA-BPNN are superior to
those of the BPNN; in particular, the RMSE, MAE, and
MAPE of GA-BPNN are largely lower than those of BPNN,

Genetic algorithm

Calculate fitness value

High fitness chromosome
replication is selected

Crossover

Mutation

New group

If the termination
criterion

is satisfied

The optimal prediction model

BPNN

Begin

Determining the topological
structure of BPNN

Encode the weights and
thresholds of BPNN

The weights and thresholds
are assigned in a new BPNN

Training data are used
to train the network

Testing data are used to
verify the network

Test error

Figure 4: Flowchart of the GA-BPNN structure.
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Figure 6: *e prediction results and measured results of testing
data.

Table 2: Calculation results of performance indexes for GA-BPNN
and BPNN.

Model RMSE/W
(m·K)

MAE/W
(m·K) MAPE (%) R2

BPNN 0.0896 0.0602 3.955 0.9496
GA-
BPNN 0.0301 0.0246 1.7496 0.9912

Advances in Civil Engineering 5



which means the GA-BPNN is greater than BPNN in
thermal conductivity prediction.

2.5. Comparison of GA-BPNN with Empirical Models.
Actually, many calculation models were proposed for own
purpose [48–50]. Dong et al. thought the existing thermal
conductivity predicting models can be basically divided into
three parts: mathematical models, empirical models, and
mix models [51]. Among them, mathematical models do not
fit engineering application, due to their much input pa-
rameters and complicated calculation. Nevertheless, this
paper aims to solve actual engineering issues. *erefore, two
typically empirical models (Kersten models and Gangadhara
model) are used for comparison with the GA-BPNN.

Kersten studied the relationship between moisture
content, dry unit weight (cd), and thermal conductivity [52].
*e proposed empirical model is shown in the two following
equations.

λ � 0.1442 ×[0.7 logω + 0.4] × 100.6243cd, (for sandy soil,ω≥ 1%), (3)

λ � 0.1442 ×[0.9 logω − 0.2] × 100.6243cd, (for silt and clay soils,ω≥ 1%), (4)

where λ is soil thermal conductivity; cd is the dry unit weight
in 1 b/ft3; and ω is moisture content.

Gangadhara model tested the thermal conductivity of
five different soils and proposed an empirical relationship as
expressed in the following equation [53]:

1
λ

� [1.07 × logω + b]
−1

× 10 − 0.01×cd+3( ),
(for clayey soils,ω≥ 10%), (5)

where b is the dimensionless parameter. For coarse sand, fine
sand, silt sand, silt, and clay, the b values are 0.73, 0.7, 0.12,
−0.54, and −0.73, respectively.

*e comparisons of prediction performance between
GA-BPNN and two empirical models are calculated, and the
results are shown in Figure 7.

It can be observed in Figure 7 that Gangadhara model
leads to underestimation in thermal conductivity of clay soil.
*e comparison of GA-BPNN and Kersten models dem-
onstrates that GA-BPNN possesses a superior prediction
performance.

In fact, the thermal conductivity of soil is influenced by
many parameters, which is coupled. *us, the effect of input
parameters on the thermal conductivity is important to evaluate
the thermal conductivity. In ANN analysis, the impact of input
neurons on the output neurons can be obtained by the ex-
amination of the internal weightmatrix value [54]. Based on this
concept, mean impact value (MIV) method is used to evaluate
variable correlation inANN [55, 56].*eminusMIVmeans the
inverse correlation and the plus MIV indicates the positive,
while the absolute value indicates the relative importance or
contribution of the impact factor. In this paper, we use MIV
method to quantify the impact of natural density, moisture

content, and porosity on the thermal conductivity. Table 3
shows the MIV and impact weight of all the input parameters.

It can be found that the correlation of thermal con-
ductivity and porosity is negative, while the correlation of
natural density and moisture content is positive. *e weight
of moisture content is more than the sum of the natural
content and porosity. As for the natural density, it has
30.98% of impact weight on thermal conductivity, which
means it contributes 30.98% on the influence on the thermal
conductivity. Particularly, the natural density is a result of
many parameters coupling, the 30.98% of impact weight
means the natural density is a well input parameter to
evaluate the thermal conductivity of soil. For the porosity, it
only contributed 13.45% of weight impact.

3. The Impact Weight through Remolded
Soil Experiments

*e abovementioned factors have a significant effect on the
method; thus, it is hard to study the relationship between
single factor and thermal conductivity. *us, control vari-
able method is adopted to conduct the correlation between
moisture content, porosity, and thermal conductivity
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Figure 7: Comparison of predicted thermal conductivity between
GA-BPNN and empirical models.
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through remolded soil experiment. *e preparation of
remolded soil with different moisture content can be divided
into two steps: (1) Crush the undisturbed soil and dry it
(Figure 8(a)). *e soil particles are divided into 15 parts and
2 kg each, followed by spreading the soil on the plant. (2)*e
remodeled soil samples are made with different moisture
content, which is 10%, 12%, 13%, 14%, 15%, 16%, 17%, 18%,
19%, 20%, 22%, 24%, 26%, 28%, 30%, and 32% (liquid limit),
respectively. Some remodeled soil samples are shown in
Figure 8(b).

