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/e postproduction defect classification and detection of bearings still relies on manual detection, which is time-consuming and
tedious. To address this, we propose a bearing defect classification network based on an autoencoder to enhance the efficiency and
accuracy of bearing defect detection. An improved autoencoder is used to reduce dimension feature extraction and reduce large-
scale images to small-scale images through encoder dimensional reduction. Defect classification is completed by feeding the
extracted features into a convolutional classification network. Comparative experiments show that the neural network can
effectively complete feature selection and substantially improve classification accuracy while avoiding the laborious algorithm of
the conventional method.

1. Introduction

Bearing quality is related to the overall performance of a
machine, affecting its stable operation and indirectly af-
fecting the quality of its output. Bearing surface defects are a
key factor in the life cycle of bearings based on the internet of
things [1–5]. Bearing manufacturers attach great importance
to the quality of their products and generally inspect them
before they leave the factory. A bearing’s outer ring surface is
more prone to defects than other parts in the assembly and
production process, and it has a great impact on a machine’s
performance. /erefore, bearing inspection focuses on the
outer ring surface. Bearing factories presently rely on
manual sampling inspection (Figure 1). /is method is
inefficient, and not all outputs can be tested, which may lead
to overlooked defects. Also, due to the influence of expe-
rience, working state, and fatigue of inspectors, detection
standards cannot be unified. /erefore, it is necessary to
design automatic detection equipment.

With high speed, nondestructive characteristics, low
noise, and automation capabilities, machine vision systems

have found a wide range of applications in product defect
inspection. /is process is well suited to bearing
manufacturing. Inspection requires knowledge of whether
defects exist and the types of defects. /e probability dis-
tribution of types of defects should be determined to address
production problems and make improvements.

2. Related Work

Defect-classification algorithms have been developed. Fea-
tures used as raw data for classification have a direct effect on
the results, and their performance depends largely on the
form of data and the choice of features.

Belkin [6] proposed a manifold dimensionality reduc-
tion method based on the conversion of high-dimensional
initial samples to low-dimensional manifold structures to
reduce the sample dimensionality and facilitate sample vi-
sualization. Sooraksa et al. [7] aimed to detect defects on an
air bearing surface. /ey combined block matrix-based
image segmentation technology with a neural network to
recognize defects. Çelik and Dülger [8] detected and
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classified four commonly occurring defects in fabrics—lack
of warp yarn, weft yarn defect, yarn hole contamination, and
yarn flow—using an algorithm based on a wavelet transform,
image morphology analysis, and binary operations. /e
defect-classification algorithm was based on a grayscale co-
occurrence matrix and feedforward neural networks. It
achieved defect-detection accuracy as high as 93.4% and
defect-classification accuracy of 96.3%.

Extracted original feature data in image processing are
often high-dimensional and contain considerable redundant
information. To directly process the original data requires
substantial computing resources, so it is often necessary to
reduce its dimensionality. Principal component analysis
(PCA) is a commonly used unsupervised dimensionality
reduction algorithm. Minka [9] proposed Bayesian model
selection to estimate the true dimension of data when de-
termining the number of principal components retained by
the PCA algorithm and applied the Laplace method after
selecting the appropriate parameters to solve the integration
problem on the Stiefel framework. /is led to better results
and a higher processing speed compared to a cross-vali-
dation algorithm.

/e choice of classification algorithm has a huge
impact on classification results. Mien Van and Hee-Jun
Kang [10] proposed a wavelet-kernel local linear Fisher
discriminant analysis algorithm (WKLFDA) using a
wavelet-kernel function for linear Fisher discriminant
analysis (LFDA). Particle swarm optimization was used to
automatically select the parameters of WKLFDA and to
convert the multi-classification problem into binary
classification using a one-versus-one strategy. /e fea-
tures of each binary classification process after dimen-
sionality reduction were fed into a single support vector
machine (SVM), whose results were combined with a
decision fusion mechanism to determine the condition of
a bearing. /e classification efficiency of this algorithm
was better than that of other algorithms, and its classi-
fication accuracy could reach 98.80%. Zapata et al. [11]
used 12 geometric characteristics to represent the shapes
and orientations of weld seam defects and proposed an
artificial neural network (ANN) and an adaptive neuro-
fuzzy inference system (ANFIS) to classify defects.
/rough experiments, the correlation coefficient and trust

matrix of the ANN and ANFIS were determined, and
respective classification accuracies of 78.9% and 82.6%
were achieved.

