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Road crashes are problems facing the transportation sector. Crash data in many countries are available only for the past 10 to 20
years, which makes it difficult to determine whether the data are sufficient to establish reasonable and accurate prediction rates. In
this study, the effect of sample size (number of years used to develop a prediction model) on the crash prediction accuracy using
Autoregressive integrated moving average (ARIMA) method was investigated using crash data for years 1971–2015. Based on the
availability of annual crash records, road crash data for four selected countries (Denmark, Turkey, Germany, and Israel) were used
to develop the crash prediction models based on different sample sizes (45, 35, 25, and 15 years). .en, crash data for 2016 and
2017 were used to verify the accuracy of the developed models. Furthermore, crash data for Palestine were used to test the validity
of the results. .e used data included fatality, injury, and property damage crashes. .e results showed similar trends in the
models’ prediction accuracy for all four countries when predicting road crashes for year 2016. Decreasing the sample sizes led to
less prediction accuracy up to a sample size of 25; then, the accuracy increased for the 15-year sample size. Whereas there was no
specific trend in the prediction accuracy for year 2017, a higher range of prediction error was also obtained. It is concluded that the
prediction accuracy would vary based on the varying socioeconomic, traffic safety programs and development conditions of the
country over the study years. For countries with steady and stable conditions, modeling using larger sample sizes would yield
higher accuracy models with higher prediction capabilities. As for countries with less steady and stable conditions, modeling using
smaller sample sizes (15 years, for example) would lead to high accuracy models with good prediction capabilities. .erefore, it is
recommended that the socioeconomic and traffic safety program status of the country is considered before selecting the practical
minimum sample size that would give an acceptable prediction accuracy, therefore saving efforts and time spent in collecting data
(more is not always better). Moreover, based on the data analysis results, long-term ARIMA prediction models should be used
with caution.

1. Introduction

Time-series analysis is a common technique used by nu-
merous research studies to analyze trends of certain phe-
nomena and to predict future conditions..is technique has
been applied in various fields: engineering, scientific, social,
medical, etc. Typical time-series analysis includes historical
data over an extended period of time. .ere are also several
statistical models used for representing the time-series and
trends and for forecasting.

A quick scan of the literature shows that different studies
used different sample sizes for modeling, depending on the

phenomenon under investigation, the type of model used,
and the constraints of data availability. .e majority of the
published developed models yielded reasonable level of
goodness-of-fit and significance, which were represented by
various statistical indicators. At the same time, a scan
through the web showed many researchers asking, “What is
the reasonable minimum sample size for appropriate
modeling?”

It is a common rule-of-thumb in statistics that more is
better; for time-series analysis. However, some statisticians
revealed that “more may not always be better.” .e data-
generating process may have changed strongly over time, so
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that the data from before the change may not reflect current
and future dynamics of your series any more [1]. In this case,
one should look for the “change-point,” if it exists.

In transportation and traffic engineering, many time-
series studies were also conducted. One of the common
applications is modeling road traffic crashes for a region or a
country and predicting future crash trends. .e Box and
Jenkins ARIMA models were commonly used in these
studies. .e Box and Jenkins method typically recommends
a minimum of 50 observations for an ARIMAmodel. .is is
recommended to cover seasonal variations and effects. At
the same time, the method recommends that a “good”
prediction is the one that produces appropriate (narrow)
confidence limits (which is typically in the vicinity of 95%)
and useful results.

In the context of road traffic crashes, the question re-
mains, “What is the ‘reasonable’ and ‘practical’ value for the
minimum sample size?” .e occurrence of road traffic
crashes might depend on many socioeconomic and political
characteristics of the region, which are drastically changing
in some countries over a period of 50 years. On the other
hand, a good model will allow for changing trend and
seasonal patterns. However, the issue is whether the way
things change can be properly modeled [1].

Changes in some countries may have gone steady, for
example, several developed countries. However, changes in
developing countries are very dynamic and subject to nu-
merous social and economic, as well as political, conditions
and traffic safety programs. Over the past fifty years, which is
the recommended minimum sample size on a yearly basis
for ARIMA models, several countries moved up from being
“underdeveloped” to the level of “developed” country.
Certainly, these changes greatly affect the road crash pat-
terns, in a way that ARIMA models, or other time-series
models, might not be able to properly work.

In the Palestinian case, for example, road traffic crashes
were collected and reported by the Israeli authority starting
from 1970 following certain procedures for crash recording and
archiving system. In 1993, the Oslo Peace Accord was signed
between the Palestinian LiberationOrganization and Israel. As a
result, the Palestinian National Authority was created and took
partial administrative control over parts of Palestine, including
crash data collection and achieving [2]. .e socioeconomic
characteristics of the region have dramatically changed since
then: higher income level, mobility, auto ownership, etc. In year
2000, there was a Palestinian uprising against the Israeli au-
thorities, which lasted for few years and involved road closures
and blockage of road mobility. As a result, road traffic crash
patterns dramatically changed during these two major events.
.erefore, using road crashes over that extended period of time
will include those “not-normal” patterns.

