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The prediction of construction cost of metro shield engineering is of great significance to project management. In this study, we
used the rough set theory, a backpropagation (BP) neural network, and quantum particle swarm optimization (QPSO) to establish
a prediction model for predicting the metro shield construction costs. The model accounts for the complexity of metro shield
construction and the nonlinear relationship between the construction cost factors. First, the factors affecting the construction cost
were determined by referring to the Chinese National Standards and analysing the engineering practice of typical metro shield
projects. The rough set theory was used to simplify the system of influencing factors to extract the dominant influencing factors
and reduce the number of input variables in the BP neural network. Since the BP neural network easily falls into a local minimum
and has a slow convergence speed, QPSO was used to optimize the weights and thresholds of the BP neural network. This method
combined the strong nonlinear analysis capabilities of the BP and the global search capabilities of the QPSO. Finally, we selected
50 projects in China for a case analysis. The results showed the dominant factors affecting the construction cost of these projects
included ten indicators, such as the type of tunnelling machine and the geological characteristics. The determination coefficient,
mean absolute percentage error, root mean square error, and mean absolute error, which are frequently used error analysis tools,
were used to analyse the calculation errors of different models (the proposed model, a multiple regression method, a traditional BP
model, a BP model optimized by the genetic algorithm, and the BP model optimized by the particle swarm optimization). The
results showed that the proposed method had the highest prediction accuracy and stability, demonstrating the effectiveness and
excellent performance of this proposed method.

1. Introduction

With the characteristics of energy-saving, land-saving,
large transportation volume, low pollution, and low-op-
erational risk, the metro plays an increasingly important
role in the urban public transportation system [1].
Nowadays, developing countries, represented by China,
are at the peak of urban rail transit construction.
According to the Thirteenth Five-Year Plan issued by the
Chinese government, by 2020, the total length of the
Chinese metro will reach 8,600 km, and the investment in

metro construction will reach 300 billion dollars. The
construction of metro projects includes the tunnel and
metro stations. The cost of tunnel construction often
accounts for more than 40% of the total construction costs
[2]. Shield construction technology has the advantages of
a small impact on the surrounding environment, fast
construction speed, excellent engineering quality, con-
struction safety, environmental protection, and wide
application range. Shield construction is the most com-
monly used method of urban metro tunnel construction
[3]. Improving the accuracy and reliability of the cost
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prediction of shield construction ensures the smooth
execution of metro construction projects and protects the
economic interests of the owners, construction compa-
nies, and the public.

There are substantial differences in the definition of
construction costs between different countries due to na-
tional regulations and different construction contracts. In
this study, we selected the most authoritative definition of
the contract unit price, which has been recommended by the
International Federation of Consulting Engineers (FIDIC)
and is accepted by the World Bank, to define the con-
struction cost of the metro shield. The selection of the
contract unit price also facilitates follow-up research. The
total cost of metro shield construction comprises all costs
paid by the owner during the metro shield construction,
including direct costs, indirect costs, headquarters man-
agement fees, profits, taxes, tentative deposits, changes
approved by engineers during the implementation process,
and the amount claimed by the contractor [4]. The final cost
of metro shield projects depends on the length of the project,
but the unit price of the construction cost per kilometre (km)
is comparable. Therefore, the construction cost analysed in
this article is the unit price of metro shield construction per
km.

According to the above definition, the components of the
metro shield construction cost are relatively complex, and
the influencing factors include the construction details,
construction environment, project management, capital
structure, and many other factors. Combined with engi-
neering practice, it is evident that the influence of these
factors on the construction cost of the metro shield is rel-
atively complicated. On the one hand, the construction
process has high degrees of mechanization and standardi-
zation; thus, the construction costs are related linearly to the
project size [5]. On the other hand, many nonlinear and
qualitative factors, such as hydrological conditions, geo-
logical conditions, environmental characteristics, and
project management capabilities, have a nonlinear influence
on the metro construction costs [6].

Many scholars have conducted in-depth research on
construction cost prediction. Wang et al. [7] used an ac-
tivity-based costing method to predict the supply chain cost
of prefabricated building construction in an uncertain en-
vironment. Although the model could be used to determine
the key factors to reduce the cost of the entire supply chain,
the subjectivity and arbitrariness of the choice of the cost
drivers led to poor cost forecasting performance. Chen [8]
used multiple regression analysis to predict the cost of four
construction projects. However, it was assumed that the
relationship between the independent variable and the de-
pendent variable was linear, affecting the accuracy of the
prediction results. Tabei et al. [9] believed that the main
factor leading to the large prediction error was the uncer-
tainty of the factors, and a new method was proposed to
predict the project cash flow in a fuzzy environment.
However, this method requires a large amount of com-
prehensive statistical data to obtain consistent research re-
sults, adversely affecting the applicability of this method.
Cheng et al. [10] used the golden section method, and the
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grey forecast method improved by dichotomy to establish a
forecast model. The method provided good prediction ac-
curacy for the case study, but the grey forecast method
requires uniformity of the original data. In addition, the
above methods either rely significantly on professional
knowledge or are only suitable for specific situations; thus,
they do not have modelling and analysis flexibility.

The emergence of artificial intelligence algorithms, such
as artificial neural networks (ANNs), provides a new ap-
proach for solving the complex problems of predicting the
metro shield construction cost. ANNs can approach any
nonlinear continuous function with arbitrary precision and
are well suited for solving the highly nonlinear problem of
cost prediction [11]. ANNs have strong self-learning and
self-adaptive abilities. They can extract information from
input and output data and store it in the weights of the
network; thus, they possess good generalization ability [12].
In addition, ANNs are able to use a limited amount of data
obtained in the field, rather than using large amounts of
statistical data so that a data-driven method can be used to
predict the construction costs.

A backpropagation (BP) neural network is a multilayer
feedforward network trained by an error BP algorithm, and
it is the most widely used type of ANN [11]. However,
traditional BP neural networks may have the following
shortcomings when applied to the analysis of complex
systems. (1) The traditional BP neural network algorithm is a
local search optimization method, which easily falls into
local extremes, and the weights converge to the local ex-
tremes, a small sample size resulting in network training
failure [13]. (2) The BP neural network is very sensitive to the
initial network weights. Initializing the network with dif-
ferent weights tends to converge to different local minima
[14]. Therefore, a high-precision model has to be developed
to improve the traditional BP neural network.