/ere are many classic network models. /e Alex net-
work [12] used dropout technology to improve the over-
fitting problem. Google network used 1× 1 convolution and
proposed a concept embedding structure, using average
pooling instead of full connection to greatly improve the
network depth. It was the champion of ILSVRC detection
and classification in 2014. It used the convolution pooling
full connection VGG network [13], and the convolution
kernel of all convolution layers was 3× 3, which greatly
improved the expression ability. /e Res network [14] in-
troduced a residual structure, which made it easier to op-
timize a deep network and further deepened it.

/e concept of a neural network was proposed in the
1940s when the multi-perceptron (MP) prototype model
and Hebb learning rules first appeared. Rosenblatt [15]
proposed a perceptron model and laid the foundation for
neural networks. Rumelhart [16] proposed a back-
propagation algorithm (BP) to solve the problem that
perceptron models could only have single layers. Based on
the BP algorithm, LeCun [17] proposed a convolutional
neural network suitable for deep learning, and Hinton [18]
proposed a deep belief network that used a hierarchical
initialization method to train deep network parameters,
solved the bottleneck of the BP algorithm, and made it
possible to increase the number of network layers. /us, the
concept of deep learning was born. A neural network can
directly take inputs and output a classification result. We
apply neural network technology to classify bearing defects.

3. Methods

3.1.EquilibrationandEnhancement ofData. Based on defects
that actually occur in bearing production, we collected three
types of representative defect samples—abrasions, bruises, and
overgrinding defects—on model 6204 deep groove ball
bearings, as shown in Figure 2. Of these samples, 308 were of
abrasion, 240 bruises, and 247 overgrinding. A network
trained on a dataset with significantly different numbers of
samples in each category would acquire inconsistent recog-
nition ability of different categories. /us, we balanced the
samples to 240 per category using undersampling, for a total of
720 samples./is order of magnitude was small in terms of the
training of a deep-layer neural network. More samples usually
give better training results. We increased the number of
samples to 4320 by rotating each defect sample by 90°, 180°,
and 270° to obtain horizontal and vertical mirror images. Of
these samples, 1296 were used as a testing set and the
remaining 3024 were used as the training set.

3.2. Preprocessing of Samples. In training a network, the
speed of training and robustness of the model are enhanced
by using samples of the same size, so it is necessary to
normalize the sample size. /e size range of the original
samples was 50–600, with most samples concentrated

Figure 1: Manual sampling inspection of bearings.
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between 100 and 300. If the image sizes were decreased too
much, some feature information could be lost. If toomuch of
the sample size was retained, then redundant information
would increase the computational cost. Considering these
two factors, we normalized the sample sizes to 112×112 by
linear interpolation.

/ree typical filters—Gaussian, median, and mean-
—were compared experimentally, as shown in Figure 3.
Figure 3(a) shows the original image, where brighter areas
correspond to defects./ere are many irregularly distributed
white spots caused by small impurities on the bearing surface
or noise generated by electromagnetic interference during
signal transmission. /e templates of the Gaussian, mean,
and median filters were all 7× 7. /e Gaussian and median
filters could smooth out the noise to a certain extent but not
completely. /e Gaussian filter used different weighting
coefficients and achieved better results than the mean filter.
None of the filters could preserve the defect textures. Blurred
textures can cause an image to lose features that are helpful
in classification. /e median filter could completely remove
noise regions of a certain size and reduce the area of larger
noise areas, while retaining the texture characteristics of
defects. A comprehensive comparison of the effects of the
three filtering algorithms showed that the median filter
should be selected for denoising.

3.3. Bearing Defect Classification Network Based on
Convolutional Autoencoder

3.3.1. Convolutional Autoencoder. A typical autoencoder
[19] is a three-layered unsupervised neural network con-
sisting of input, hidden, and output layers. /e input and
hidden layers constitute the encoder, and the hidden and
output layers constitute the decoder. /e network structure
is shown in Figure 4.