.e issue at hand in this paper is not to question the
statistical requirements of the minimum sample size for
modeling time-series and forecasting using ARIMA models;
this is left for statisticians. It is rather, and for road crash
analysis, what the “reasonable” and “practical” sample size
would be for modeling time-series and forecasting using the
Box and Jenkins ARIMA models with “appropriate” con-
fidence limits.

.e paper answers this question by modeling road
crashes from four countries, testing different sample sizes for
each country, and assessing their prediction capabilities and
the associated significance levels for each country, using the
ARIMA models. .e results were also verified using road
crash for Palestine.

2. Literature Review

Numerous studies of road crashes time-series and trends
analysis were conducted in several parts of the world. Models
and forecasts were also developed based on the established
databases and their analyses. .e sample sizes in these
studies varied with differences among the researchers.

In Nigeria, a time-series approach was followed to in-
vestigate the consequences (casualties) of road crashes in the
country [3]. .e authors established that road crashes were
increasing at an alarming rate in Nigeria. A time-series
model was developed using ARIMA model for the yearly
crash data based on crash records for years (1960–2013). A
sample size of 51 years (1960–2011) was used for developing
a model, and 2 years (2012–2013) were used for validation
purposes. Two ARIMA models were obtained for the injury
and total casualty consequences and for fatal consequences
with high significance levels. .e models forecasted that the
road crashes will continue to increase in the following 7
years. .e authors also recommended that the models
should be used with caution for predicting future conditions
beyond the forecasted period because long time forecast may
give arbitrary large forecast, and enforcement conditions in
the country may change in the future.

In another study in Nigeria, based on an annual database
of 32 years (1970–2001), time-series analysis showed that
road traffic accidents were on the decrease with the ex-
ception of Lagos Island local government area [4]. Another
study in Lagos, Nigeria, used time-series to analyze road
crashes based on a 20-year database (1989–2008) and to
forecast crashes for the following 4 years (2009–2012).

Mutangi [5] analyzed road traffic crashes in Zimbabwe
using time-series based on a database for years 1997 to 2013
(17 years); the study also predicted the annual number of
crashes in the future years. .e author used ARIMA model,
where three models were suggested and the most appro-
priate one with the smallest corrected Akaike Information
Criteria (AICc) and Bayesian Information Criteria (BIC) was
chosen as the best model. .e crash data included numbers
of crashes, injuries, and fatalities. .e results showed that
forecasting of the number of road traffic crashes using a
white noise process is difficult because the values at different
times are statistically independent.

In Ghana, Avuglah et al. [6] applied ARIMA models to
study the trends and patterns of road crashes and to make a
five-year prediction. Twenty years (1991 to 2011) of annual
data were used for modeling purposes. .e study showed an
increasing trend for the coming five years.

Several studies of time-series on road crashes were
conducted in Iran. Parvareh et al. [7] assessed and predicted
road crash injuries trends using ARIMA time-series models
in Kurdistan Province, Iran. .e authors established that
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fatality rates, which resulted from road crashes in Iran, were
twice the global average in 2002, continued at an increasing
rate, and remained among the highest in the world. .e
study used a database of crash records for the period of
March 2009 to February 2015 (72 months) and predicted
crashes up to February 2017. Different ARIMA models were
developed for car occupant, motorcyclist, and pedestrian
injuries, all with a significance level of 5% or higher. .e
analysis of motorcyclists and pedestrian injuries showed a
seasonal pattern with a peak during August. .e study also
showed an increasing trend in the frequency of nonfatal
injuries. .e decline in fatalities was attributed to the na-
tional extensive efforts and interventions to improve safety.

Another study forecasted the trend of traffic crash
mortality in Kermanshah Province in west Iran [8]. .e
study assessed fatalities of road crashes using time-series
forecast based on crash records from January 2013 to De-
cember 2015 (36 months). .e mean square error was used
to determine the model with the best goodness-of-fit. .e
study found that the SARIMA model, which is an expanded
version of the ARIMA model that is influenced by sea-
sonality factors, was the best-fit model for data with Pearson
correlation coefficient of 0.75 (P� 0). Based on the model’s
prediction, traffic fatalities showed a decreasing trend in the
following years, with a confidence level of 95%. Similar work
was done by Yousefzadeh-Chabok [9] for Zanjan Province,
Iran, using ARIMA model based on a monthly database for
years 2007–2013.

Similarly, predicted results from ARIMA time-series
model, which was developed based on data from 1951 to
2011 (60 years), revealed that road traffic crashes would be
increasing in year 2012 in China [10]. Furthermore, based on
fatality data from 1972 to 2010 (40 years), ARIMA model
was used in predicting Malaysian road fatalities for the years
2015 and 2020, and the results showed the predicted fatalities
for the following five years [11]. .e model was significant at
95% confidence level.