Some scholars have used a genetic algorithm (GA) and
particle swarm optimization (PSO) to improve the tradi-
tional BP model. The initial weights and thresholds of the BP
neural network are optimized by these metaheuristic algo-
rithms to achieve higher accuracy than other methods. Wen
et al. [15] established a construction cost prediction model
for a power transmission and transformation project using a
BP model optimized by a GA. However, the GA algorithm
had some problems, such as depending on the initial
population selection, a slow convergence speed, and many
parameter settings, resulting in relatively low accuracy of the
model. Liu and Chi [16] used the PSO to optimize the
weights and thresholds and establish a cost estimation model
for a government investment project. Compared with
classical metaheuristic algorithms, such as a GA, the PSO
algorithm has the advantages of simple operation, fast
convergence speed, and few parameter settings [17]. How-
ever, PSO has a limited search space and easily falls into a
local extremum [18, 19]. The reason is that, in the classical
PSO, the particles have a tendency to orbit rather than
converging to zero, and the particles have a maximum speed
limit during the search; thus, the search area is limited in
each search. Sun et al. [18] proposed the novel quantum
particle swarm optimization algorithm (QPSO), which is
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based on the PSO algorithm. During particle convergence,
the particle keeps approaching the point until it falls inside.
From the perspective of quantum mechanics [19], an at-
tractive potential exists at the midpoint of the convergence
process, attracting the particles to converge so that the whole
group is aggregated. Particles in the quantum bound state
can appear at any space point with a certain probability,
which ensures good convergence performance and global
search ability of the QPSO. Xu et al. [20] used the QPSO for
the optimization of synthetic and actual hyperspectral
datasets. The experimental results showed that the QPSO
method obtained better results than vertex component
analysis (VCA) and the standard PSO in remote sensing. Sun
et al. [21] solved the problem of designing an optimal two-
dimensional zero-phase infinite impulse response (IIR)
digital filter using QPSO. Before analysing unmanned aerial
vehicle (UAV) route planning, Fu et al. [22] tested various
optimization algorithms, such as GA, differential evolution
(DE), the standard PSO, the phase-coded PSO, the QPSO,
and other optimization algorithms. The results showed that
the computational power of QPSO was better than that of
GA, DE, and classic PSO algorithms. Therefore, in this study,
we used the QPSO to optimize the BP model.

Many factors affect the construction cost of metro
shields. If all factors are included in the input of the BP
model, the computational burden for training the neural
network will be high, and the prediction accuracy will be
reduced. In the selection of input variables for the BP model,
most studies used threshold analysis with an arbitrary
threshold to select the input variables for the BP model [23].
This selection method is affected by subjective factors,
causing information redundancy or loss. The accuracy of
neural network prediction can be increased by using a
suitable method for selecting the important factors affecting
the construction cost of metro shields as model inputs.

Rough set theory is a mathematical analysis tool to
describe the completeness and uncertainty of data [24]. The
method simplifies the data, obtains the minimum expression
of knowledge while retaining key information, and identifies
and evaluates the dependence between the data. Shiau et al.
[25] successfully used rough set theory to screen factors
affecting transportation sustainability in Taiwan. Cheng et al.
[26] used the rough set theory to select and analyse 21 in-
dicators affecting regional green competitiveness and for-
mulate regional green competitiveness indicators. Ge et al.
[27] extracted spatial relationship indicators using rough set
theory to describe the complex relationship between geo-
graphical phenomena and the environment. Many factors
affect the cost of subway shield construction. If we regard
them as a knowledge expression system and use a fuzzy
rough set method to analyse various factors that affect the
cost of subway shield construction, we can reduce the
number of variables and obtain many important attributes
influencing the construction cost of a subway shield. These
factors can be used as input to the neural network to op-
timize the input variables, and the importance of each at-
tribute in the cost prediction of subway shield construction
can be determined.

Against this background, we established a prediction
model based on a BP neural network improved by the QPSO.
This paper provided the following contributions. (1) This
paper determined the factors affecting the construction cost
and provided details on the data acquisition or calculation
method for each factor. We used the rough set theory to
select the main influencing factors affecting the construction
cost of 50 metro shield projects in a case analysis. This
approach not only handled scientifically the complexity of
metro shield construction and the numerous factors af-
fecting construction costs but also substantially reduced the
input variables of the BP neural network prediction model.
(2) This paper used the BP algorithm optimized by the QPSO
to establish a cost prediction model for metro shield con-
struction. This method combined the global convergence
ability of the QPSO and the speed of the local search of the
BP algorithm, thus improving the stability of the training
process of the BP network and the accuracy of the training
results. (3) The error analysis of the case study showed that
the BP neural network optimized by QPSO had higher
prediction accuracy and stability than the multiple regres-
sion method, the conventional BP model, the BP model
optimized by GA, and the BP model optimized by PSO.

The remaining sections of this article are organized as
follows. Section 2 constructs a detailed construction cost
impact index system of subway shield engineering and the
cost prediction model based on the BP optimized by the
QPSO. Section 3 is the case analysis, which analyses the
construction costs of 50 subway shield projects in detail.
Section 4 is the discussion. Section 4 details the error and
stability analysis of different algorithms and also analyses the
influence of the topological structure of the BP neural
network. Section 5 is the conclusion. After a brief analysis of
the limitations of the research results in this paper, Section 5
summarizes the research results of this article and points out
turther research directions.

2. Materials and Methods

2.1. The Indicator System of the Construction Cost of Metro
Shield Engineering

2.1.1. Analysis of the Influencing Factors of Metro Shield
Construction Cost. We use a project breakdown structure
(PBS) to decompose the construction process and to analyse
accurately and comprehensively the factors affecting the
construction cost of subway shield engineering [28]. Sub-
sequently, we selected the factors affecting the construction
cost of metro shield engineering. By referring to the Urban
Rail Transit Project Investment Estimation Indicators (GCG
101-2008) promulgated by the Ministry of Housing and
Urban-Rural Development of the People’s Republic of
China, and the Regulations on Capital Construction Project
Construction Cost Management promulgated by the Min-
istry of Finance of the People’s Republic of China (Caijian
(2016) No. 504), we decomposed the construction aspects
into four categories: project aspects, construction condi-
tions, technical standards, and project management.



(1) Project Aspects. Metro shield engineering refers to the
installation of the shield and does not include other aspects
of construction, such as connecting the passages and pump
houses, reinforcement of risk sources, construction moni-
toring, and evacuation platforms. The metro shield project
includes three parts: the selection of the shield machine, the
shield construction at the start or exit stage, and the con-
struction in the shield section. With reference to the engi-
neering practice of the Chengdu Metro Line 11, the Wuhan
Metro Line 8, the Tianjin Metro Line 7, and the Wuhan
Metro Line 21, we analysed the engineering aspects of the
metro shield project. The selection of the shield machine has
not only a significant impact on the smooth completion of
construction but also on the cost. A shield machine adapted
to the engineering and geological characteristics can com-
plete the task quickly with high quality and low risk. Thus,
the shield machine, which costs more than 10 million
dollars, substantially reduces the amortization cost of the
project. At present, there are two types of shield machines:
an Earth pressure balance shield machine and a mud-water
balance shield machine, which are adapted to different
geological characteristics. The permeability coefficient of the
stratum is not only an important geological factor but also a
vital parameter to determine the selection of the shield
machine [29]. According to the national standard of the
People’s Republic of China (Code for Construction and
Acceptance of Shield Tunnelling Methods (GB 50446-2017)),
when the ground seepage coefficient exceeds 10™* m/s, the
mud-water balance shield machine should be considered.
When the seepage coefficient is less than 107" m/s, the Earth
pressure balance shield machine is considered. When the
ground seepage coefficient is between the two values, either
model can be used, depending on the conditions. The
minimum radius of the tunnel line, the maximum slope, and
the clearance in the tunnel also affect the selection of the
shield machine. The minimum radius of the line should
match the size of the shield machine, and an appropriate
shield size should be selected according to the clearance in
the tunnel. It is worth mentioning that the geological
characteristics affect the selection and the efficiency of the
shield machine. Therefore, they also have a significant im-
pact on the shield construction costs.