All these parameters and thermal conductivity are ac-
curately measured. *e results are plotted in Figure 9.

As shown in Figure 9, with the increase of moisture
content, the increase rate of thermal conductivity decreases.
*e increase trend can approximately be divided into two
parts by 27% of moisture content. When the moisture
content is lower than 27%, the thermal conductivity in-
creases rapidly with the increase of moisture content. *is
phenomenon is mainly caused by the liquid bridge [22, 57].
When the moisture content is more than 27%, the thermal
conductivity tended to stabilization. Especially for the initial
stage, the thermal conductivity has increased over 49% range
from 10% to 20% of moisture content. We study the pro-
portion of moisture content of undistributed content
(Figure 10).

*ere are 27 distributed soil specimens with moisture
content lower than 27%, while there are 13 undistributed soil
samples with moisture content greater than 27%. It means
that most distributed soil in the stage is sensitive to moisture
content. In the prediction of thermal conductivity, moisture
content should be considered as a key factor, when the
moisture content is in the range of 0% to 27%, regarded as
sensitive stage. In order to study the correlation between
porosity and thermal conductivity, remolded soil samples
are made with the same moisture content and different

porosities. *e procedure can be divided into three parts: (1)
Crush the undisturbed soil and divide it into 9 parts evenly.
(2) Use the compactor to compact these remolded soil
specimens, and the porosity is obtained by controlling the
height of soil specimens. (3) *e thermal conductivity of
remolded soil is precisely measured. *e result is shown in
Figure 11.

It can be observed that the thermal conductivity de-
creases with the increase of porosity, which is the same as the
result of MIV in the above passage. When the porosity is
over 25%, the thermal conductivity tends to stabilize. It is
mainly because the heat conduction is mainly through soil
particles, rather than the moisture content. From the range
of 25%–45%, the thermal conductivity has decreased 8.1%,
which is far less than the increase rate of thermal conduc-
tivity of moisture content. *e distribution of undistributed

(a) (b)

Figure 8: Remodeled soil experiment. (a) Dried soil particles. (b) Some remodeled soil samples.
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Figure 9: *ermal conductivity change with moisture content.

Table 3: MIV and impact weight of the input parameters.

Parameters Natural density Moisture content Porosity
MIV 0.0027 0.0049 −0.0012
Impact weight (%) 30.98 55.57 13.45
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soil specimens under different porosity is shown in
Figure 12.

It can be seen that the number of undistributed soil
specimens, whose porosity is more than 25%, is 3 times that
in the other undistributed soils. To some extent, the rates of

8.1% and 48.6% can demonstrate the MIV weights of
13.45% and 55.57%, respectively. *is chapter studies the
influence of moisture content and porosity on thermal
conductivity and gives a reason for the impact weights of
MIV.

4. Summary and Conclusions

*ermal conductivity is a critical parameter in thermal con-
ductivity, which is hard and expensive to obtained. Many re-
searchers have done many works to predict thermal
conductivity. Causing the soil thermal conductivity to be af-
fected by many parameters, existing prediction models are
underestimated in accuracy and application. *is paper pro-
posed a GA-BPNN model, whose input parameters are natural
density, moisture content, and porosity, to evaluate soil thermal
conductivity. *e proposed GA-BPNN models have been
verified and comparedwith BPNN and two empiricalmodels to
reinforce their applicability and superiority. Moreover, the
impact weight of the natural density, moisture content, and
porosity is conducted through MIV method. *e correlation
between moisture content and porosity with thermal con-
ductivity is studied through remolded soil experiment, which
also explained the impact weight to some extent. *e following
conclusions can be advanced from this paper:

(1) Owing to difficulty and high cost for obtaining
precise value of thermal conductivity, accuracy
prediction of thermal conductivity has significant
meaning through easily obtained parameters, such as
moisture content, natural density, and porosity.
Causing the natural density to be the result of
multifield coupling, it can reflect more information
of actual condition. *is paper set natural density,
moisture content, and porosity as input parameters
to predict thermal conductivity, which achieved
good results.

(2) Due to the limitation of BPNN in optimizing weights
and thresholds, for falling into local optimum, this
paper uses genetic algorithm (GA) to optimize the
BPNN, and the predictions of empirical models are
compared. *e result shows the application and
accuracy of GA-BPNN, which can be used in similar
thermal conductivity prediction.

(3) *e impact weights of natural density, moisture
content, and porosity are conducted through MIV
method, which are 30.98%, 55.57%, and 13.45%,
respectively.

(4) *e experiment of remolded soil is used to further
study the correlation between moisture content and
porosity with thermal conductivity. *e result can
explain the impact weight of moisture content and
porosity to some extent.

Data Availability

*e experimental data used to support the findings of this
study are included within the article.
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Figure 10: Distribution of undistributed soil specimens under
different moisture content.
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