Al-Ghamdi [12] developed three ARIMA forecasting
models for the traffic crash frequencies, injuries, and fa-
talities in Saudi Arabia based on the annual crash records for
years 1980–1991 (11 years)..e developedmodels achieved a
95% significance level. .e study revealed that, based on the
trend analysis, there would be an increase in the studied
types of crashes. .erefore, the study highlighted the im-
portance of improving the existing safety programs in the
country.

Al-Zyood [13] developed the most appropriate ARIMA
model, out of nine tested ARIMA modes, to forecast car
crashes in Saudi Arabia based on crash database for years
1998 to 2016 (18 years). Based on the developed model, the
author forecasted car crashes for the following 7 years with
95% prediction intervals. .e prediction showed that traffic
crashes, injuries, and fatalities will be increasing.

In Jordan, Al-Omari et al. [14] analyzed traffic crash
trends and characteristics in the country for years 1998–2010
(13 years). .e authors established that traffic crashes were
continuously increasing over the study period as a result of
increasing population and motorization level. .e authors
modeled the traffic crash frequencies and fatalities in terms

of motorization level. Multiple-linear regression and loga-
rithmic models were developed, and the most appropriate
models were used based on R2 and standards error criteria.

Jadaan et al. [15] also analyzed the traffic safety in Jordan
based on traffic crashes database for 10 years (2000–2009).
.e authors used multiple-linear regression models to
correlate fatalities with population, number of registered
vehicles, and total length of paved roads. .e authors
established that crash cost was $475 million in 2009 and is
expected to reach $786 million in 2030, which is a burden on
the national economy.

Ljubič et al. [16] analyzed road crashes in the UK for the
years of 1979–1999 (21 years) using simple statistical visu-
alization and graphic presentation. .e authors also used a
clustering approach to the analysis of time-series data to find
trends of road crashes in the country through different time
segments.

Another study in the UK analyzed traffic crashes trends
for 1.6 million traffic crashes from 2005 to 2014 [17]. .e
author analyzed the time-series based on the number of
weekly crashes, casualties, and vehicles involved across the
UK. Exponential smoothing and ARIMA models were used
for the analysis. .e author established that both models are
useful in making future predictions.

In the USA, Tang et al. [18] evaluated the predictive
power of SPF for crash frequencies on two-lane rural
highways in three districts in the State of Pennsylvania. .e
authors used the negative binomial (NB) and random pa-
rameters negative binomial (RPNB) modeling frameworks.
.e study found that random parameters negative binomial
(RPNB) model provides better predictions than the negative
binomial (NB) model when applied to within-sample ob-
servations, while the NB model provides better predictions
than RPNB model when applied to out-of-sample obser-
vations. .e study concluded that when sample sizes were
more than 50, the estimates were fairly insensitive.

Liu and Sharma [19] analyzed the trends of spatial-tem-
poral effects in road crashes based on crash data for 10 years
(2006–2015) in all Iowa, USA, counties. .e study showed that
both spatial and temporal correlations are critical in crash
frequency modeling; the vehicle-miles-traveled was the only
significant variable. .e study also used the integrated nested
Laplace approximation (INLA) to estimate Bayesian spatio-
temporal models. .e study found that fatal crashes showed
decreasing trends in all counties with various rates among
them.

Furthermore, as related to sample size, Freeman and
Leith [20] estimated the number of traffic crash-related
cervical spine injuries in the United States. .e authors
concluded that because of a limited sample size and re-
strictive criteria for both crash and injury inclusion, they
could not make such estimates.

Russo et al. [21] studied crash severity on more than
2000 km of undivided rural roads in Italy for a period of 5
years (2006–2010). .e study found that annual average
daily traffic, lane width, curvature change rate, length, and
vertical grade are important variables in explaining the
severity of crashes. .e negative binomial regression model
was used to predict injury frequency and fatality per year on
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homogeneous road segments. .e research confirmed the
effectiveness of the Highway Safety Manual (HSM), while it
showed that the HSM overestimates the crash frequency for
rural undivided roads.

.e summary of the reviewed literature is presented in
Table 1. In summary, numerous studies have been con-
ducted on the subject of time-series analysis and trends of
road traffic crashes in several parts of the world. However,
other studies have followed different approached focusing
on speed and safety issues, such as Russo et al. [22, 23].
ARIMA models were among the most commonly used
models for analysis and forecasting. .ere was clear varia-
tion among the research works in the sample sizes used for
ARIMA models, which ranged from as low as 5 to as high as
84..emajority of the models provided a reasonable level of
significance and prediction capabilities. None of them
questioned the requirement for minimum sample size.
.erefore, the question remains, “What is practically the
minimum sample size required to provide a reasonable
significance level of ARIMA models based on data avail-
ability and varying socioeconomic constraints?”

3. Data and Methodology

.e data used in this study were acquired from the Orga-
nisation for Economic Co-operation and Development [24].
Road crash data for four countries (Denmark, Turkey,
Germany, and Israel) for the period 1971–2015 were used in
this study to determine the effect of sample size on the
accuracy and validity of road crash prediction models (see
Figure 1). Crash data for years 2016 and 2017 were used to
test the prediction capabilities of the developed models.