In the initial stage of shield construction, the launch
shaft is first established and reinforced, followed by the
assembly, debugging, and trial excavation. After trial tun-
nelling has been performed successfully, normal tunnelling
begins. During the trial tunnelling process, it is necessary to
evaluate the tunnelling parameters of the shield machine to
find the optimal parameters. Therefore, the construction cost
of the trial tunnelling stage is often significantly higher than
that of the formal construction stage. The construction cost
of the trial tunnelling stage is proportional to the length of
the trial tunnel. The cost of the shield machine’s entry and
exit work is primarily determined by the number of times the
machine enters and exits the field; the cost is generally
calculated based on the number of times.

In the construction of the shield section, in addition to
hydrogeological conditions affecting the construction cost,
segment engineering is the main factor. Different segment
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thicknesses entail different concrete requirements, and the
concrete costs account for a large proportion of the total
material cost. It is worth mentioning that since the con-
struction cost analysed in this study is based on the unit price
per km for metro shield construction, the length of the shield
section has a negligible effect on the unit price.

Based on the above analysis, the basic engineering fea-
tures of the metro shield included the type of shield machine
(X1), the permeability coeflicient of the stratum (X2), the
minimum radius of the tunnel line (X3), the maximum slope
(X4), the clearance in the tunnel (X5), the geological
characteristics (X6), hydrological conditions (X7), predril-
ling length (X8), the number of shield machine entrances
and exits (X9), and the segment thickness (X10).

(2) Construction Conditions. Similar to the construction cost,
the construction period is also affected by many factors.
Generally, a reduction in the construction period increases
the direct costs of construction, whereas the indirect costs
are reduced. In contrast, an increase in the construction
period may lead to a reduction in direct costs but an increase
in indirect costs. Therefore, the construction period is se-
lected as an influencing factor. Due to differences in the area
of metro projects, the area directly affects the wages and the
price of materials and machinery required by the project.
Since different regions have different fee collection stan-
dards, the location of the project affects the construction
cost.

Metro projects are often built in cities or suburbs, where
there are already many buildings and municipal pipelines.
Certain measures are required during shield construction to
protect these buildings and municipal pipelines. Therefore,
the more complicated the surrounding environment of a
subway project, the more engineering measures are required
and the higher the construction cost is. The seismic forti-
fication intensity (seismic capacity of metro projects) is also
an important factor affecting construction costs. Different
project standards are used for different seismic require-
ments. The higher the seismic fortification intensity, the
higher the engineering standards and quality standards are.
Therefore, we regard the seismic fortification intensity as a
basic engineering feature.

We select the construction period (X11), environmental
characteristics (X12), seismic fortification intensity (X13),
and other related factors.

(3) Technical Standards. According to the Code for the Design
of Metro Systems (GB 50157-2013), which is the national
standard of the People’s Republic of China, the current
design speed of metro systems is divided into several grades,
such as 60, 80, 100, 120, and 160. However, most of the lines
are designed for a speed of 80 due to the station distance,
train performance, and overall cost. If the designed speed is
high, but the station distance is small, the train has to slow
down to enter the station before. This approach does not
represent an advanced design of the system and is a waste of
resources. If the train runs fast, the higher the requirements
for the train performance and the curve radius of the line, the
higher the construction cost is. However, the accessibility is
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low, and the travel needs of residents in some areas are not
considered, which is unreasonable. Therefore, the design
speed (X14) is selected as a basic engineering feature that
affects the construction cost of the metro shield project.
At present, common structural forms of tunnel con-
struction include double-line double tunnels and double-
line single tunnels. In theory, double-line single tunnels are
more economical because only one excavation is needed,
and the cost is reduced [30]. However, the situation is the
opposite in practical applications. Due to the need for high
technology and a sound geological structure for large cross-
section excavation, the construction of a double-line single
tunnel is often more expensive. Therefore, a single-line
single tunnel is typically used in many more cases. We select
the tunnel structure (X15) as a basic engineering feature that
affects the construction cost of metro shield engineering.

(4) Project Management. Project management includes the
management ability of the owner (X16), the management
ability of the construction company (X17), and the financing
structure (X18). The stronger the project management ca-
pabilities of the owners and construction companies are
during the life cycle of the metro tunnel project, the better
the allocation and coordination of resources are. Scientific
decisions are made to facilitate project execution and lower
construction costs. Due to extensive investments in metro
projects, it requires a long time to recover the costs to benefit
the public. When metros are constructed in developing
countries, method such as Build-Transfer (BT), Build-
Operate-Transfer (BOT), Public-Private Partnership (PPP),
Build-Own-Operate (BOO), and other financing models are
used [31]. These approaches save government interest ex-
penses, thereby indirectly reducing construction costs.
Different financing models have different cost inputs;
therefore, the financing models affect project management.

2.1.2. Data Collection. According to the analysis in Section
2.1.1, this section presents the data collection methods of the
19 primary and secondary indicators. X6, X7, X16, and X17
are qualitative indicators, whose scores are obtained from a
questionnaire survey of experts. The other indicators are
quantitative indicators, and the data are obtained by re-
ferring to design documents or field surveys. We focus on
the practices used during the construction of Chengdu
Metro Line 11, Wuhan Metro Line 8, Tianjin Metro Line 7,
and Wuhan Metro Line 21. This section provides a detailed
description of the indicators and how to obtain the data,
which is convenient for subsequent research on the selection
of the index system and case analysis based on rough set
theory.

Shield Machine Type (X1). The soil pressure balance
shield machine has a score of 1, the mud-water balance
shield machine has a score of 2, and the other types of
shield machines have a score of 3. This indicator has no
unit.

The Permeability Coefficient of the Formation (X2). The
score of this indicator can be obtained by consulting the

geological survey or design documents, and the unit is
m/s. The score can also be obtained from an on-site
survey; the calculation formula [32] is

K== (1)

where « is the permeability coefficient of the formation,
k is the permeability of the porous medium, # is the
dynamic viscosity coeflicient, p is the fluid density, and
g is the acceleration of gravity. A field test is used to
obtain the values of k, p, and # so that the permeability
coefficient of the formation can be calculated.

The Minimum Radius of the Tunnel Line (X3). The score
of this indicator can be obtained by consulting the
design documents or conducting an on-site investi-
gation; the unit is m.