/e functional relationship between the input and
output of the encoding process can be expressed as follows:

y � S1 W1x + b1( 􏼁, (1)

where S1 (x) is the encoder activation function and W1 and
b1 are the weight and bias, respectively, of a neuron. /e
decoding process can be expressed as follows:

z � S2 W2y + b2( 􏼁, (2)

where S2 (x) is the activation function andW2 and b2 are the
weight and bias, respectively, of a decoder neuron. When y
has a smaller dimension than x, the autoencoder can be used
for dimensionality-reduction feature extraction. /e train-
ing of the autoencoder generally aims to minimize the re-
construction error, and the loss function is generally chosen
as the mean squared error between the reconstruction and
the input. /is loss function can effectively quantify the
difference between the output and input, and its derivative
can be obtained as follows:

L(X, Z) �
1
N

􏽘

N

i�1
xi − zi( 􏼁

2
. (3)

3.3.2. Improved Convolutional Autoencoder Bearing Defect
Classification Network. Figure 5 shows the network training
process of the model structure designed in this paper. /e
bearing defect samples were photographs, but conventional
fully connected autoencoders are not suitable for image
processing. /rough the sharing of weighting factors, a
convolutional autoencoder can greatly reduce the number of
parameters. We adopted a convolutional autoencoder to
extract features from the defect samples. /e convolution
process is shown in Figure 6, and the network layer pa-
rameters are listed in Table 1.

Based on the characteristics of the bearing defect sam-
ples, we made the following improvements to the autoen-
coder structure.

(1) Elimination of Pooling. In a conventional convolutional
network, convolution is followed by pooling to reduce the
dimension of the output and the size of the feature map.
Figure 7 showsmaximum pooling with a sliding step of 2× 2.
After pooling, the size of the feature map is reduced by half.
To improve the stability of the autoencoder and reduce the
number of network layers, the convolution stride was set to
two to replace the original pooling operation. /e network
will automatically learn the appropriate sampling function
during training.

(a) (b) (c)

Figure 2: /ree types of bearing defects. (a) Abrasion: wear caused by friction between a bearing and a rough object as it moves on a
production line. (b) Bruise: whenmoving between stations, the bearing transfer device does not fix the bearing, which causes concavity from
the collision between the bearing and other objects. (c) Overgrinding: in the machining process, excessive grinding of the bearing is caused
by machine vibration or incorrect parameter settings.
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(2) Leaky ReLU Activation Function. Rectified linear unit
(ReLU) activation functions are used extensively in neural
networks. /eir positive semiaxis derivative remains un-
changed, which facilitates propagation in the gradient

direction. However, some information may be lost when the
input data to ReLU [12, 13, 20–22] is less than zero. To retain
such input data, we use the revised leaky ReLU activation
function. /is improves the portion that is less than zero
based on the ReLU function. Leaky ReLU is expressed as
follows:

f(x) �
ax, x< 0,

x, x≥ 0,
􏼨 (4)

where a is the minimum nonzero parameter that can be
learned from the directional propagation algorithm. Figure 8
shows the function and its derivative. /is function enables
the avoidance of the issue of the neuron not being activated
in backpropagation of the model.

After dimensionality reduction and feature extraction by
the autoencoder, the data are sent to the classification
network for classification.

/e pooling operation is removed, and the network
structure parameters are modified to meet the classification
requirements of this project./e classified network structure
parameters are shown in Table 2.

(a)

(b)

(c)

(d)

Figure 3: Performance comparison of three filter algorithms: (a) original image; (b) Gaussian filter with σ � 1.55; (c) mean filter; and (d)
median filter.
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Figure 4: Typical autoencoder mechanism.
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/e kernel size of the first layer of the network is 1× 1.
/e number of network parameters can be greatly reduced
by compressing the dimensionality of the encoder output
from 28× 28× 6 to 28× 28×1. Overfitting is prevented by
using the dropout on the full connection of the fifth layer.
/e last layer contains three neurons. /e activation func-
tions of both the convolution and full connection are leaky
ReLU functions, and a softmax function was used as the
activation function for the last layer. /e loss function is the
cross-entropy,

c � −
1
n

􏽘
x

[y ln a +(1 − y)ln(1 − a)]. (5)