Four different sample sizes (number of years) were used
to develop crash prediction models for each country in order
to assess the effect of sample size on the accuracy of the
models developed separately for each country. Based on the
available data, the sample sizes were 45 years (1971–2015), 35
years (1981–2015), 25 years (1991–2015), and 15 years
(2001–2015).

.e developed road crash predictionmodels in this study
are based on the Box–Jenkins methodology for Autore-
gressive Integrated Moving Average (ARIMA) modeling.
.e ARIMA model has three parts: (1) the autoregressive
part is a linear regression that relates past values of data
series to future values; (2) the integrated part indicates how
many times the data series has to be differenced to produce a
stationary series; and (3) the moving average part relates past
forecast errors to future values of the data series [25–27].

In the ARIMA model, the parameters p, d, and q rep-
resent the number of ordinary autoregressive, differencing,
and moving average parameters, respectively. In other
words, the p and q are the number of significant lags of the
autocorrelation function (ACF) and the partial autocorre-
lation function (PACF) plots, respectively, and d is the
different order needed to remove the ordinary non-
stationarity in the mean of error terms [28].

.e method applied to develop the ARIMA forecast
model was developed by Box and Jenkins [29] as follows:

(i) Examine the stationarity of the time-series. If the
time-series is nonstationary, then the difference and
power transformation are applied to it. .us, the
time-series converts into the stationary time-series
with uniform variance.

(ii) Estimate the model parameters p, d, and q for the
ARIMA (p, d, q).

(iii) Check the validity of the model; the goodness-of-fit
tests are performed using statistical information.

In order to apply Box and Jenkins methodology, several
statistical tests were conducted. .e Augmented Dick-
ey–Fuller test was used to examine the stationarity of the
time-series. .e Mean Absolute Error (MAE) was used to
select the best-fit model. .e Ljung–Box, quantile-quantile
(q-q) plot of the residuals and the Kolmogorov–Smirnov test
of the residuals were used to test the validity of the developed
model, as recommended by Makridakis et al. [30].

Four crash prediction models of different sample sizes
(45, 35, 25, and 15 years) were developed for each of the four
subject countries using the annual number of road crashes
for the period 1971–2015, as shown in Table 2. Finally, the
crash data from 2016 and 2017 were used to verify the ac-
curacy of the prediction for each model in order to deter-
mine the effect of sample size on the accuracy of prediction
models.

4. Data Analysis and Discussion

In this study, the ARIMA method was used to develop 16
crash prediction models, four models for each of the four
countries. Following the ARIMA procedure for modeling, all
possible prediction models were developed for each sample
size of the subject countries. A total of 56 possible models
were tested for each country (grand total of 224 tested
models). Table 3 shows all possible crash prediction models
for Germany as an example; similarly, all possible crash
prediction models for the remaining countries were also
developed.

.e best-fit model was selected for each sample size,
based on the minimum MAE. Ljung–Box and Kolmogor-
ov–Smirnov tests of the residuals were then used to test the
validity of the selected model. Finally, the best-fit models for
each sample size of all subject countries were summarized in
Table 4.

After selecting the best-fit model for each sample size of
each country, the validity of each model was verified by
testing the normal distribution of the residuals using
Ljung–Box and Shapiro–Wilk tests, and the parameters of all
models were determined. As an example, (1)–(4) show the
prediction models of Germany at the sample sizes of 45, 35,
25, and 15, respectively. Similarly, the equations of models
for all remaining countries were determined as well.
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Table 1: Summary of literature related to sample size, models, and results.

Reference Sample size/
period Method/location Findings

Adebola et al. [3] 51 years
(1960–2013) ARIMA model, Nigeria

Road injury and fatal crashes will increase in the
following 7 years; however, the models should be used
with caution for predicting future conditions beyond

the forecasted period

Atubi, 2013 [4] 32 years
(1970–2001) Time-series analysis, Nigeria Road traffic accidents were generally on the decrease

Mutangi, 2015 [5] 17 years
(1997–2013) ARIMA model, Zimbabwe

Forecasting of the number of road traffic crashes using
a white noise process is difficult because the values at

different times are statistically independent

Avuglah et al. [6] 20 years
(1991–2011) ARIMA model, Ghana

.e trends and patterns of road crashes were studied,
and a five-year prediction was made. .e study

showed an increasing trend for the coming five years.

Parvareh et al. [7] 72 months
(2009–2015) ARIMA model, Kurdistan Province, Iran

Injury crashes for the following 24 months were
predicted. Motorcyclists and pedestrian injuries
showed a seasonal pattern. Results showed an

increasing trend in the frequency of nonfatal injuries
and a decline in fatalities.