Maximum Slope (X4). The score of this indicator can be
obtained by consulting the design documents or
conducting an on-site investigation. The unit of this
indicator is %o.

Clearance in the Tunnel (X5). The score of this indicator
can be obtained by consulting the design documents or
conducting an on-site investigation; the unit is m.

Geological Features (X6). According to the Technical
Code for the Investigation of Geotechnical Engineering
(YS 5202-2004), which is the industry standard of the
People’s Republic of China, the geological factors that
impact subway shield engineering and typical under-
ground engineering construction include the topog-
raphy, stratum lithology, geological structure,
earthquake probability, hydrogeology, natural building
materials, and undesirable physical geological phe-
nomena, such as karst, high probability of landslide,
collapse, sand liquefaction, and foundation deforma-
tion. This qualitative indicator is complex and com-
prehensive. We divide the impact of the geological
features on the construction cost into five levels: (1)
very unfavourable, (2) unfavourable, (3) general, (4)
favourable, and (5) very favourable.

Hydrological Conditions (X7). Hydrogeological condi-
tions refer to the impact of various changes and
movements of groundwater within the scope of the
subway shield project on the construction cost of the
shield project. We divide the impact of hydrological
conditions on the construction cost into five levels: (1)
very unfavourable, (2) unfavourable, (3) general, (4)
favorable, and (5) very favourable.

Predrilling Length (X8). The score of this indicator can
be obtained by consulting design documents or project
management documents, and the unit is m.

The Number of Shield Machines Entering and Exiting
the Field (X9). The score of this indicator can be ob-
tained by consulting the design documents or con-
ducting an on-site investigation. There is no unit for
this indicator.



Segment Thickness (X10). The score of this indicator can
be obtained by consulting design documents or project
management documents, and the unit is m.

Construction Period (X11). The score of this indicator
can be obtained by consulting the design documents or
conducting an on-site investigation; the unit is day (d).

Environmental Characteristics (X12). We divide the
impact of the subway shield project on the construction
cost into five levels: (1) very unfavourable, (2) unfav-
ourable, (3) general, (4) favourable, and (5) very
favourable.

Seismic Fortification Intensity (X13). According to the
National Standard of the People’s Republic of China
Standard for the Classification of Seismic Protection of
Building Construction (GB 50223-2008), the design
basic seismic acceleration value is selected as the score
of this index. The unit is gravitational acceleration (g).

Design Speed (X14). The score of this indicator can be
obtained by consulting the design documents, and the
unit is km/h.

Tunnel Structure (X15). At present, the common
structural forms of tunnel construction are mainly
double-line double tunnels and double-line single
tunnels. The scores are 1 and 2, respectively.

The Project Management Ability of the Owner (X16).
Generally, the higher the management ability of the
owner, the better the cost control is. The management
ability of the contractor is determined according to the
quality of the construction unit. This is a qualitative
indicator. Since the indicator is dimensionless, the
levels are (1) excellent, (2) good, (3) moderate, and (4)
poor.

The Project Management Ability of the Construction
Companies (X17). Generally, the higher the manage-
ment ability of the contractor, the better the cost
control is. The management ability of the contractor is
determined according to the quality of the construction
unit. This is a qualitative indicator. Since the indicator
is dimensionless, the levels are (1) excellent, (2) good,
(3) moderate, and (4) poor.

The Financing Structure of the Project (X18). There are
currently four common financing structures for subway
projects. The score of BT is 1, the score of BOT is 2, the
score of PPP is 3, the score of BOO is 4, and that of the
other modes is 5.

2.1.3. Index Screening Based on the Rough Set Theory.
Rough set theory is a mathematical theory proposed by the
Polish mathematician Pawlak that can deal with uncertain,
incomplete, and incompatible information and knowledge
[24]. Attribute reduction based on the rough set is ac-
complished by deleting unimportant or irrelevant and
redundant attributes while maintaining the classification or
decision-making ability of the information system and
deriving the classification or decision-making of the
problem. An information system can be represented by a 4-
tuple:
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§=(U AV, f) (2)

where U is  the  universe of  discourse,
A=CUD= (a;,a,,...,a,) is a limited set of nonempty
attributes, CN D = &, C are conditional attribute sets, D is a
decision attribute set, and A is a set of attribute values.
Function A is used to assign a corresponding attribute value
to each object in the universe of discourse. The knowledge
expression system with conditional attributes and decision
attributes is collectively called a decision table, in which the
rows represent the records of the object and the columns
represent the attributes of the object [25].

Definition 1. The degree of contribution of the conditional
attributes C to the decision attributes D is described as

POS.. (D)

ol ©)

yc(D) =

where POS (D) is called the positive domain of D with
respect to C, which describes the set of all elements in U that
can be accurately classified into Class A based on knowledge
of U|D. The y. (D) represents the proportion of objects that
can be classified into Decision Class C under conditional
attribute U|D. This defines the degree of contribution of the
conditional attributes to the decision attributes.

Definition 2. Required attributes and unnecessary attributes.

Suppose there is g € C, C<A in the information system S.
If POS¢ (D) #POS ¢_,) (D), it is said that g is a necessary
attribute of C and must be retained. Otherwise, g is an
unnecessary attribute of C and can be deleted. If both g € C
and C are necessary attributes of C, it can independently
form a set of features expressing the classification of in-
formation systems. In this case, C is called independent;
otherwise, it is dependent.

Definition 3. Reduction and core.

In the information system S, ECCCA and E are inde-
pendent and satisfy (yz(D) = y-(D))A(VE C E)= (
yg (D) # Y (D)). E is called a reduction of C, which is denoted
as Red (C). The set of necessary attributes of C forms the core of
C, which is denoted as Core (C) = NRed (C). An information
system usually contains multiple reductions. If E is indepen-
dent, then E is the smallest set that maintains the classification
ability of the universe U [25, 26].

In this study, the Rosetta software is selected to screen
the indicators of the metro shield construction cost. The
software is a logical analysis and data processing tool
based on rough set theory [33]. It was developed in co-
operation with the Department of Computer and Infor-
mation Science at the Norwegian University of Science
and Technology and the Institute of Mathematics at the
University of Warsaw, Poland. The software integrates a
variety of data preprocessing methods, such as data
complementation, discretization, and other functions. It
can also perform operations such as rule acquisition and
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index reduction, as well as data mining and knowledge
acquisition [34].

The Chengdu Metro Line 11 (16 shield sections), Wuhan
Metro Line 8 (9 shield sections), Tianjin Metro Line 7 (13
shield sections), Wuhan Metro Line 21 (12 shield sections),
and others were used in the case study. Quantitative index
data were obtained by consulting design materials and field
surveys and using other methods. In addition, 100 experts
were invited to score each qualitative index. The criteria for
selecting experts are work unit, working years, professional
titles, and educational background. After two rounds of
questionnaires, a total of 72 valid questionnaires were ob-
tained. For simplification, 50 questionnaires were randomly
selected. Cronbach’s alpha reliability coefficient of the
questionnaires was greater than 0.7, so the questionnaire
system was credible [34]. In fact, this paper randomly se-
lected three times, and the values of Cronbach’s alpha of the
three questionnaires were 0.7831, 0.831, and 0.847, which
were all greater than 0.7. All index score data are shown in
Table 1. Due to the length of the paper, Table 1 only lists
some data.