(3) Addition of Fully Connected Network Layer. In a tradi-
tional convolutional self-encoder, the encoder and decoder
network layers are convolution operations, while the con-
volution layer generally requires multiple convolution cores,
which will cause the encoder output feature dimension to be
too high. /e decoder and encoder are connected by
deconvolution, which makes it difficult to control the en-
coder output dimension. We improve the network structure
of the self-encoder. After the convolution operation of the
second layer of the encoder, we use the full connection layer
to realize symmetry between the decoder and encoder. /is
solves the problem of the encoder output dimension control,

Classification network

Output

Input

Training

Fully connected 1

Fully connected 2

Encoder

Autoencoder

Deconvolution layer 1

Deconvolution layer 2

Convolution layer 

Convolution layer 

Convolution layer 

Convolution layer 

Convolution layer 

Decoder

Figure 5: Overall network structure.
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Figure 6: Convolution process.

Table 1: Parameters of autoencoder network structure.

Number of layers Operation Kernel size Image size Dimension
1 C 3× 3 56× 56 3
2 C 3× 3 28× 28 6
3 D 3× 3 56× 56 3
4 D 3× 3 112×112 1
C denotes convolution and D denotes deconvolution.
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it causes the convolution neurons to be connected, and the
extracted features are more representative.

Figure 9 shows the network structure of the improved
convolutional self-encoder. /e network layer structure
parameters are as follows:

(1) /e first layer is an encoder input layer, and the input
data dimension is (112, 112), with a single-channel
gray image.

(2) /e second layer network is a convolution layer with
two convolution kernels of size (3, 3), the sliding step
size is (2, 2), the padding operation is the same, the

output dimension is a (112/(2)× (112/(2)� 56× 56
characteristic graph, and the activation function is
leaky ReLU.

(3) /e third layer is a convolution layer with four
convolution kernels of size (3, 3), the sliding step size
is (2, 2), the padding operation is the same, the
output dimension is (56/(2)× (56/(2)� 28× 28, and
the activation function is leaky ReLU.

(4) /e fourth layer is a tile operation. /e output of the
previous network layer is tiled into one dimension,
and the output dimension is 3136.

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

6 8

3 4

Pooling

Figure 7: Pooling operation.
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Figure 8: Leaky ReLU function and derivative.

Table 2: Parameters of convolutional fully connected network structure.

Network layer Operation Kernel size Slip step Number of neurons Edge fill type
1 C 1× 1 1× 1 1 —
2 C 5× 5 2× 2 6 SAME
3 C 5× 5 2× 2 16 SAME
4 F — — 1024 —
5 F — — 3 —
C denotes the convolutional layer and F denotes the fully-connected layer.
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(5) /e fifth layer is a full-connection operation with 50
neurons. /e output is the encoder output, and the
output dimension is 50. No activation function is used.

/e network layer structure and parameters of the de-
coder are as follows:

(1) /e first layer is a decoder input layer, with input
dimension of 50.

(2) /e number of neurons in the second layer is 3136,
and the output dimension is 3136.

(3) /e input data of the third layer has dimension 3136,
and it is transformed to a feature graph of dimension
(28, 28, 4).

(4) /e fourth layer is deconvolution, the number of
deconvolutions is 4, the convolution kernel size is (3,
3), the sliding step size is (2, 2), the output dimension
is (56, 56, 4), and the activation function is leaky
ReLU.

(5) /e fifth layer is deconvolution, the number of
neurons is 2, the size of the convolution nucleus is (3,
3), the sliding step size is (2, 2), the output dimension
is (112, 112, 2), and the activation function is leaky
ReLU.

(6) /e sixth layer is deconvolution, the number of
neurons is 1, the size of the convolution nucleus is (3,
3), the sliding step size is (1, 1), the output dimension
is (112, 112, 1), and there is no activation function.

(7) /e seventh layer is the activation layer. /e sigmoid
activation function is used to normalize the output
value range of the decoder to (0, 1), and the output
dimension is (112, 112, 1).

4. Experiment

/e experimental environment was a 64 bit Windows 10
operating system, the processor was an AMD2600x, the
graphics card was an Nvidia1060 6G, the memory was
16GB, the programming language was Python, the backend
of the deep learning framework was TensorFlow 1.13.2, and
the interface language was Keras 2.3.1.