Zolala et al. [8] 36 months
(2013–2015)

SARIMA model, Kermanshah Province,
Iran

Traffic fatalities showed a decreasing trend in the
following years

Yousefzadeh-
Chabok et al. [9]

84 months
(2007–2013) ARIMA model, Zanjan Province, Iran .ey found similar results to Zolala et al., 2016 [8]

Yuan et al.,
2013 [10]

60 years
(1951–2011) ARIMA model, China Road traffic crashes would be increasing in year 2012

Rohayu et al. [11] 40 years
(1972–2010) ARIMA model, Malaysia .ey predicted road fatalities for the following five

years (2015 and 2020)
Al-Ghamdi,
1995 [12]

11 years
(1980–1991) ARIMA model, Saudi Arabia An increase in the studied types of crashes was

revealed
Al-Zyood,
2017 [13]

18 years
(1998–2016) ARIMA model, Saudi Arabia Car crashes, injuries, and fatalities were forecasted for

the following 7 years; all will be increasing

Al-Omari
et al. [14]

13 years
(1998–2010)

Multiple-linear regression and logarithmic
models, Jordan

Traffic crash frequencies and fatalities in terms of
motorization level were modeled; traffic crashes were

continuously increasing

Jadaan et al. [15] 10 years
(2000–2009) Multiple-linear regression, Jordan

Fatalities were correlated with population, number of
registered vehicles, and total length of paved roads; the

crash cost will be increasing

Ljubič et al. [16] 21 years
(1979–1999)

Simple statistical visualization and graphic
presentation, UK

A clustering approach was used to find trends of road
crashes through different time segments

Colum, 2018 [17] Weekly data
(2005–2014) ARIMA model, UK Crashes, casualties, and vehicles were modeled. .e

models are useful in making future predictions.

Tang et al. [18] 8 years
(2005–2012)

Negative binomial (NB) and random
parameters negative binomial (RPNB),

USA

.e RPNBmodel provides better predictions when
applied to within-sample observations, while the NB
model provides better predictions when applied to

out-of-sample observations

Liu and Sharma,
2017 [19]

10 years
(2006–2015)

Integrated nested Laplace approximation
(INLA) to estimate Bayesian
spatiotemporal models, USA

Spatial and temporal correlations are critical in crash
frequency modeling; the vehicle-miles-traveled was
the only significant variable. Fatal crashes showed

decreasing trends

Russo et al. [21] 5 years
(2006–2010) Negative binomial regression, Italy

.e AADT, lane width, curvature change rate, length,
and vertical grade are important variables in
explaining the severity of crashes. .e HSM

overestimates the crash frequency for rural undivided
roads.
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Δ Yt, 2( 􏼁 � −54.942 − 1.227Yt−1 − 0.993Yt−2 + 0.186εt−1 − 0.197εt−2 − 0.988εt−3, (1)

Δ Yt, 2( 􏼁 � −74.934 − 1.186Yt−1 − 0.974Yt−2 + 0.940εt−1 − 0.136εt−2 − 0.949εt−3, (2)

Δ Yt, 2( 􏼁 � −1001.693 − 1.478Yt−1 − 0.791Yt−2 − 0.313Yt−3 + 0.984εt−3, (3)

Δ Yt, 2( 􏼁 � −917.691 − 0.945Yt−1 − 0.526Yt−2 − 0.344Yt−3 − 0.532εt−1 − 0.467εt−2, (4)

Yt is the road crash forecast at time (year) t. Yt−1, Yt−2, and
Yt−3 are the road crashes at time (years) lag t− 1, lag t− 2,

and lag t− 3. εt−1, εt−2, and εt−3 are the error terms at time
(years) t− 1, t− 2, and t− 3.
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Figure 1: Trends of road crashes for the studied countries (1971–2015).

Table 2: Prediction models based on different sample sizes (number of years).

Sample size (years)
Country 45 (1971–2015) 35 (1981–2015) 25 (1991–2015) 15 (2001–2015)
Denmark
Turkey Model 1 Model 2 Model 3 Model 4
Germany
Israel
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Finally, the annual crash data for 2016 and 2017 were
used to verify the accuracy of each model. .e difference
between the observed and the forecasted crash data

(forecast error) was determined, and the percentage of
errors was used to compare the results of all models for the
different sample sizes in order to identify the forecast error
trends, as shown in Tables 5 and 6, for years 2016 and 2017,
respectively.

.e results of forecast error for 2016 showed that the
percentage of forecast error varied from as low as 1.30% for
Germany for the model with 35 sample size to as high as
15.89% for Denmark for the model of 25 sample size, as
shown in Table 5

As for the forecast errors for 2017, the results showed
that the percentage of forecast error varied from 0.02% for
Germany with the model of sample size 25 to 30.06% for
Denmark with the model of sample size 25, as shown in
Table 6.

For Denmark, the results in Table 5 show that the
forecast errors for 2016 for models of sample sizes 45, 35, 25,
and 15 were 4.86%, 13.22%, 15.89%, and 9.54%, respectively.
In other words, there was an increase in the percentage of
forecast error by decreasing the sample size to 25, which was
followed by a decrease in the percentage of forecast error at
sample size 15. On the other hand, for 2017, the forecast
errors for models of sample sizes of 45, 35, 25, and 15 were
7.86%, 26.99%, 30.06%, and 26.01%, respectively, as pre-
sented in Table 6.