The objective was to maintain the classification ability
of the knowledge system. Rosetta’s built-in attribute re-
duction algorithm was used to delete the irrelevant or
unimportant secondary indicators and to extract the
sensitive predictive indicators of the metro shield con-
struction costs. We extracted the type of shield machine
(X1), the geological characteristics (X6), the number of
entrances and exits of the shield machine (X9), and the
segment thickness (X10) as the attributes of the project
aspect. The construction period (X11) and environmental
characteristics (X12) were used as the attributes of the
construction conditions. The design speed (X14) and
tunnel structure (X15) were used as the attributes of the
technical standards. The project management ability of the
owner (X16), the project management ability of the
construction company (X17), and the financing structure
of the project (X18) were used as the attributes of project
management. In addition, since the design speed in the
current metro engineering practice is 80 km/h, we deleted
the design speed (X14). We discuss the reason for deleting
this indicator in Section 3.3.

2.1.4. Development of the Indicator System. The primary and
secondary indicators affecting the construction cost of metro
tunnel engineering are shown in Table 2.

2.2. The Construction Cost Prediction Model Based on the
QPSO-BP Algorithm. The QPSO algorithm has the advan-
tages of speed and a strong global search, unlike the BP
model. In addition, QPSO does not require specific char-
acteristic information of the problem, such as derivative
gradient information. Therefore, the QPSO and BP models
can be combined to take advantage of the generalization
ability of the BP model and the ability of the QPSU to
optimize the initial weights and thresholds of the layers of
the network. This integration improves the neural network’s
convergence speed and learning ability.

2.2.1. The BP Model. The BP network was proposed in 1986
by a team of scientists headed by Rumelhart and McClelland.
The BP neural network has self-learning and adaptive ca-
pabilities. When the output value is different from the ex-
pected value, the error is calculated. In this case, the neuron
runs the information transmission process opposite to the
learning process [35]. Since the principle of the BP neural
network learning algorithm is the gradient descent method,
the output result, in which the error meets the requirements,
can be obtained by repeated training. At present, the three-
layer BP network is the most commonly used network. The
model structure is shown in Figure 1, where X, X,, .-+, X
are the input valuesand Y, Y,, -

n
-, Y,, are the output results.

2.2.2. The QPSO Model. PSO is an optimization method that
emerged in the 1990s. It has the advantages of simple
structure, easy programming, and small amount of calcu-
lation. The search space of the standard PSO is limited, and it
is easy to fall into the local extremum [36]. In the standard
PSO, the convergence of particles is realized in the form of
orbit, and the maximum speed of particles is limited in the
process of searching. So, the standard PSO cannot globally
converge with probability [37]. In the process of particle
convergence in QPSO, particle i keeps approaching P; until
it falls within P;. There is an attractive potential at P; during
the convergence process, which attracts particles to converge
to P; and makes the whole population have aggregation [18].
Particles in the quantum bound state can appear at any space
point with a certain probability [20]. Therefore, particles can
search in the whole solution space and thus have better
convergence. This is the theoretical reason why QPSO has
better computational performance than PSO.

Compared with the standard PSO, the QPSO has a
different evolutionary search strategy and eliminates the
unnecessary velocity vector in the evolutionary equation. In
addition, the QPSO has a simpler evolutionary equation and
fewer parameters and is easier to control; thus, QPSO has
better global search performance.

In a population with M particles, each particle moves in
an D-dimensional space. The velocity and position vectors of
the ith particle are X;, = (X],X?,...,XD) and
Vin=(VL,Vi,..., VD). In the classical PSO, the trajec-
tory of particles [17] is updated using

Vi

i,n+l

= V{,n + Cler,n(P{,n - Xz{n) + CZRl{n(Gz{n - X{,n)’ (4)

xJ

in+1

= Xin + V;'i,n+1’ (5)
where i=1,2,...,M, j=1,2,...,D, ¢, and ¢, are accel-
eration factors, 7, and R/, are random numbers in the range
of (0,1), VI, € [V Vinax)s Pin = (PLpPh,...,PD) is
the individual optimal position of particle i, and
G, = (G.,G?%,...,GP) is the global optimal position.

In the QPSO algorithm, the position and velocity vectors
of each particle are replaced by wave functions [19]. The
trajectory of the particles is updated using equations (6)-(8)
[19-22]:
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TaBLE 1: Scores of the indices and the actual construction cost.
No. Actual cost X1 X2 X3 X4 X15 X16 X17 X18
Unit Millions/km — m/s m %0 — — — —
1 281.62 1 7.0x 1078 250 6 1 1 2 3
2 473.78 1 9.2x 107 280 4 1 3 1 3
3 867.03 2 43 %107 300 4 1 2 1 2
4 387.49 1 1.0x107° 250 6 1 2 2 2
46 383.69 1 3.7x107° 250 4 2 2 1 3
47 738.50 1 4.0x%x10™ 250 4 2 3 1 3
48 424.31 1 2.8x 1077 300 6 2 2 1 3
49 337.47 1 6.4x1078 250 6 1 2 1 3
50 549.34 1 8.5%10°° 250 6 1 1 1 3

TaBLE 2: The indicators affecting the metro tunnel construction cost.

Primary indicators

Secondary indicators

Type of Indicator

Type of shield machine (X1) Quantitative

Proiect aspects Geological features (X6) Qualitative
) P Number of times of shield machine entering and leaving the site (X9) Quantitative
Segment thickness (X10) Quantitative

. .. Construction period (X11) Quantitative
Construction conditions Environmental characteristics (X12) Qualitative
Technical standard Tunnel structure (X15) Quantitative
Project management ability of the owner (X16) Qualitative

Project management Project management ability of the construction company (X17) Qualitative
Financing structure of the project (X18) Quantitative

FIGURE 1: The structure diagram of the BP neural network.

. . . . 1
X =Pl e |x],-CL| - <in{ =— |, (6)
ui,n+1
. 1\M
Ch=(31) 2 o )
P{,n = q)z{n ' Pin +(1 - (Plj,n) ' Gil’ (8)

where C, = (C},C2,...,CP) s the average optimal position,
which is determined by averaging the individual optimal
positions of all particles, gol{ ,and u,{n .1 are random numbers
uniformly distributed in (0, 1), and « is the scaling coeffi-
cient that controls the convergence speed. It is the only
control parameter in the QPSO algorithm, except for the
population size and iteration times.

2.2.3. The Prediction Model Based on the QPSO-BP. The
flowchart of the prediction model based on the QPSO-BP is
shown in Figure 2.