4.1. Training of Autoencoder. First, the autoencoder was
trained. /e weighting factors were initialized using a
truncated normal distribution with a mean value of 0, a
standard deviation of 0.1, a batch size of 64, and 1500 it-
erations. Figure 10 shows the reconstructed autoencoder.
/e first row contained the original defective samples, the
second row contained the reconstructed samples of the
autoencoder, and each column corresponded to a different
defective sample. /e results show that the autoencoder
could successfully restore the overall structure and detailed
local texture of the input samples, so the encoder efficiently
extracted the features of the samples.

4.2. Training of Classification Network. /e training and
optimization of the classification network were performed
using the Adam algorithm. /e weighting parameters were
initialized using a truncated normal distribution with a
mean of 0, a standard deviation of 0.1, a bias of 0, a batch size
of 64, and a dropout of 0.5. Figure 11 shows the changes in
the training and test sets as the number of iterations in-
creased. /e accuracies of the test and training sets did not

EncoderInput: InputLayer
Input (None, 112, 112, 1)

Output (None, 112, 112, 1)

Conv2d_1: Conv2D
Input (None, 112, 112, 1)

Output (None, 56, 56, 2)

Conv2d_2: Conv2D
Input (None, 56, 56, 2)

Output (None, 28, 28, 4)

Flatten_1: Flatten
Input (None, 28, 28, 4)

Output (None, 3136)

Latent_vector: Dense
Input (None, 3136)

Output (None, 50)

Decoder_input: InputLayer
Input (None, 50)

Output (None, 50)
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Input (None, 50)

Output (None, 3136)

Reshape_1: Reshape
Input (None, 3136)

Output (None, 28, 28, 4)

Conv2d_transpose_1: Conv2DTranspose
Input (None, 28, 28, 4)

Output (None, 56, 56, 4)

Decoder_output: Activation
Input (None, 112, 112, 1)

Output (None, 112, 112, 1)

Conv2d_transpose_2: Conv2DTranspose
Input (None, 56, 56, 4)

Output (None, 112, 112, 2)

Conv2d_transpose_3: Conv2DTranspose
Input (None, 112, 112, 2)

Output (None, 112, 112, 1)

Encoder
Decoder

Figure 9: Network structure of self-encoder.
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differ significantly over the entire iteration process, and they
remained within the acceptable range. In the first 1000 it-
erations, the accuracy increased rapidly, indicating that the
optimizer found the correct direction for convergence at this
time. /e automatic increase of the learning rate by the
optimizer facilitated rapid convergence. After 1000 itera-
tions, the loss gradually approached theminimum value, and
the optimizer switched to a slower learning rate to prevent
the training from skipping over the optimal solution. /e
final accuracy of the model was 98.74% on the training set
and 98.13% on the testing set.

4.3. Comparison of Experimental Results. To verify the
performance of the network designed in this paper, the
accuracies of the proposed network, a BP neural network,
and classification using PCA-extracted features with the
proposed classification network are compared in Table 3.

/e accuracy using features of the local defect area extracted
using threshold segmentation and color conversionmethods
combined with the BP neural network was better than using
PCA-extracted features with the proposed classification
network but worse than that of the proposed algorithm
alone. /is showed that our autoencoder-based neural
network classifier could indeed improve the classification
accuracy of bearing defects.

5. Summary

To improve the classification accuracy of bearing surface
defects, we designed a neural network classifier based on an
autoencoder. /rough experimental analysis and compari-
son with conventional algorithms, the algorithm proposed
in this paper was shown not only to improve classification
accuracy but to reduce the algorithm design workload of
feature extraction, dimension reduction, and classification.

Figure 10: Reconstruction efficiency of the autoencoder.
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Figure 11: Relationship between accuracy and number of iterations.

Table 3: Comparison of accuracies (%) of various methods.

Classifier Proposed network /ree-layer BP neural network PCA+proposed network
Accuracy 98.13 95.24 91.23
/ree-layer BP denotes backpropagation and PCA denotes principle component analysis.
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Compared to the PCA algorithm, we found that the features
extracted by the improved autoencoder in this paper were
more representative and could achieve higher classification
accuracy.
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