For Turkey, the results show that the forecast errors for
2016 for models of sample sizes of 45, 35, 25, and 15 were
−4.14 %, −4.63 %, −6.19 %, and 5.64 %, respectively. .ere
was a slight increase in the percentage of forecast error by
decreasing the sample size to 25. .is was followed by a
slight decrease in the percentage of forecast error at a sample
size of 15. On the other hand, for 2017, the forecast errors for
models of sample sizes 45, 35, 25, and 15 were −10.36%,
−11.73%, −17.61%, and −19.41%, respectively, all above 10%
difference.

As for Germany, the results for 2016 models of desig-
nated sample sizes were 1.3%, 2.31%, 3.5%, and 1.79%, re-
spectively. .ere was an increase in the percentage of
forecast error when decreasing the sample size to 25. As for
2017, the forecast errors were −1.15%, −0.26%, −0.02%, and
−0.69%, respectively; all forecast errors for 2016 and 2017
were relatively low.

For Israel, the results show that the forecast errors for
2016 for models of the different sample sizes were 3.19%,
5.60%, 9.92%, and 9.00%, respectively. .ere was a general
increase in the percentage of forecast error by decreasing the
sample size. As for 2017, the same trend was generally
observed (12.10%, 16.87%, 12.23%, and 26.01%, respec-
tively), except at sample size of 35.

Overall, the results of the forecast errors for 2016 showed
that the model of 45-year sample size had the lowest per-
centage of forecast error among all sample sizes for all
subject countries, as shown in Figure 2. In other words, the
best prediction accuracy was obtained using the 45-year
sample size.

On the other hand, the results for year 2016 showed that
the percentages of forecast errors increased by decreasing the
sample size from 45 to 25 years, and then the forecast errors
decreased at a sample size of 15 for all subject countries. .e

Table 3: All possible crash prediction models for Germany.

Sample size Model
Model fit statistics

Stationary R-squared MAE

45

(0, 2, 1) 0.476 13208.783
(1, 2, 0) 0.249 15495.564
(1, 2, 1) 0.476 13143.372
(2, 2, 0) 0.375 14227.440
(0, 2, 2) 0.476 13136.482
(2, 2, 2) 0.480 13020.020
(1, 2, 2) 0.476 13159.988
(2, 2, 1) 0.477 13143.070
(0, 2, 3) 0.475 13089.132
(3, 2, 0) 0.389 13912.752
(1, 2, 3) 0.479 13160.837
(3, 2, 1) 0.481 12830.792
(2, 2, 3) 0.519 12101.438
(3, 2, 2) 0.482 12830.982

35

(0, 2, 1) 0.490 12691.374
(1, 2, 0) 0.309 14341.679
(1, 2, 1) 0.496 12658.162
(2, 2, 0) 0.453 12935.550
(0, 2, 2) 0.495 12614.442
(2, 2, 2) 0.496 12689.400
(1, 2, 2) 0.493 12647.033
(2, 2, 1) 0.496 12668.552
(0, 2, 3) 0.497 12526.896
(3, 2, 0) 0.468 12926.740
(1, 2, 3) 0.496 12701.953
(3, 2, 1) 0.516 12127.803
(2, 2, 3) 0.538 12001.359
(3, 2, 2) 0.516 12098.514

25

(0, 2, 1) 0.490 12691.374
(1, 2, 0) 0.226 12442.211
(1, 2, 1) 0.257 12424.256
(2, 2, 0) 0.245 12544.195
(0, 2, 2) 0.256 12420.705
(2, 2, 2) 0.276 11818.040
(1, 2, 2) 0.296 11666.041
(2, 2, 1) 0.263 12649.132
(0, 2, 3) 0.256 12423.869
(3, 2, 0) 0.259 12368.022
(1, 2, 3) 0.292 11609.888
(3, 2, 1) 0.308 11446.555
(2, 2, 3) 0.292 11848.622
(3, 2, 2) 0.297 11773.639

15

(0, 2, 1) 0.595 8823.144
(1, 2, 0) 0.429 9775.784
(1, 2, 1) 0.661 8052.656
(2, 2, 0) 0.495 9523.153
(0, 2, 2) 0.702 7022.490
(2, 2, 2) 0.665 8067.804
(1, 2, 2) 0.649 8227.577
(2, 2, 1) 0.672 7703.740
(0, 2, 3) 0.715 7109.722
(3, 2, 0) 0.625 8523.649
(1, 2, 3) 0.702 7431.874
(3, 2, 1) 0.709 7159.754
(2, 2, 3) 0.728 6992.708
(3, 2, 2) 0.712 6934.599
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reason for this reduction is that these four countries had
noticeable socioeconomic developments and safety pro-
grams during the last 20–25 years. .erefore, using the
prediction models to forecast future road crashes based on
the past short period (15 years) led to higher prediction
accuracy than models with a longer period (25 years);
however, the highest prediction accuracy was achieved using
the 45-year models.