The main steps of using QPSO to optimize the weights
and thresholds of the BP neural network are as follows:

Step 1. Data collection and normalization.

The numerical dimensions differ for the influencing
factors, causing a decrease in the convergence speed
when using the BP and QPSO algorithms and affecting
the accuracy of the model [38]. Equation (9) was used
[38] to normalize the data to obtain a range from 0 to 1:

x: — Xi — Xmin _ 1) (9)

Xmax ~ ¥min

where x; is the original data, x,,, is the maximum value
in the original data sequence, x,;, is the minimum
value in the original data sequence, and x; is the
normalized data.

Step 2. Determining the input and output sample sets of
the neural network and the topology of the neural
network.

In the QPSO algorithm, the first-generation population
is initialized within the range of [0, 1], and the size of
the initial particle swarm population M, the scaling
factor «, and the maximum number of iterations N are
set.

Step 3. Determining the coding scheme of the neural
network weights and thresholds.
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| Initialize population

Particle fitness
evaluation
v
Calculating historical optimal
and global optimal particles

Updating the positions of

Exporting optimized
particles

weights and thresholds

Meeting the
convergence

Updating the position of particles to generate the
next generation of particles

Figure 2: The flowchart of the prediction model based on the
QPSO-BP.

We use a threshold or a weight to correspond to one
dimension in the particle vector. For a specific neural
network, if the input has n dimensions, the number
of hidden layers is [, the number of nodes in each
corresponding hidden layer is k;, and the output
dimension is m; then, the dimension of the particles
can be obtained using the following equation
[13, 15]:

-1 1
D =nk, + ) ki +kym+ ) ki +m. (10)

i=1 i=1

Step 4. Recoding the population individuals of the
quantum particle swarm into the weights and thresh-
olds of the neural network.

Step 5. Selecting the appropriate fitness function
according to the neural network principle and input
and output sample set.

The objective is to minimize the difference between the
expected output of the network and the actual output.
The fitness function is expressed as[13]

f@=Y (-7) (11)
i=1

where s is the number of samples, y; is the actual output
of sample i, and y; is the predicted output of sample i.

Step 6. Updating the particles according to equations
(6) to (8).

Step 7. Evaluation of the particles and calculation of the
fitness value using equation (11).

Step 8. If the end conditions are met, the optimization
ends and the weights and thresholds at this time are

used as the initial weights and thresholds of the neural
network. Otherwise, return to Step (4).

3. Case Analysis

3.1. Obtaining and Processing Forecast Data. We selected
four metro projects of the China State Construction Group
Corporation for the case analysis. They include the Chengdu
Metro Line 11 with 16 shield tunnels, Wuhan Metro Line 8
with 9 shield tunnels, Tianjin Metro Line 7 with 13 shield
tunnels, and Wuhan Metro Line 21 with 12 tunnels. Table 1
shows the 50 sets of sample data. The time factors and
geographic factors have a significant impact on the cost of
the building material, labor, and machinery; therefore, they
also have a significant impact on the construction costs, and
it is necessary to adjust the 50 sets of construction cost data
based on geography and time. It is worth mentioning that, in
Table 1, the actual construction costs represent the adjusted
data.

(1) We use Chengdu City, Sichuan Province, China as a
benchmark and use the regional adjustment coefhi-
cient for the adjustment. According to the Standard
method of measurement for public utilities works (GB
50857-2013), it can be calculated by the following
equation:

Z:’:l Dri * Pri

A=="10 1
Z;Z Dy, * Py;

(12)

where 7 is the total number of similar local projects,
m is the total number of similar projects in other
regions, D,; is the unit price of similar local projects,
P, is the weight of these projects. P,; = G,;/ Y., G i
G,, is the number of similar projects, and D,; and Py,
are the unit price and weight of the same types of
project in other regions.

(2) Based on the cost index of 2018, the time adjustment
is carried out by using the cost index adjustment.
According to the Standard method of measurement
for public utilities works (GB 50857-2013), it can be
calculated by the following equation:

B:Z%IDri*Pri’ (13)
2i2y Do; * Py;

where m is the total number of similar projects in 2018,

n is the total number of similar projects in other years,

and D,; is the unit price of similar projects in the

reporting period.

3.2. Forecast Results. Two sets of data were required for the
BP neural network to establish the construction cost pre-
diction model of metro shield engineering, i.e., the training
set and test set. The training set data was used to train the
neural network, and the test set data was used to validate the
neural network. In this study, the training set consisted of 55
randomly selected datasets, and the rest of the data
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represented the test set. The ratio of training data to test data
was 90% to 10%.

The parameter settings of the BP neural network [15, 16]
were as follows: the number of training times was 1000, the
learning rate was 0.1, and the training target was 0.001. The
calculation parameters of QPSO [20, 21] included the fol-
lowing: the number of iterations was 1000, the population
size was 100, the scaling factor was 0.4, and the maximum
error of the iteration termination was 0.00001.

The convergence curve of the fitness function of the
QPSO is shown in Figure 3. The QPSO model converged
after about 150 generations.

The results of the optimization calculation process of
QPSO model are shown in Table 3. The error between the
146th iteration and the 147th iteration is larger than the
minimum acceptable precision (0.00001), and the error
between the 147th iteration and the 148th iteration is smaller
than the minimum acceptable precision. The error of the
iterative calculation results after 148 generations is also less
than 0.00001. The results in Figure 3 and Table 3 indicate that
QPSO found the optimal neural network weights and
thresholds in the 147th generation.

The prediction results of different calculation models
obtained from the Matlab software are shown in Figures 4
and 5. In Figures 4 and 5, the predicted error and the relative
error value were obtained according to the predicted and
actual values. The formula is as follows:

E =V~ Vo (14)

E, - M, (15)

Ya

where E, is the predicted error, E, is the relative error, y, is
the predicted value, and y, is the actual cost.

The calculation error of the QPSO-BP model is very
small, the maximum predicted error is only 2.79, and the
maximum relative error is only 1.39%. This proved that
QPSO-BP had high calculation accuracy, and this paper
detailedly compares the calculation accuracy of different
calculation models in Section 4.1.

The ratio of training set to test set might affect the
prediction result. At present, the ratio of common training
set and test set is 90% : 10%, 80% : 20%, or 70% : 30% [39, 40].
Therefore, this paper calculated the influence of these three
proportions on the prediction results, and the calculation
results are shown in Table 4.

According to the calculation results in Table 4, it is not
difficult to see that, with the decrease of the proportion of
training sets, the calculation accuracy of the prediction
results decreases continuously. However, when the pro-
portion of training set is 70%, the calculation accuracy of
prediction results is 3.98%. Compared with other methods
(the multiple regression, BP, GA-BP, and PSO-BP), the
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F1GURE 3: Convergence curves of the QPSO, GA and PSO models.

QPSO-BP with 70% training set still has better calculation
accuracy.