.e results of forecast errors for 2017 showed that they
followed a somewhat different trend, as shown in Figure 3.
.e prediction error generally decreased for models with 45-
year sample size as compared to other sample sizes. .e
trend at sample sizes of 15–35 years was slightly different
among the four countries. As for Germany, despite the
different behavior at different sample sizes, the prediction
accuracy for all sample sizes was very high (errors range:
0.02–1.1%). Furthermore, models at 15-year sample size
generally had a relatively low prediction error.

As a general observation, the percentages of forecast
errors increased for predicting crashes in year 2017 as
compared to 2016 for almost all the sample sizes. .erefore,
using ARIMA models for predicting crashes for a longer
period of time (farther than the following year) would lead to
a higher range of prediction errors as compared to the
prediction error of the following year. .erefore, using
ARIMA models for predicting crashes for a long period in
the future could lead to lower prediction accuracy and thus
should be used with caution.

5. Case of Palestine

In order to test the validity of the previous analysis, time-
series modeling and verification were conducted for a
country with high political and economic instability, Pal-
estine. Its political and socioeconomic conditions were
briefly presented before. Road crash time-series are pre-
sented in Figure 4. .e road network in Palestine has been
developing over the years. It ranged from a total length of

Table 4: .e selected best-fit models for each sample size of all subject countries.

Country Sample size Best-fit ARIMA model
Model fit statistics

Stationary R-squared R-squared MAE

Denmark

45 (2, 2, 2) 0.361 0.966 523.517
35 (1, 2, 3) 0.411 0.979 292.596
25 (1, 2, 3) 0.545 0.975 271.426
15 (2, 2, 3) 0.488 0.947 276.796

Turkey

45 (2, 2, 3) 0.389 0.984 3851.541
35 (2, 2, 3) 0.393 0.977 4515.151
25 (2, 2, 3) 0.505 0.981 4189.615
15 (1, 2, 2) 0.193 0.966 5514.014

Germany

45 (2, 2, 3) 0.519 0.742 12101.438
35 (2, 2, 3) 0.538 0.780 12001.359
25 (3, 2, 1) 0.308 0.821 11446.555
15 (3, 2, 2) 0.712 0.834 6934.599

Israel

45 (0, 2, 1) 0.246 0.863 1095.791
35 (0, 2, 1) 0.255 0.874 1132.513
25 (2, 2, 3) 0.347 0.881 1181.735
15 (2, 2, 3) 0.662 0.813 665.480

Table 5: .e forecast error of the best-fit models for year 2016.

Country Sample size Observed Forecast Error Error (%)

Denmark

45 2882 2742 140 4.86
35 2882 2501 381 13.22
25 2882 2424 458 15.89
15 2882 2607 275 9.54

Turkey

45 185128 192793 −7665 −4.14
35 185128 193693 −8565 −4.63
25 185128 196584 −11456 −6.19
15 185128 195566 −10438 −5.64

Germany

45 308145 304128 4017 1.30
35 308145 301026 7119 2.31
25 308145 297365 10780 3.50
15 308145 302629 5516 1.79

Israel

45 12966 12553 413 3.19
35 12966 12240 726 5.60
25 12966 11680 1286 9.92
15 12966 11799 1167 9.00

Table 6: .e forecast error of the best-fit models for year 2017.

Country Sample size Observed Forecast Error Error (%)

Denmark

45 2864 2639 225 7.86
35 2864 2091 773 26.99
25 2864 2003 861 30.06
15 2864 2119 745 26.01

Turkey

45 182669 201597 −18928 −10.36
35 182669 204089 −21420 −11.73
25 182669 214840 −32171 −17.61
15 182669 218131 −35462 −19.41

Germany

45 302656 306144 −3488 −1.15
35 302656 303456 −800 −0.26
25 302656 302712 −56 −0.02
15 302656 304741 −2085 −0.69

Israel

45 13628 11979 1649 12.10
35 13628 11329 2299 16.87
25 13628 11096 2532 18.58
15 13628 11961 1667 12.23
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Figure 2: Forecast error for the subject countries, 2016. (a) Forecast error for Germany, 2016. (b) Forecast error for Denmark, 2016.
(c) Forecast error for Israel, 2016. (d) Forecast error for Turkey, 2016.
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Figure 3: Forecast error for the subject countries, 2017. (a) Forecast error for Germany, 2017. (b) Forecast error for Denmark, 2017.
(c) Forecast error for Israel, 2017. (d) Forecast error for Turkey, 2017.

Advances in Civil Engineering 9



1576 km in year 1967 to 1716 km in 1997 [31]. .e paved
roadway widths ranged from 3.0m to 6.0m, with the vast
majority being two-lane undivided highways. .e length
increased to 3501 km in 2010 [32] and up to approximately
5200 km in 2018 [33]..e paved roadway width increased up
to 20m of multilane divided highways.

.e results of ARIMA models for road crashes in
Palestine are presented in Table 7. It should be noted that
the ARIMA method was not applicable at the sample sizes
of 45 and 35 (for years before 1991) since the Shapiro–Wilk
test showed that the residuals do not follow a normal
distribution, which is one of the main conditions for
applying ARIMA method. .erefore, results at 35- and 45-
year sample size are not presented. As mentioned before, a
new era in Palestine started in 1993 as a result of the Oslo
Peace Accord, which significantly affected road crash
patterns, as shown in Figure 4. .erefore, the ARIMA
method could not model these abrupt changes and their
consequences for road crashes in the period before 1991
[34]. .e results of forecast errors for years 2016 and 2017
are presented in Table 8.

.e results showed that predicting road crashes for
models of sample sizes of 25 and 15 years produced
somewhat close results for year 2016 (5.4% and 5.9% errors).
More specifically, the prediction of road crashes for the 15-
year sample size model produced slightly higher accuracy as
compared to the prediction of road crashes for year 2017..e
15-year sample size model produced a higher accuracy with
less forecast errors than a sample size of 25 years (3.7%
compared to 6.0%), as shown in Figure 5.

As a result, the prediction accuracies would vary based
on the varying socioeconomic and development conditions
of the country over the study years. For countries with steady
and stable conditions, modeling using larger sample sizes (45
years or more) would yield higher accuracy models with
higher prediction capabilities. As for countries with less
steady and stable conditions, modeling using smaller sample

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

20
09

20
11

20
13

20
15

19
71

Date

0

2500

5000

7500

10000

12500

N
um

be
r o

f r
oa

d 
cr

as
he

s

Figure 4: Road crash time-series for Palestine (1971–2015).

Table 7: .e selected best-fit models for each sample size for
Palestine.

Country Sample
size

Best-fit
ARIMA
model

Model fit statistics
Stationary
R-squared

R-
squared MAE

Palestine

— — — — —
— — — — —
25 (3, 2, 3) 0.530 0.821 1092.853
15 (3, 2, 3) 0.520 0.742 1229.727

Table 8: .e forecast error of the best-fit models for Palestine for
2016 and 2017.

Year Crashes 25 years (1991–2015) 15 years (2001–2015)

2016
Observed 11856 11856
Forecast 12506 11152
Error (%) 5.4 5.9

2017
Observed 12767 12767
Forecast 12009 12299
Error (%) 6.0 3.7
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sizes (15 years, for example) would lead to high accuracy
models with good prediction capabilities.

6. Conclusions

During the last three decades, an important question has
arisen, “What is the reasonable minimum sample size for
appropriate time-series modeling?” However, there is a
common rule-of-thumb in statistics that more is better.
Practically this rule may not be ultimately accurate for all
aspects of engineering. In traffic engineering, more specif-
ically in road crash prediction, several interrelated factors
may affect the prediction accuracy and the minimum sample
size requirements. In this study, road crash prediction
models were developed for four countries using different
sample sizes, using ARIMA methodology. .e analysis was
further verified for a country with drastically changing
socioeconomic and political conditions. Based on the results
of this study, the following findings are offered.

(i) It was verified that using larger sample size of 45
years, for road crash prediction, would generally
lead to higher prediction accuracy as compared to
35, 25, and 15 years. On the other hand, the results
generally showed that the prediction accuracy using
a sample size of 15 years was higher than the ac-
curacy for sample sizes of 25 and 35 years.

(ii) In general, using ARIMA models to predict future
road crashes for a longer period of time (farther
than the following year) would lead to an increase in
the prediction error, as compared to the prediction
error of the following year; therefore, this should be
done with caution.

(iii) .e socioeconomic and political factors as well as
implemented safety programs for the study area are
elements that affect the selection of the minimum
acceptable sample size for road crash prediction.
More specifically, in countries that have well-
established and steady socioeconomic develop-
ments and an effective traffic safety program during
the past few decades, using a sample size of 15 years
could be acceptable, although a larger sample size of
45 is better. On the other hand, in countries with

nonsteady socioeconomic development or effective
safety programs over the past few decades, using a
smaller sample size, as small as 15 years, would be
practical and would yield reasonably accurate re-
sults. Furthermore, crash data for an extended
period of timemight not always be available in those
countries. However, the prediction capability of
such models is also limited for only a few future
years.

(iv) .e offered results are related to road crash pre-
diction and might not be valid for the prediction in
other fields. .erefore, different studies should be
conducted separately for each field.

(v) Using other prediction methods, other than
ARIMA, requires specific studies in order to select
the minimum acceptable sample size since each
method of prediction depends on different statis-
tical techniques and parameters.

(vi) It is recommended for future work that crash data
are tested for other countries with varying socio-
economic, political, and safety program conditions
and that the conclusions of this research are con-
firmed. It is also recommended that smaller sample
size intervals are used for modeling and testing of
models’ prediction accuracies.
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