4, Discussion

In this paper, a rough set, the QPSO, and BP models were
used to establish a prediction model of the construction cost
of a subway shield project. This paper has the following
limitations. (1) The primary indices of the index system in
this study only refers to the engineering practices of the
Chengdu Metro Line 11, Wuhan Metro Line 8, Tianjin
Metro Line 7, and Wuhan Metro Line 21. If more projects
are selected, the index system may change. (2) There is no
complete analysis of the influence of input parameters on the
prediction results in this paper. (3) Although the QPSO was
successfully used to optimize the BP model, and its calcu-
lation accuracy was higher than that of common methods
(the multiple regression, BP, PSO-BP, and GA-BP), many
other optimization methods can also be used to optimize the
BP model.

4.1. Error Analysis of the Different Computational Models.
PSO and GA algorithms were used to optimize the BP model
to determine the advantages of QPSO for optimizing the BP
model. In the BP algorithm, the selected training function
was traingda, the activation function of the hidden layer was
logsig, and the activation function of the output layer was
purelin [15-18]. We set the target error of training as 10~
and the maximum number of iterations as 1000. The
learning rule of the network was the gradient descent
method. In the GA algorithm, the number of individuals in
the population was 50, the maximum genetic algebra was
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TaBLE 3: Optimization calculation process of the QPSO.

Iteration (n) Fitness (n—1)

Fitness (n)

Fitness (n) — Fitness (n—1) Result

147
148
149
1000

2.388799
2.388799
2.388807
2.388807

2.388799
2.388807
2.388807
2.388807

0<0.00001
0.000008 < 0.0001

0<0.0001

0<0.0001

Continue

Continue

Continue
Stop
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FIGURE 4: The predicted errors of different algorithms.
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FIGURE 5: The relative errors of different algorithms.

TaBLE 4: Prediction results of different training and testing split
ratio.

The training and testing split 90%:10% 80%:20% 70%: 30%

ratio
Average absolute error 5.278 7.313 12.763
Average relative error (%) 1.10 2.29 3.98

1000, the binary digits were 20, and the generation gap was
0.9 [15]. In the PSO algorithm, the swarm size was 200, the
personal learning coeflicient and global learning coeflicient

were both 2, the inertia weights decreased linearly from 0.9
to 0.4, the minimum acceptance accuracy was 0.00001, and
the maximum number of iterations was 1000 [16]. In ad-
dition to population size and convergence conditions, the
key parameter required for QPSO is only the scaling coef-
ficient, whereas the GA algorithm and PSO require more
parameters. Compared with the GA and PSO, the QPSO has
the advantage of fewer parameters.

In addition, in the subsequent error calculation and
analysis, we also used the BP algorithm and multivariate
linear programming, a commonly used method in engi-
neering practice, to predict the construction cost of subway
shield engineering in this case study.

The convergence curves of the fitness function of the
QPSO, GA, and PSO models are shown in Figure 3. The
QPSO model converged after about 150 generations, the
PSO model converged after about 270 generations, and the
GA model converged after about 350 generations.

The results in Figure 3 and Table 3 indicate that QPSO
found the optimal neural network weights and thresholds in
the 147th generation. However, the GA and PSO only found
the optimal neural network weights and thresholds in the
353rd and 264th generations, respectively. Thus, QPSO has a
faster convergence speed than the GA and PSO.

According to Figures 4 and 5 in Section 3.2, the calcu-
lation errors of the multiple regression, BP, GA-BP, and PSO-
BP models are substantially larger than those of the QPSO-BP
model. Therefore, the QPSO-BP model has the highest ac-
curacy. In addition, the accuracy of the models follows the
order QPSO-BP >PSO-BP > GA-BP > BP > multiple regres-
sion, which is similar to previous calculation results [22]. This
phenomenon could prove the rationality of the case analysis
results in this paper to a certain extent.

In order to further analyse the calculation accuracy of
different calculation methods, we selected four common error
analysis tools for machine learning, including the determination
coefficient (R?), the mean absolute percentage error (MAPE),
the root mean square error (RMSE), and the mean absolute
error (MAE) to evaluate the accuracy of several methods. The
results of the four types of errors are shown in Figure 6.

R? indicates the degree of correlation between the actual
value and the predicted value; the calculation method is
shown in equation (16). The closer R* is to 1, the higher the
correlation is and vice versa [41]:

ex] rey 2

Yo (i =)
—\2?

Pl (yf"p - yfxp)

where y;F is the actual result, I

R =1- (16)

is the predicted result,

¥:? is the average value of the actual results, and N is the
number of test sets.
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FIGURE 6: Error analysis results of the different calculation models.

As shown in Figure 6, the R? value of QPSO-BP is 0.9980,
indicating that the predicted value obtained from the pro-
posed model is very close to the actual value. Compared with
the multiple regression analysis method, BP, GA-BP, and
PSO-BP, the R* value of QPSO-BP is higher than those of
multiple regression analysis, BP, GA-BP, and PSO-BP,
demonstrating that the proposed model has the best pre-
diction results.

The MAPE represents the average relative error of the
prediction results (equation (17)) [22, 41]. When the MAPE
is 0%, the prediction result is perfect. The higher the value of
MAPE, the worse the accuracy of the prediction result:

exp pre
Yi — )i
exp
i

1 N
MAPE:NZ

i=1

The MAPE of QPSO-BP is the smallest (1.29%), indi-
cating that the prediction result of QPSO-BP is the best
among all methods. The MAPE of multiple regression
analysis, BP, GA-BP, and PSO-BP are 37.51%, 11.84%,
4.75%, and 2.83%, respectively.

The RMSE measures the deviation between the predicted
value and the actual value (equation (18)) [22]. The smaller
the RMSE value, the smaller the deviation between the
predicted value and the actual value and the higher the
prediction accuracy:

* 100%. (17)

1 J €X] re
RMSE = NZ(yi P yPrey?, (18)
i=1

As shown in Figure 6, the RMSE value of QPSO-BP is
6.4363, which is the lowest among all algorithms. The cal-
culation results show that the proposed model provides the
best prediction results.

The MAE is the average of the absolute values of the
deviations between all predicted values and the arithmetic
mean (equation (19)). The MAE avoids the problem of offset

Advances in Civil Engineering

and describes the degree of data dispersion. The smaller the
MAE value, the better the prediction accuracy:

N
MAE = % 2P = (19)
i=1

The MAE value of QPSO-BP is the smallest among all
models, indicating good dispersion of the prediction results
and high prediction accuracy of this model. All five test sets
achieved good prediction results.

We also conducted ten-fold cross-validation to test the
accuracy of the algorithm [42] and verify whether the BP
model was overfitted. The average accuracy of the ten-fold
cross-validation is shown in Table 5.

The errors of ten calculation results are obviously smaller
than the traditional BP and other three models, which shows
the progressiveness of the calculation method. The accuracy
is very high, and the average value of the maximum relative
error calculated by the model proposed in this paper is
3.0009%. In addition, the values of R, MAPE, RMSE, and
MAE of ten calculation results are stable, which proves the
stability of the proposed algorithm. Based on the above
analysis, we deduced that the BP model of case analysis was
not overfitted.

The number of input variables has a significant influence
on the prediction results of the subway shield construction
cost using an artificial intelligence method.

In Section 2.1.3 of this paper, the rough set method was
used to concentrate the input variables, and eight factors
(X2, X3, X4, X5, X7, X8, X13, and X14) which had great
correlation with other input variables were deleted. In order
to verify the rationality and effectiveness of using rough sets,
we investigated the impact of deleting this indicator on the
calculation results. The average R?>, MAPE, RMSE, and MAE
of the ten prediction results changed slightly after these eight
influencing factors were added, and the calculation time only
increased by 54.7s. According to the basic principle of the
rough set, we thought that these eight factors had great
correlation with other factors. It was reasonable to delete
these eight factors in Section 2.1.3.

4.2. Stability Analysis of Different Computational Models.
Stability determines the reliability of the calculation model
in prediction. In this paper, the standard deviation was used
to judge the stability of the calculation model. Among the 45
training samples in Section 3.1, 30, 35, 40, and 45 samples
were randomly selected as training sets, and the last 5
samples in Section 3.1 were used as test sets. The calculation
was repeated 100 times, and the standard deviations of 5 test
sets’ prediction errors are shown in Table 6.

It can be seen from Table 6 that QPSO-BP has a low
standard deviation, and the multiple regression had the
largest standard deviation. With the increase of training
sample size, the computational stability of QPSO-BP had
been improved continuously. These results showed that
QPSO-BP was more stable than other models.
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TaBLE 5: Error results of the ten-fold cross-validation.
No. 1 2 3 4 5 6 7 8 9 10
R? 0.9980 0.9981 0.9979 0.9975 0.9983 0.9980 0.9976 0.9976 0.9981 0.9982
MAPE (%) 1.29 1.29 1.30 1.34 1.27 1.29 1.33 1.33 1.28 1.27
RMSE 6.4363 6.6789 6.5973 6.7910 6.4672 6.4780 6.3789 6.4789 6.2671 6.6781
MAE 6.078 6.3819 6.3891 6.4768 6.305 6.2673 6.3731 6.2781 5.7378 6.2789
TaBLE 6: Stability of calculation results under different sample numbers.
Model 30 35 40 45
Multiple regression 33.890 27.390 20.11 22.30
BP 1.890 1.631 1.071 0.938
GA-BP 0.817 0.639 0.451 0.381
PSO-BP 0.691 0.588 0.432 0.340
QPSO-BP 0.311 0.273 0.192 0.181
TaBLE 7: The topological structures of the different network models.
Model Number of hidden layers Number of hidden layer nodes R? MAPE (%) RMSE MAE
12 0.8531 37.89 263.8791 130.13
15 0.8867 26.16 153.3810 78.31
BP 18 0.9152 11.84 54.9819 53.56
12-4 0.8993 20.37 139.3117 58.48
12-6 0.9205 10.48 48.5281 34.76
12-8 0.9241 9.38 46.3189 32.18
12 0.9532 9.37 31.3819 28.37
15 0.9648 6.39 27.9042 23.56
18 0.9761 4.75 22.3047 20.68
GA-BP 12-4 0.9713 5.17 27.3134 16.49
12-6 0.9848 431 20.8443 15.01
12-8 0.9910 3.48 17.3611 16.31
12 0.9798 8.31 37.3428 26.44
15 0.9831 4.48 23.189 15.31
18 0.9920 2.83 12.8864 12.76
PSO-BP 12-4 0.9847 5.30 30.3197 17.50
12-6 0.9945 4.31 20.5610 12.89
12-8 0.9921 2.30 9.3819 6.15
12 0.9894 2.06 9.150 8.367
15 0.9931 1.47 7.679 6.890
18 0.9980 1.29 6.436 6.078
QPSO-BP 12-4 0.9942 1.37 7.037 6.401
12-6 0.9982 1.25 5.936 5.568
12-8 0.9985 1.23 5.789 5278

4.3. Influence of the Topological Structure of the BP Model on
the Calculation Results. To date, no unified and complete
theoretical guidance has been developed for the selection of
the BP neural network structure, and experience is com-
monly used for the selection. If the network structure is
extensive, the training efficiency is not high, and there may
be overfitting, resulting in low network performance and
reduced fault tolerance. If the selection is too small, the
network may not converge [43]. Therefore, we investigated
the influence of the topological structure of different net-
work models on the prediction results.

In the case study, the topological structure of the BP
model was determined using equation (10). In line with the
research results in related fields [44], we investigated the
topological structure of seven different network models

based on the QPSO-BP model; the results are shown in
Table 7.

The average error of the calculation results of the
QPSO-BP neural network model was very small, re-
gardless of the topological structure of the network
model. The results demonstrate the excellent perfor-
mance of the QPSO-BP neural network model for fore-
casting the cost of construction projects. As observed in
[45, 46], since the QPSO-BP neural network model has
high precision for prediction and cross-validation results,
the probability of overfitting or underfitting is reduced.
When using the same model, the average error of the
prediction results decreases with an increase in the
number of hidden layers and nodes, but the calculation
time also increases.
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5. Conclusions

Prior to construction, it is of great significance to perform
an accurate and science-based prediction of the con-
struction cost for the smooth implementation of a subway
shield project. Due to the complexity of subway shield
construction, many factors affect the project construction
cost, and the cost prediction is complex and involves many
nonlinear factors. Therefore, we decomposed the project
using a project analysis method, obtained the factors
influencing the cost of the subway shield project according
to the Chinese national standards and expert opinion, and
used rough set theory to reduce the number of influencing
factors, thus avoiding redundancy between the engi-
neering features. The case analysis of 50 subway shield
projects in China indicated that the key factors affecting
the project construction cost which included the type of
shield machine, geological features, number of times that
the shield machine entered and left the site, segment
thickness, construction period, environmental charac-
teristics, tunnel structure, project management ability of
the owner, project management ability of the construction
company, and financing structure of the project. Thus,
several factors affected the project construction cost of the
subway shield. The BP neural network optimized by QPSO
was used to predict the construction cost of the subway
shield. This method integrated the global convergence of
QPSO and the ability to perform nonlinear analysis of the
BP algorithm, thus improving the accuracy and stability of
BP network training. The proposed model was well suited
for the complex nonlinear problem of cost prediction in
subway shield construction. The results of the absolute
error, relative error, R, MAPE, RMSE, and MAE showed
that the QPSO-BP model provided higher prediction
accuracy than the multiple regression, BP, GA-BP, and
PSO-BP methods.

In the future, scholars should develop an information
database of the construction cost of subway shield projects to
investigate the influencing factors more comprehensively. In
addition, the use of other artificial intelligence algorithms to
optimize the BP neural network is also worthy of further
study.
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